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Intersection forms and Donaldson’s theorem (review)

Review: 4-manifolds and intersection forms

» always: X closed oriented simply connected 4-manifold
> H;(X) trivial for i # 2 — focus on Ha(X;Z) = H?(X;Z)

» H?(X;Z) corresponds to intersection form
Qx: H*(X;Z) x H*(X; Z) = Z,(a, B) = (aU b, [X]),

Qx is symmetric, Z-bilinear and unimodular
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> H;(X) trivial for i # 2 — focus on Ha(X;Z) = H?(X;Z)

» H?(X;Z) corresponds to intersection form
Qx: H*(X;Z) x H*(X; Z) = Z,(a, B) = (aU b, [X]),

Qx is symmetric, Z-bilinear and unimodular
» three basic invariants

> parity: Q is even iff im(Q) C 2Z, otherwise odd
> rank: rk(Q) = ba(X) = dimg Ha(X; Q)
> signature: sign Q = by — by
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Intersection forms and Donaldson’s theorem (review)

Review: 4-manifolds and intersection forms

» always: X closed oriented simply connected 4-manifold
H;(X) trivial for i # 2 — focus on Ha(X;Z) = H?(X;Z)

» H?(X;Z) corresponds to intersection form

v

Qx: H3(X;Z) x H*(X;Z) = Z, (o, B) — (aU b, [X]),

Qx is symmetric, Z-bilinear and unimodular
» three basic invariants
> parity: Q is even iff im(Q) C 2Z, otherwise odd
> rank: rk(Q) = ba(X) = dimg Ha(X; Q)
> signature: sign Q = by — by

» Freedman '82: for topological manifolds,
X — Qx is surjective and at most two-to-one.

» Rohlin '52: X smooth with Qx even = sign Qx € 16Z
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Intersection forms and Donaldson’s theorem (review)

Review: intersection forms and Donaldson’s theorem

» indefinite unimodular forms are classified by the rank, signature and
parity
» Hasse-Minkowski theorem: all indefinite unimodular forms are

(1) & m(—1) (odd type) or / (0 @ mEg (even type).

1
10
> definite forms: many exotic examples

> diagonalisable over Q, but not necessarily over Z
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Intersection forms and Donaldson’s theorem (review)

Review: intersection forms and Donaldson’s theorem

» indefinite unimodular forms are classified by the rank, signature and
parity
» Hasse-Minkowski theorem: all indefinite unimodular forms are

(1) & m(—1) (odd type) or / (0 @ mEg (even type).

1
10
> definite forms: many exotic examples

> diagonalisable over Q, but not necessarily over Z

Donaldson's theorem (1983)

X oriented closed simply connected smooth 4-manifold with Qx definite.
Then Qx is diagonalisable.
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Classification of reducible connections

Recall: setup and reducible connections

» G compact Lie group: G =S0O(3) or G =SU(2),
X compact simply connected oriented Riemannian 4-manifold,
E — X G-principal bundle.

» A = {connection 1-forms on E},
B = A/G quotient by gauge group G of E,
M ={[A] € B: F; = 0} moduli space of ASD instantons.

Michael Rothgang (HU Berlin) Analysis of reducibles and Donaldson’s theorem February 02, 2021

5/19



Classification of reducible connections

Recall: setup and reducible connections

» G compact Lie group: G =S0O(3) or G =SU(2),
X compact simply connected oriented Riemannian 4-manifold,
E — X G-principal bundle.

» A = {connection 1-forms on E},
B A/G quotient by gauge group G of E,
= {[A] € B: Ff =0} moduli space of ASD instantons.

> Each A€ A has

Li
> a holonomy group Ha ge Aut(Ey) = G and
> an isotropy group [a = {uv € G : u(A) = A}

» For X connected, 4 is isomorphic to the centraliser of Hyu.

> Ais reducible & Hp < G is a proper subgroup
< Z(G) < T, is a proper subgroup.
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Classification of reducible connections

Classification of reducible connections

Proposition
If G = SU(2) or SO(3) and H < G is a closed connected Lie subgroup, then
H={id}, H= G or H= S

Ha = {id} means E is trivial and A is the product connection.
For SU(2)-bundles,

Hi=S'es E2 Lol & o(E) = —a(L)?
for a complex line bundle L; for SO(3)-bundles

Hy=S' o EZR@L < pi(E) = a(L)?
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Classification of reducible connections

Classification of reducible connections (cont.)
For SU(2)-bundles,

Ha=2S'es E= Lol & oE) = —a(L)?
for a complex line bundle L; for SO(3)-bundles

Hi=S'es E2Rale pRaeLl)=cq(l)

= DAl

[m] = = = DQAC
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Classification of reducible connections

Classification of reducible connections (cont.)
For SU(2)-bundles,

Hi=S'e E2 Lol & o(E) = —a(L)?
for a complex line bundle L; for SO(3)-bundles

S Hy=S's E2RaoLe p(Rel)=ca(L)

A line bundle L over X admits an ASD connection

iff c1(L) is represented by an ASD 2-form,

and the connection is unique up to gauge equivalence.
Proposition

Reducible ASD connection 1-forms with holonomy group = St

< pairs {c,—c} where c # 0 € H?(X;Z) satisfies

c? = —c(E) (for G = SU(2)) resp. c® = p1(E) (for G = SO(3)).
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Classification of reducible connections

Classification of reducible connections (cont.)
For SU(2)-bundles,

Hi=S'e E2 Lol & o(E) = —a(L)?
for a complex line bundle L; for SO(3)-bundles

S Hy=S's E2RaoLe p(Rel)=ca(L)

A line bundle L over X admits an ASD connection
iff c1(L) is represented by an ASD 2-form,
and the connection is unique up to gauge equivalence.

Proposition

Reducible ASD connection 1-forms with holonomy group = St
< pairs {c,—c} where c # 0 € H?(X;Z) satisfies
c? = —c(E) (for G = SU(2)) resp. c® = p1(E) (for G = SO(3)).

Corollary

If Qx is definite, there are only finitely many reducible connections (up to
gauge equivalence). 0
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Kuranishi models near reducible connections

Locals models of the moduli space M

Recall that

» G is an infinite-dimensional Banach Lie group, the action G x A — A is a

smooth map of Banach manifolds.

> lts differential in G at A€ Ais —da: Q°%(ge) — Q(ge),
with ASD part is d : kerd} — Q% (gk).

> Jp = dj @ dj is elliptic, hence Fredholm.

Proposition

If A is an ASD connection over X, a neighbourhood of [A] in M
is modelled on a quotient f~1(0)/T 4,
where f: kerd, — coker dj is a I a-equivariant map.
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Kuranishi models near reducible connections

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).
> Case 1: Hy =St
Since S! is abelian, Cg(Ha) = Ha, hence 'y = St
Near a reducible connection with H4 = S, M is modeled on a
quotient R"/S!, a cone over projective space.
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Kuranishi models near reducible connections

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).

> Case 1: Hy =St
Since S! is abelian, Cg(Ha) = Ha, hence 'y = St
Near a reducible connection with H4 = S, M is modeled on a
quotient R"/S!, a cone over projective space.

» Case 2: Hp is trivial. In this case, [a = Cg(Ha) = G.
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Kuranishi models near reducible connections

Local models near reducible connections (cont.)

Let A be a reducible connection, G = SU(2) or G = SO(3).
> Case 1: Hy =St
Since S! is abelian, Cg(Ha) = Ha, hence 'y = St
Near a reducible connection with H4 = S, M is modeled on a
quotient R"/S!, a cone over projective space.
» Case 2: Hp is trivial. In this case, [a = Cg(Ha) = G.
B has a stratification B = [ |ircc B" with strata

B" = {[A] € B:TaZcon T},
where C = {I' < G : closed subgroup}/conjugation.

Near a reducible connection with H = {id},
M is modeled on a cone over a singular space.
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Proof of Donaldson's theorem

Donaldson’s theorem: proof outline

Recall: Donaldson’s theorem
X oriented closed simply connected smooth 4-manifold with Qx definite.
Then Qx is diagonalisable.

Proof outline

» Take a suitable SU(2)-bundle E — X;
consider M = {ASD connections}.

» Collar theorem: M* smooth manifold with ideal boundary X.

» Truncate: cut a neighbourhood of each reducible connection
= cobordism between X and disjoint union of CP?’s.

» Use cobordism invariance of signature and a small computation.
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Proof of Donaldson's theorem

Proof of Donaldson’'s theorem

> Suppose w.l.o.g. Qx is negative definite, i.e. b™ = 0.

» Let E — X be a smooth SU(2)-bundle with c;(E) = 1, consider
M := {smooth ASD connections on E}.

» Choose a generic metric on X, then M* is a smooth manifold of
dimension 8 -1+3- (b — bt — b%) =5.

» Finitely many reducibles [Ac], correspond to {e, —e} C H?(X;Z) with
e = —c(E)=—1.

> Near each [A¢], M is modelled as C3/S!, a cone over CP?.

» Choose a conical neighbourhood U, of each [A], denote

P := 0U, = CP2. Let M' := M\ (UU, Ue).
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Proof of Donaldson's theorem

Proof of Donaldson’s theorem (cont.)
Truncated moduli space: M’ := M\ (UU U, Ue).
» Denote n(Qx) := #reducibles:
M’ is a cobordism between X and Lo Ue = Z(:QlX) CP? =Y.

Figure: Sketch of the moduli space M’. Figure taken from Donaldson-Kronheimer,
The Geometry of four-manifolds, 1990.

Michael Rothgang (HU Berlin) Analysis of reducibles and Donaldson’s theorem February 02, 2021 12/19



Proof of Donaldson's theorem

Proof of Donaldson’s theorem (cont.)

X is cobordant to Y := Z(:QIX)CIP’2.

Lemma (Algebraic fact)

n(Qx) < rk(Qx) with equality iff Qx = n(—1).
Proposition

If W is an oriented cobordism between closed simply connected 4-manifolds,
sign(Qx) = sign(Qy).
QRx is negative definite: sign(Qx) = —rk(Qx), thus

rk(Qx) = [sign(Qx)| = [sign Qy| < n(Qx) sign(CP?) = n(Qx),
T

thus sign Qx = n(Q) and Q is diagonalisable. O
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Proof of Donaldson's theorem

Proof of Donaldson’s theorem (concluded)
Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over Z. Denoting

n(Q) := #{{a, —a} : Qla, ) = —1}, we have n(Q) < rk(Q)
with equality iff Q is diagonalisable, i.e. Q = n(—1).
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Proof of Donaldson's theorem

Proof of Donaldson’s theorem (concluded)
Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over Z. Denoting

n(Q) := #{{a, —a} : Qla, ) = —1}, we have n(Q) < rk(Q)
with equality iff Q is diagonalisable, i.e. Q = n(—1).

Proof sketch.

» Induction over r = rk(Q). Base case is clear.

> If « satisfies Q(a, ) = —1, get a splitting

7' =Za& ot B (B,0)a® (a—(B8,a)a).

» Since Q is definite, n(Q) =1+ n(Q|,1) and rk(Q|,) + 1.
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Proof of Donaldson's theorem

Proof of Donaldson’s theorem (concluded)
Lemma (Algebraic fact)

Let Q be a negative definite quadratic form over Z. Denoting

n(Q) := #{{a, —a} : Qla, ) = —1}, we have n(Q) < rk(Q)
with equality iff Q is diagonalisable, i.e. Q = n(—1).

Proof sketch.

» Induction over r = rk(Q). Base case is clear.

> If « satisfies Q(a, ) = —1, get a splitting

7' =Za& ot B (B,0)a® (a—(B8,a)a).

» Since Q is definite, n(Q) =1+ n(Q|,1) and rk(Q|,) + 1.
About cobordism-invariance of the signature:

» Chern-Weil theory implies that p1(TX) is cobordism-invariant.
» Hirzebruch signature theorem relates p;( TX) and sign(Qx).

Michael Rothgang (HU Berlin) Analysis of reducibles and Donaldson’s theorem February 02, 2021

14 /19



Fintushel-Stern’s proof of Donaldson’s theorem

Fintushel-Stern's proof of Donaldson’s theorem

Theorem
There is no smooth, oriented simply connected closed four-manifold X with

intersection form Qx = —Eg @ —Eg.

Proof sketch
» Suppose there were. Choose e € H?(X;Z) with e = —2.
» Consider the SO(3)-bundle F = L & R, where ¢1(L) = e.

» Fix a regular Riemannian metric on X (are generic).
Virtual dimension is 1, hence M is 1-dimensional.

» Since dim Mg = 1, boundary strata M (,) have negative dimension,
hence empty = Mg compact.
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Fintushel-Stern’s proof of Donaldson’s theorem

Fintushel-Stern’s proof of Donaldson’s theorem (cont.)

» Consider the norm ||a|| = —(a, «).
» A reducible ASD connection corresponds to {f, —f}, where
f #0 € H3(X;Z) with f2 = p1(F) = c1(L)? = 2. Thus,
f = e(mod2) and ||f|| = | €]
» By first condition, m := %f S H2(X; 7).
By Cauchy-Schwartz ||m?|| < |le||? = 2; equality iff e = f = m.
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Fintushel-Stern’s proof of Donaldson’s theorem

Fintushel-Stern’s proof of Donaldson’s theorem (cont.)

» Consider the norm ||a|| = —(a, «).

» A reducible ASD connection corresponds to {f, —f}, where
f #0 € H3(X;Z) with f2 = p1(F) = c1(L)? = 2. Thus,
f = e(mod2) and ||f| = |e|l-

» By first condition, m := %f S H2(X; 7).
By Cauchy-Schwartz ||m?|| < ||e||? = 2; equality iff e = f = m.

» Thus, f # e implies ||m| € {0,1}. But Eg @ Eg is even and doesn’t
contain a vector of length one.
Hence, m =0 and f = —e. Thus, MF contains exactly one reducible
connection [Ag], corresponding to {e, —e}.
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Fintushel-Stern’s proof of Donaldson’s theorem

Fintushel-Stern’s proof of Donaldson’s theorem (cont.)

>
>

>

=

Consider the norm ||a|| = —(a, «).

A reducible ASD connection corresponds to {f, —f}, where

f #0 € H3(X;Z) with f2 = p1(F) = c1(L)? = 2. Thus,

f = e(mod2) and ||f| = |e|l-

By first condition, m := %f S H2(X; 7).

By Cauchy-Schwartz ||m?|| < ||e||? = 2; equality iff e = f = m.

Thus, f # e implies |m|| € {0,1}. But Eg @ Eg is even and doesn’t
contain a vector of length one.

Hence, m =0 and f = —e. Thus, MF contains exactly one reducible
connection [Ag], corresponding to {e, —e}.

Local models: [Ag] has neighbourhood in M fr modelled on a cone over
CPO = {pt}, i.e. a closed half-line.

Mg compact 1-mfd with one boundary point, contradiction!
O]
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Fintushel-Stern’s proof of Donaldson’s theorem

Comparison of proofs

Donaldson’s proof
» crucially relies on the non-compactness of M

> uses cobordism invariance of signature
Donaldson-Kronheimer: replace by a computation of topology of B

» this generalises to non-definite forms as well
Fintushel-Stern’s proof

P uses compactness properties: Eg & Eg contains no length one vector
not enough energy for bubbling, don't need collar theorem/gluing map

» depends on lattice
» can be adapted for general lattices, but requires Qx definite.

Michael Rothgang (HU Berlin) Analysis of reducibles and Donaldson’s theorem February 02, 2021 17 /19



Fintushel-Stern’s proof of Donaldson’s theorem

Appendix
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Proof: Lie subgroups of G

Proposition

If G =SU(2) or SO(3) and H < G is a closed connected Lie subgroup, then
H={id}, H= G or H=S!.

Proof sketch.
Let H < G be connected and closed subgroup.
Is a Lie subgroup. By the subgroups-subalgebras theorem,

{Lie subgroups H < G} b {Lie subalgebras h C g}, H — TiqH.
In our case, su(2) = s0(3) = {Ac R3>3: A4+ At =0}
Choose basis and compute: (s0(3),[,]) = (R3, x).

=> h cannot have dimension two, so H has dimension 0, 1 or 3.
= H={id}, H= G or H= S O
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