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Lecture 1

Why should you care about spin geometry? There is a plethora of reasons, but here are three:
(1) Modern physics requires spinors, Dirac operators, etc.

(2) The topology of manifolds (or at least certain aspects of it) is deeply intertwined with
differential operators, and certain questions can only be answered using Dirac operators.

3) Seiberg-Witten theory requires spin®-structure and Dirac operators.
g y req P P

In the following, I will discuss the first point briefly and elaborate on an instance of the second
point. I will discuss Seiberg-Witten theory towards the end of the semester.

1 Dirac’s problem: a square root of the Laplace operator?

Dirac [Dir28, §2] came across the following question when trying to find a relativistic theory
of the electron. Consider a free particle of energy E, momentum p, and mass m. According to
Special Relativity,

E = +p? + m?.

The rules of quantisation dictate that E and p are to be replaced by the differential operators
i0; and —iV. Therefore,
iat =VA+ mz
with A= - 37 02 .
Question 1.1. Is there a differential operator Ip satisfying A = n*?
The ansatz

3
ID = Z }’iaxi
i=1

with y; constant for the Dirac operator leads to system of algebraic equations

yi=-1 and yy;+y; =0.

This does not have any solutions in R or C; but it does have solutions in H®?> and M, (C)®?
(which can be found by hand). However, it is important to observe that ) does not act on
functions but rather more complicated objects: spinors; cf. Cartan [Car13]. Brauer and Weyl
[BW35] realised that the construction of the Dirac operator and spinors is closely related with
the Clifford algebra.



2 The signature of a manifold

Situation 2.1. Let X be an closed equidimensional oriented smooth manifold. X

Definition 2.2. The intersection form of X is the bilinear form by : Hgr(X) — R defined by

bx ([ [B]) = /XaAﬁ- .

Proposition 2.3.
(1) Ifdim X = 4k, then leHﬁ’ﬁ (x) Is symmetric.
(2) Ifdim X = 4k + 2, then leH?lkH (x) Is alternating. [ ]
R

Definition 2.4. If dim X = 4k, then intersection form is the quadratic form gy : Hﬁ’;{ (X) - R
defined by

gx([a]) = bx([al, [a]).
The signature of X is
o(X) = {U(CIX) if dimX = 0 mod 4
0 otherwise

with o(gx) denoting the signature of gx. o

Remark 2.5. By Poincaré duality, gx is non-degenerate. Therefore, gx is determined by its
signature up to isometry according to Sylvester’s Law of Inertia. *

Remark 2.6. Hirzebruch [Hir72] says that the concept was introduced by Weyl [Wey24] (but I
cannot get a hold of the latter). *

3 Relative de Rham cohomology

Situation 3.1. Let Y be a smooth manifold. Let t: X < Y be a closed submanifold. X

Definition 3.2. The relative de Rham complex of i: X < Y is
(Q(Y,X) =ker(:i": Q(X) - Q(Y)),d). o
The relative de Rham cohomology of i: X < Y is
Hgr (Y, X) = H(Q(Y, X),d).
Proposition 3.3. The sequence of differential graded algebras
0= (Q°(Y,X),d) = (Q°(Y),d) > (Q*(X),d) — 0

is exact. [ |



Proposition 3.4. There is a exact sequence
. 5
- — HE (Y, X) — HE () S HE, (X) S BN, X) — -
moreover, the connecting homomorphism § satisfies §[i*a] = [da].

Proof. This is an immediate consequence of Proposition 3.3 and the Snake Lemma. ]

Remark 3.5. It is possible to construct a relative de Rham cohomology Hgr (f) for every smooth
map f: X — Y such that the analogue of Proposition 3.4 holds; cf. [BT82, pp. 78-79]. &

4 Poincaré-Lefschetz duality

Situation 4.1. Let Y be a compact connected smooth manifold of dimension n. Let 1: X < Y
be a closed submanifold. X

Theorem 4.2 (Poincaré-Lefschetz duality). Letk € {0,...,n}. The bilinear map HX rY.X)®
Hggk(Y) — R, [a] ® [f] = [, a A B is a perfect pairing; that is: it induces an 1somorphlsm

HE (Y, X) — HIF(Y)".

Remark 4.3. See [Schos, Corollary 2.6.2] for a proof. (In my opinion the proof in [Schos] is
needlessly complicated and circuitous, but at least it does have most of the details.) *

5 Bordism invariance of the signature

Situation 5.1. Let X3, X; be closed equidimensional oriented smooth manifolds. X
Proposition 5.2 (Thom [Thosz2, Corollaire V.1]). If X; and X, are bordant, then o(X;) = o(X3).

Proof. 1t suffices to show that if X = 9Y with Y compact and dimY = 4k + 1, then o(X) = 0.
Denote by res: 2’IC{(Y) 2’;{(X ) the restriction map. The upcoming argument shows that

imres C H2k r(X) is totally isotropic and dimimres = 1bZk (X). Therefore, by Proposition 13.3,
gx has vanlshlng signature.

Since
qxores([a]):/aAa:/d(a/\a):Z/da/\aZO,
X Y Y

gx o res = 0. Therefore, im res is isotropic. Moreover, res fits into the commutative diagram

HZk (Y) H2k (X) H2k+l (Y, X)
H2k (X) HZk(Y)*.


https://en.wikipedia.org/wiki/Snake_lemma

Here the vertical isomorphism are Poincaré duality and Poincaré—Lefschetz duality. The diagram
commutes because of Proposition 3.4 and Stokes’ theorem. Therefore,

dimres = dim ker res* = b?(X) — dimimres* = b (X) — dimimres..
Hence, dimres = %bZk (X). [ |

Proposition 5.3.
o(Xi X X3) = 0(X1)0(Xz).

Proof. Without loss of generality dim X; + dim X, = 4k. The Kiinneth theorem identifies
Har(Xq X X2) = Har(X1) ® Har(X2) and  bx,xx, = bx, ® bx,.

(Here ® denotes the graded tensor product.)
Set n := dim X;. Set

- {H%%XQ@}ﬁ?”%Xg if n is even
0 =

0 otherwise.
Forf£=0,...,|n/2] set
Ve=L @l with I :=H (X)) @ HE(X,).

The decomposition
Ln/2]

HiR (X X X) = Vo @ D Ve
=0

is perpendicular with respect to gx,xx,; that is:
Pxixx, =qo L - L qinj2) With e = gx,xx v,
Therefore, it remains to determine o(qy):
(1) Evidently, If n = 0 mod 4, then o(qo) = 0(X1)q(Xz2).

(2) If n = 2 mod 4, then by, | are alternating. Therefore, there is a

2k—n/2
dR

H:;l{z (X1) and bXZ |H‘Zj§_n/2(X2)

totally isotropic I C H;’}/f (X1) with dimI = %HZI/zZ (X1). Since I ® H
isotropic, by Proposition 13.3, a(qo) = 0.

(Xy) is totally

(3) For¢=0,...,|n/2], I, C V; is totally isotropic and dim I, = %Vg. Therefore, by Proposi-
tion 13.3, o(q,) = 0. [ |

Corollary 5.4 (Thom [Thos4, paragraph after Théoréme IV.1]). The signature induces a ring
homomorphism o: Q5° — Z. |

10


https://en.wikipedia.org/wiki/K�nneth_theorem

6 Hirzebruch signature theorem

Situation 6.1. Let X be a closed oriented smooth manifold. X

Definition 6.2. The L genus of a vector bundle V over X is

Vx
tanh v/x

and p, denoting the Pontrjagin /-genus. .

L(V) = pp(V) € Hr(X) with £(x) :=

Remark 6.3. Since tanh(x) is odd, x/tanh(x) is a power series in x? and £(x) is a power series

in x. Indeed,
£(x) = Z(%y

with By denoting the Bernoulli numbers. )

Remark 6.4. The L genus is a multiplicative characteristic class; that is:
L(Vy & Vo) = L(V1)L(V2). *

Remark 6.5. L(V') can be expressed in terms of the Pontrjagin classes of V and the L polynomials:

L(V) = > Le(prs - pe).

k=1

A computation shows that

L= L—i(7 - p?)
1—3P1, 2—45 p2—pi)s

see OEIS: A237111. The L polynomials are multiplicative sequence; cf. [Hirgs, §1; LM89, Chapter
III §a1]. )

Theorem 6.6 (Hirzebruch [Hirs3, Theorem 3.1; Hirgs, Chapter II Theorem 8.2.2]).

(6.7) o(X) = (L(TX), [X]).
Remark 6.8. Hirzebruch [Hir7z2, §2] remarks on the proof of his signature theorem:

How to prove it? After conjecturing it I went to the library of the Institute of
Advanced Studies (June 2, 1953). Thom’s Comptes Rendus note [Thos3] had just
arrived. This finished the proof.

[Thos3] introduced the concept of bordism and announced that Q5 ®; R is a polynomial
algebra generated by [CP?*"]; cf. [Thos4, Théoréme IV.17]. Since both sides of (6.7), define ring
homomorphisms Q°°© ® R — R it suffices to verify (6.7) on CP?". Surely, Hirzebruch did this
before going to the library. &
Remark 6.9. The Hirzebruch signature theorem implies a sequence of dazzling integrality
theorems; e.g.: if dim X = 4, then %(pl(TX), [X]) € Z. The same does not hold for arbitrary
real vector bundles. &

11
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7 Rohklin’s theorem

Theorem 7.1 (Rokhlin [Roks2]). Let X be a closed oriented 4—manifold. If w,(X) = 0, then o(X)
is divisible by 16.

8 The Euler characteristic operator

Situation 8.1. Let (X, g) be an closed oriented Riemannian manifold. X
Definition 8.2. The Euler characteristic operator associated with (X, g) is
§:=d+d": QVN(X) - Q°4(X). .

Proposition 8.3.
index d = y(X).

Proof. This is an immediate consequence of Hodge theory. [

Remark 8.4. [LM89, Chapter Il Example 6.1] exhibits § as a Dirac operator. &

9 The signature operator

Situation 9.1. Let (X, g) be an closed oriented Riemannian manifold with dim X = 2n. X
Definition 9.2. Define ¢ € End(AT*X ® C) by

eor i f(R=1)+n

*q with k:=dega. .
Proposition 9.3.

(1) € =1.

(2) d+d* and ¢ anti-commute.
Proof. To prove (1), observe that for every a« € A*¥T*X ® C

820( — (_1)k(2n—k)ik(k—1)+ni(2n—k)(2n—k—1)+na —q

because
2k(2n—k)+k(k—1)+n+ (2n—k)(2n—k — 1) + n = 4n* = 0 mod 4.
To prove (2) observe that for every a € Q¥(X, C)

d*a — (_1)2n(k—1)+1 sdera=—sxd*a

(i) (@nkr ) (2nk) 4k (k= 1)+2n

edea = —edea
because

Cn-k+1)(2n—k)+k(k—-1)+2n=2k(k—-1) +4(n—kn+n?) = 0mod 4. n

12



Definition 9.4. Set
Qi(X,C) ={a € QX,C) : ca = +a}. °

The signature operator associated with (X, g) is
D:=d+d*: Q. (X,C) —» Q_(X).

Proposition 9.5.
indexc D = o(X).

Proof. Since (d +d*)? = A,

kerD =%#,.(X,C) = (X,C) N Q. (X,C) and
cokerD = #_(X,C) =# (X,C) N Q_(X,C).

The inclusions #*(X,C) — #.(X,C),a — a +ea (k = 0,...,n—1) and Z"(X,C) —
Z.(X,C) assemble into an isomorphism

X' (X,C)®---e X" (X,C)® X (X,C) = #.(X,C).

Therefore,
indexc D = dim¢ # (X, C) — dim¢ #" (X, C).

If n is even, then

HM(X,C)=F"(X)®C with F'(X) = {aeX"(X):+a=xa}.

Therefore,
indexc D = dim Z'(X) — dim #Z"(X) = o(X)
by Hodge theory.
If nis odd and @ € A"T*X ® C, then
Ex =1*a.
Therefore, o
Z"(X,C) = %"(X,C)
and

indexc D = 0 = o(X). [ |

Remark 9.6. Hirzebruch signature theorem predates the Atiyah-Singer index theorem by about
decade—but, of course, it can be derived from it because of the above. )

Remark 9.7. Is there a differential operator I) whose index explains Rokhlin’s theorem? Yes! If
X is a closed oriented 4-manifold with w,(X) = 0, then the Atiyah-Singer operator I} satisfies

1
index Ip = go(X) and indexI) = 0 mod 2. *

Remark 9.8. [LM89, Chapter Il Example 6.2] exhibits D as a Dirac operator. *

13
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Lecture 2

A problem at the root of spin geometry is to find solutions to the algebraic equation

yi=-1 and yy;+y;yi=0.

The systematic answer to this question is the theory of Clifford algebras. Although it is possible
to quite directly attack the problem of determining the Clifford algebras over R and C, I would
find it uncultured to so. There is a Clifford algebra associated with every quadratic form and
Clifford algebras play an important role in the theory of quadratic forms. The main purpose of
this lecture is to show that every quadratic form can be decomposed (possibly non-uniquely)
into simple elementary pieces. At the end, I will mention the Cartan-Dieudonné Theorem,
which plays an important role in many developments of the spin group in the literature (but
can be replaced by the super Skolem—-Noether theorem).

10 Quadratic forms

Situation 10.1. Let k be a field. X

Definition 10.2. Let V be a k—vector space. A quadratic form on V isamap q: V — k such
that:

(1) it is homogenous of degree 2; i.e.: forevery A € kandv € V

q(v) = 2%q(v),

and
(2) the map
(0, w) = q(0+w) = q(0) = g(w)
defines a symmetric bilinear form p € Hom(S?V, k)—the polarisation of q. o
Example 10.3. Let ay,...,a, € k. The diagonal quadratic form (ai,...,a,): k®" — k is
defined by

(A, ...,an)(x1,...,%x,) = ale+--~+a,,x,21. o

Example 10.4. Let a, b € k. The quadratic form [a,b]: k ® k — k is defined by
[a,b](x,y) = ax® + xy + by*. L)
Example 10.5. The hyperbolic plane is [0, 0]. L)

Definition 10.6. Let q;: V; — k (i = 1, 2) be quadratic forms. The perpendicular sum of g; and
g2 is the quadratic form q; L g2: Vi ® V, — k defined by

Q1L q=q+q. .

14



Remark 10.7. The structure theory of quadratic forms shows that every quadratic form can be
decomposed into the above pieces. &

Proposition 10.8. LetV be a k—vector space. DefineQ: Hom(V®V, k) — {quadratic forms on V'}
by
Q(b)(v) =b(0®0)

is surjective and ker Q = Hom(A?V, k); that is: the sequence
q

Hom(A*V, k) — Hom(V ® V, k) —Q» {quadratic forms on V'}
is exact.

Proof. Evidently, ker Q = Hom(A?V, k). To see that Q is surjective, let g: V — k be a quadratic
form on V and denote its polarisation by p. Choose a basis {e; : i € I} of V and choose an order
< on the index set I. Define the b € Hom(V ® V, k) by
0 ifi <j,
b(e,- ® ej) = q(ei) ifi= Js
p(e,-,ej) if i > J.
Evidently, g = Q(b). ]
Remark 10.9. If 2 # 0 € k, then % of the polarisation defines a right inverse of Q; therefore, the

theory of quadratic form is equivalent to the theory of symmetric bilinear forms. If 2 =0 € k,
then the polarisation is alternating. &

Definition 10.10. Let g;: V; — k (i = 1,2) be quadratic forms. A quadratic morphism f: ¢; —
g2 is a linear map such that

G2 f=q .
Remark 10.11. Quadratic forms and quadratic morphisms form a category. *

Definition 10.12. Let g be a quadratic form. The orthogonal group associated with g is the

group
O(q) ={f: g — q: f is a quadratic isomorphism}. .

[Chesd, §1.2; Bouo7, §3.4; MH73; Lam?73; Lamos; KS80; Knugi; EKMos8, §7].

11 Structure theory of quadratic forms

Situation 11.1. Let k be a field. Let g: V — k be a quadratic form with dim V' < co. Denote by
p € Hom(S?V, k) the polarisation of q. X

15



Remark 11.2. An isomorphism f: k®" = V (that is: a choice of basis) identifies ¢ with the

polynomial
n

Z a,-xiz + Z ajjXixXj =g Of(xl, .. .,Xn).

i=1 i<j

A primary objective of the structure theory of quadratic forms is to simplify this expression as

much as possible though a particularly clever choice of f. &
Example 11.3. If chark # 2 and a € k*, then (a,a) = [0,0]. .
Example 11.4. For every a € k, [0,a] = [0,0]. o
Example 11.5. If chark = 2, then [a,b] L [a,c] = [a,b+¢c] L [0,0]. »

Definition 11.6. The quadratic form q is non-degenerate if the map b: V — V* defined by

vl’(w) = p(v,w).

is an isomorphism. °
Example 11.7. (a;, ..., a,) isnon-degenerate if and only if 2"a; - - - a,, # 0 (in particular: char k #
2). 'y

Example 11.8. [qa, b] is non-degenerate if and only if 4ab — 1 # 0; e.g. if chark =20ora=0. &

Definition 11.9. The radical of p and the radical of ¢ are
radp :=kerb and radq:=radpnq '(0)
respectively. The nullity and defect of g are
n(q) :=dimradq and d(q):=dimradp —dimradq
respectively. .

Remark 11.10. As an immediate consequence of Definition 10.2 (2), radq C radp is a linear
subspace. &

Proposition 11.11. IfV =radp & W, then q = qlradp L qlw and qlw is non-degenerate.

Proof. By definition of rad p, ¢ = qlradp L glw. Since kerbly = 0, gy is non-degenerate. ~ m
Proposition 11.12. Ifchark # 2, thenrad g = rad p.

Proof. This is a consequence of q = Q(% p). ]
Definition 11.13. The quadratic form q is anisotropic if g~ (0) = {0}. °

Proposition 11.14. Ifrad p =radq @ D, then q|p is anisotropic and diagonal with respect to every
basis.

16



Proof. By definition of rad g, g|p is anisotropic. If ey, . .., e, is a basis of D, then

n
qlp(xie1 + - -+ xpep) = Zaixiz+2p(ei, ej) XiX;. [
i=1 i<j ~———
=0
Definition 11.15. Let W C V. The perpendicular of W is
Wt :={oeV:p(o,w)=0forevery w € W}. °

Proposition 11.16 (Splitting off non-degenerate summands). Let W c V. If q and q|w are
non-degenerate, then q = qlw L qlwz+, and q|w+ is non-degenerate.

b
Proof. Since q|w is non-degenerate, W N W+ = 0. Since W+ = ker(V — V* — W*) and q is
non-degenerate, dim W+ = dim V — dim W. Therefore, W + W+ = V. Evidently, q = q|w + q|w-,
and q|w< is non-degenerate. [

Proposition 11.17 (Diagonalisation of non-degenerate quadratic forms if char k # 2). Ifchar k # 2
and q is non-degenerate, then q can be diagonalised; that is: there are as, . . ., a, € k with

q={ay...,an).

Proof. The proof is by induction on dim V. If V = 0, then the assertion is trivial. If V # 0, then
g # 0 because it is non-degenerate. Choose v € V with q(v) # 0. Since chark # 2, g|,) is
non-degenerate. Therefore, by Proposition 11.16, ¢ = ql(») L ql(0)+, and g|(y)+ is non-degenerate.
Since dim{v)* = dim V — 1, the assertion follows. [

Remark 11.18. The proof of Proposition 11.17 can be turned into an algorithm—a variant of the
Gram-Schmidt process. &

Proposition 11.19. Suppose that dimV > 2. Letv € V\ rad p.

(1) Ifq(v) =0, then thereisaW C V witho € W and dim W = 2 such that
qlw = [0,0].
(2) Ifchark = 2, then there are W C V witho € W and dim W = 2, and a, b € k such that
qlw = [a,b].
Proof. Since v ¢ rad p, thereisaw’ € V with p(v, w’) = 1. Since g(v) = 0 or chark = 2, w’ ¢ (v).

This proves (2) with a := q(v) and b := g(w’). To prove (1), set w := w’ — g(w")v and observe
that g(w) = 0. [

Definition 11.20. S C V is totally isotropic if g|s = 0. The Witt index of g is

i(q) == max{dim S : S ¢ W C V is totally isotropic and radp N W = 0}. .

17
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Theorem 11.21 (Structure theorem for quadratic forms). Setn = n(q), d := d(q), and i = i(q).
(1) Ifchark # 2, then there are ay, ..., a, € k™ such that
g =0y 1 [0,0]* L (ay,...,a).
Moreover, {ay, . .., a,) is anisotropic.

(2) Ifchark = 2, then there are ay, . ..,aq,b1,c1,. .., by, ¢, € K™ such that
g ={(0)"" 1 {ay,...,az) L [0,0]*" L [by,c1] L...L [byc].
Moreover, {ay, . ..,aq) and [by,c1] L ... L [by,c,] are anisotropic.

Remark 11.22. At first glance, Theorem 11.21 seems very satisfactory. However, it does not answer
the question to what extend ay,...,a, € k (resp. ay,...,aq4,b1,c1,...,by, ¢ € k) are uniquely
determined by q. If k is quadratically closed (e.g., k = C), then there is a simple answer. If k is a
Euclidean field (e.g., k = R), then Sylvester’s Law of Inertia answers this question. For general k
one has to delve into Witt theory; cf. [EKMo8, §8]. *

Proof of Theorem 11.21. Choose W C V with V =radp & W. By Proposition 11.11, it suffices to
analyse q|rad» and q|w, and the latter is non-degenerate.
If char k # 2, then by Proposition 11.12, graap = (0)*". If char k = 2, then, by Proposition 11.14,

qlradp = <0>J_n 1 (as,...,aq).

Let S ¢ W totally isotropic with dim S = i. Repeated application of Proposition 11.19 and
Proposition 11.16 constructs a totally isotropic S’ ¢ W with SN'S’ = 0 and q|ses = [0,0]*. Set
R :=(S& S)*. By Proposition 11.16, qlw = qlses’ L q|r, q|r is non-degenerate and anisotropic.
If chark # 2, then, by Proposition 11.17, g|g = (ay,...,a,). If chark = 2, then, by repeated
application of Proposition 11.19 and Proposition 11.16, q|g = [b1,¢1] L ... L [by, cr]. [ ]

[Chesg, §1.3; EKMo08, §7].

12 Quadratic forms over quadratically closed fields

Situation 12.1. Let k be a quadratically closed field. X

Theorem 12.2. Let q: V — k be a quadratic form withdimV < oo. Set n := n(q), i = i(q), and
r:=dimV — n — 2i. In this situation, r € {0, 1} and

g = (0)*" 1 [0,0]* L (1)".

Proof. Since k is quadratically closed, for every a € k*, (a) = (1). Moreover, (1) is anisotropic
if and only if r € {0, 1}. Since k is quadratically closed, if a, b € k*, then

[a,b](x,y) = ax? + Xy + by2

has a non-trivial zero; therefore: [a, b] fails to be anisotropic. Therefore, Theorem 11.21 finishes
the proof. ]

Remark 12.3. If char k # 2, then [0,0] = (1,1) because x*+y* = (x+iy) (x—iy) withi® = -1. &

Exercise 12.4. Prove that every quadratic form q: V — C with dimV < oo is isomorphic to
(0)™ L (1)"*% by repeatedly completing the square.
y rep y pleting q
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13 Sylvester’s Law of Inertia

Situation 13.1. Let k be a ordered field. In particular, chark = 0. Let ¢: V — k be a quadratic
form with dim V' < oo, X

Definition 13.2. The quadratic form q is positive definite (negative definite) if g(v) > 0
(q(v) < 0) for every 0 # v € V. The signature of q is

a(q) =r(q) —7-(q9)

with
r+(q) == max{dim W : +q|y is positive definite} °

Proposition 13.3. If q is non-degenerate and i(q) > %dim V, theni(q) = % dimV and o(q) = 0.

Proof. By Theorem 11.21 (1), ¢ = [0,0]9). In particular, i(q) = %dim V. Since, x* — y? =
(x+y)(x—1y),[0,0] = (1,-1). Therefore, o(q) = 0. [ |

Definition 13.4. A Euclidean field is an ordered field k such that every x € k with x > 0 admits
a square root. o

Theorem 13.5 (Sylvester’s Law of Inertia). Setr = r(q), s := s(q), and n := n(q). There are
ai,....,af >0andag,...,a; <0 such that

q={(aj,....a’) L{aj,...,a;) L (0)*"
moreover, if k is Euclidean, thenaj = ... =af =1anda] =...=a; = -1.

N

Proof. By Proposition 11.11 and Proposition 11.12, without loss of generality, q is non-degenerate;
that is: n = 0. Let V, c V with q|y, positive definite and dimV, = r. Set V_ := V. The
restriction g|y_ is negative definite; indeed: if 0 # v € V_ and q(v) > 0, then gy, ¢(y) is positive
definite—a contradiction. By Proposition 11.17, qly, can be diagonalised. If k is Euclidean, then,
for every a € k*, (a) = (1). [

[MH?73, (2.5)]

14 Cartan-Dieudonné Theorem

Situation 14.1. Let k be a field. Let g: V' — k be a quadratic form with dim V' < co. Denote by
p € Hom(S?V, k) the polarisation of q. X

Definition 14.2. A vector v € V is isotropic if ¢(v) = 0 and anisotropic if g(v) # 0. °

Definition 14.3. Let v € V be anisotropic. The reflection r, € End(V) along v is defined by

p(o, W)v .
q(v)

ro(w) =w —
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Proposition 14.4. For every anisotropico € V, r2 = idy andr, € O(q).
Proof. By direct computation,

p(0,r5(w))
q(v)
_ g 22w - p(w)p(v,0)

q(0) q(0)?

rUOrU(W) :rv(w)_

and

p(v, w)?

a(ro(w)) = () = £ 25 g(0) + .

p(o,w)®
q(v) (w).

Theorem 14.5 (Cartan-Dieudonné). Denote by R(q) < O(q) the subgroup generated by reflections
along anisotropic vectors. If q is non-degenerate and dimV < oo, then O(q) = R(gq)— unless
k =F,, dimV =4, and q is of Witt index i(q) = 2; in which case: R(q) < O(q) has index two.

Proof. See [Chesy, §1.5; Lamos, Chapter I, Theorem 7.1]. [ |

Remark 14.6 (The exceptional case in the Cartan-Dieudonné Theorem). By Theorem 11.21, if
k =F,, dimV =4, and i(q) = 2, then g = [0,0] L [0,0] = [1,1] L [1,1]. The latter model is
more convenient to understand why O(q) # R(q).

For every 0 # v € F3?, [1,1](v) = 1. Therefore, O([1,1]) = GL,(F;). Since FZ has three
non-zero elements, GL;(F;) C S3. Indeed, for every 0 # v € F®2, r, transposes the remaining
two non-zero elements. Therefore, GL,(F;) = Ss.

Let (v, w) € (ngz)@z. Evidently, g(v,w) = ([1,1] L [1,1])(v,w) # 0 if and only if either
(v=0and w # 0) or (v # 0 and w = 0). Therefore, reflections in anisotropic vectors generate
S3 X S3 € O(q). However, 0 € O(q) defined by o(v, w) = (w,v) fails to be of this form. By
Theorem 14.5,

0(q) = Cy < (S5 X S3). &
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Lecture 3

This lectures constructs the Clifford algebra as a functor from quadratic forms to super algebras.
At the end of the lecture, I will explain how to (in principle) compute the Clifford algebra of any
non-degenerate finite-dimensional quadratic form.

15 The Clifford algebra of a quadratic form

Situation 15.1. Let k be a field. Let g: V — k be quadratic form. Denote by p € Hom(S?V, k)
the polarisation of g. X

Definition 15.2. A Clifford algebra of q is pair (C¢(q), y) consisting of a k—algebra C¢(q) and a
linear map y: V — Cf(q) such that:

(1) foreveryov e V
(@)’ =q() -1,

and
(2) if A is a k—algebra together with a linear map 6: V — A such that for everyv € V
5(v)* =q(0) - 1,
then there is a unique algebra homomorphism f: Cf(q) — A such that
foy=34. o
Remark 15.3. By polarisation, y(v)? = g(v) - 1 implies
y(@)y(w) +y(w)y(v) = p(o,w) - 1,

but these are not equivalent unless char k = 2. &

Vv —— Ct(q)
|

|

El
s :
A\

A

Figure 1: Universal property of the Clifford algebra.

Proposition 15.4 (Construction of the Clifford algebra). Denote by (TV, i) the tensor algebra of
V. Denote by I, C TV the ideal generated by elements of the form

i(v) ®i(v) — q(v).

Set
Ct(q)=TV/l; and y:=moi:V — Ct(q)

with m: TV — Cf(q) denoting the canonical projection. (C£(q),y) is a Clifford algebra of q.
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Proof. By construction, y(v)? = g(v) - 1. By the universal property of the tensor algebra, there
exists a unique f TV — A such that f 0§ = i. Since §(v)? = q(v) - 1, f factors through
f: Ct(q) — A. Evidently, f o § = y. By the universal property of the quotient, f is unique. ™

Remark 15.5. The proof of Proposition 15.4 is a good exercise to practise the use of universal

properties. &
Y
Vi TV —= > Ct(g)
\: -
a3
6 A=
v o
A

Figure 2: The proof of Proposition 15.4.

Proposition 15.6. The Clifford algebra (C¢(q),y) of q is unique up to unique isomorphism.  ®
Proposition 15.7. (C£(0),y) = (AV,i). [

Proposition 15.8. Let q1, q2 be quadratic forms. Denote by (Ct(q;), y;) the Clifford algebra of ¢;
(i=12).Iff: q1 — q» is a quadratic morphism, then there is a unique algebra homomorphism
Ce(f): Ct(q1) — Ct(qz) such that

Ct(f)oyi=y2of. u

Vi —— Ct(q)
fl a!lcuf)
Vs 5 Ct(qz).

Figure 3: Construction of C£(f).

Remark 15.9. The Clifford algebra defines a functor from the category of quadratic forms
to the category of algebras. It is an important invariant of a quadratic form and crucial for
understanding spin geometry. &

16 The Clifford algebras of (a), (a, b), and [a, b]

Situation 16.1. Let k be a field. X

Example 16.2. For every a € k*
Ct({ay) = k[i]/(i* —a) with y(x) = xi.

More concretely:
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(1) Suppose that char k # 2. If a has a square root v/a € k*, then k[i]/(i® — a) = k ® k via
x +yi — (x + Vay, x — Vay).

(2) If a does not have a square root in k*, then k[i]/(i® — a) is the quadratic field extension
k(+/a). In particular, for k = R, C¢({-1)) = C. .

Example 16.3. For every a,b € k
Ct([a,b]) = [%] = k(i j)/(* —a,j* =b,ij+ji—1) with y(xy) =xi+yj.

In particular, [0;{0] = M, (k) via

i 01 and j— 00 [
0 0 770 o)
Example 16.4. For every a,b € k
Ct({a, b)) = (40) = k(i, )/ (i — a,j* = b,ij + ji) with y(x,y) :=xi+yj.
(“I’cb) is the quaternion algebra; cf. WP: Quaternion algebra. Here are some concrete instances:
(1) ("% ') = H: Hamilton’s quaterions; cf. WP: History of the quaternions.

(2) () = My(k) via

; a 0 . 0 b
i (0 —a) and j (ib 0) . .
17 The Clifford algebra of hyperbolic quadratic forms

Let I be a finite-dimensional k-vector space. Set V := I* @ I. Define q: V — k by
q(t,0) = £(v).

Define 6: V — End(AI) by
(S(f,U) =0 A-+ip.

By direct computation,
5(£,0)* = £(v)1 = q(¢,0)1.

This induces an algebra homomorphism f: Cf(q) — End(AI). Since End(AI) is a simple
algebra and dim C¢(q) = dim End(AI), f is an isomorphism.
[Can any of this be done more canonical?]
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18 Injectivity of y: V — Cf(q)

Proposition 18.1. The mapy: V — Ct(q) is injective.

Notation 18.2. In the light of Proposition 18.1, it appears excessive not to drop y from the
notation and tacitly identify v € V and y(v) € C¢(q). o

Remark 18.3. In principle, it should be possible to prove that imi N I, = {0} by a combinatorial
argument. It might even appear to be obvious [ABS64, (1.1); Friedrich2o00a]; however, it is
difficult not to mess this up in some way; cf. the notorious argument in [LM89, p.8]. ("Let
anyone among you who is without sin be the first to throw a stone [..].") I would be genuinely
interested to see a correct proof along those lines. The following proof constructs a representation
of C¢(q) in which y(v) obviously acts non-trivially. *

Proof of Proposition 18.1. Let b € Hom(V ® V, k) such that g = Q(b); that is: q(v) = b(v ® v);
cf. Proposition 10.8. Every v € V defines an endomorphism v A - € End(AV) of degree 1. Every
A € V* defines a unique derivation iy € Der_;(AV) of degree —1 satisfying iy (v) = A(v); indeed:

k
(o1 A Aog) = D (=D)FA(0) or A Ad A A
i=1

(This is the differential of the Koszul complex associated with 1.) Define -?: V — V* by
o’ (w) = b(v ® w).
Define §: V — End(AV) by
da=vAa+ipa
Evidently, § is injective. By direct computation,
5(0)? = q(o) - 1.

By the universal property of the Clifford algebra, there is a unique f: Cf(g) — End(AV) such
that f o y = 8. Therefore, y is injective. ]

19 Orthogonal maps as automorphisms of the Clifford algebra

Situation 19.1. Let k be a field. Let g: V — k be quadratic form. X

Proposition 19.2. The homomorphism Cf: O(q) — Aut(Cf(q)) defined by Proposition 15.8 is
injective; moreover: ¢ € im C¢ if and only if (V) C V.

Notation 19.3. In the light of Proposition 19.2, it is convenient to identify O(q) as a subgroup of
Aut(Ce(q)). o

Proof. Only the sufficiency in the second part requires a proof. Suppose ¢ € Aut(C¢(q)) satisfies
¢(V) c V. Define ® € End(V) by ®(v) := ¢(v). Since ¢ is invertible, ® € GL(V). Moreover, for
everyo €V

g(0)1 = 0% = $(0%) = B(0)” = g((0))* - 1.
Therefore, ® € O(q). Evidently, ¢ = C£(D). [ |
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20 Graded algebras

Situation 20.1. Let k be a field. Let G, H be monoids. X

Definition 20.2. A G—graded algebra is an k-algebra A together with a G—-grading; that is: a
direct sum decomposition
A=A,

geG
such that
Ay Ap C Agh.
An element a € A is homogeneous of degree g if a € A,. For every a € A the homogeneous
component of degree g is the projection a, of a onto Ay. o
Definition 20.3. A super algebra is a Z/2Z-graded algebra. .

Example 20.4. The tensor algebra TV is Ny—graded; indeed:

TV = EB TVvk with TV* = vek, .
kENo

Remark 20.5. Let A be a G—graded algebra. Every homomorphism f: G — H induces a
H-grading via
A= @Ah with Ay, = @ A,. 4.
heH gef~1(h)

Example 20.6. Since Ny — Z — Z/2, the N-grading on the tensor algebra TV induces Z- and
Z/2Z-gradings. )

Definition 20.7. Let A be a G-graded k-algebra. An ideal I C A is homogeneous if, for every
aclandge€ G, a4 €l .

Proposition 20.8. Let A be a G—graded k—algebra. Let A/I be a homogenous ideal. A/I has a
unique G-grading such that w: Ay — (A/I)4 is surjective. [

Remark 20.9. If A, B are G-graded algebras, then A ® B is G—graded:

(A® B), ::@Aheka. n
g=hk

In the presence of a G-grading with G — Z/2Z, the usual multiplication of the tensor
product of algebras often is inappropriate because it violates the Koszul sign convention.

Definition 20.10. Let A, B be Z/2Z-graded algebras. The super tensor product A ® B is tensor
product as a vector space and with the above grading but with the multiplication rule

((11 ® bl)(ag ® bz) = (—l)degbl degazalaz ® b1b2. °
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Remark 20.11. If G is a finite group and A, B are G-graded algebras, then Hom(A, B) is a
G-graded vector space:

Hom(A, B) = P

geG

&P Hom(a,, th)). *

heG

If G is not finite or not a group, then the right-hand side might be a proper subspace of
Hom(A, B).

21 The Z/2Z-grading of the Clifford algebra

Situation 21.1. Let k be a field. Let ¢: V — k be quadratic form. X

Definition 21.2. Denote by TV the tensor algebra of V. Denote by n: TV — Cf(q) the
projection map. Since I, is homogeneous with respect to the Z/2Z grading of TV, Cf(q) inherits
a Z/2Z grading:

Ct’(Q)i = 7(TVY) with TV':= @ Y@k .
k=0

Remark 21.3. If chark # 2, then
Ct(q)’ ={xeCt(q) : Ct(-1)x=x} and Cf(q)" ={x € Ct(q): Ct(-1)x = —x}. &

Remark 21.4. If f: q; — g3 is a quadratic morphism, then C¢(f) is a super algebra homo-
morphism of degree 0. Therefore, the Clifford algebra defines a functor from the category of
quadratic forms to the category of super algebras. *

Remark 21.5. As rule of thumb, most things involving Clifford algebras should be done in the

super way. *
Remark 21.6. The isomorphism C¢({a?, +b?)) = M, (k) = C¢£([0,0]) typically are not homomor-
phisms of super algebras; that is: they disrespect the Z/2Z grading. &

22 The Clifford algebra of a perpendicular sum

Situation 22.1. Let k be a field. X

Proposition 22.2 (Clifford algebra of a perpendicular sum). Let g;: V; — k be quadratic forms
(i = 1,2). Denote by (C¢t(q;), y:) the Clifford algebra of q; (i = 1,2). Set

Y =1®1+18y,: Vi@V, — Ct(q;) ® Cl(q).

(Ct(q1) ® Ct(qy),y) is the Clifford algebra of ¢, L gs.
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Proof. By direct computation,

y(01®02) = (11(01) ®1+1® )/2(02))2
=11(01)* ® 1+ y1(01) ® y2(v2) — y1(01) ® y2(02) +1 ® y2(v2)*
= (q1(01) + g2(02))1.

Let A be an algebra together with a linear map 6: V; & V, — A satisfying

§(v1 ®v2)* = (q1(v1) + q2(v2))1.

Set ; := 6ly;. By the universal property of the Clifford algebra, there are unique homomorphisms
fi: Ct(V;, q;) — A; such that

%= fiovi
Define the linear map f: Cf(q;) ® Ct(qs) — Aby

fxa ® xp) = fi(x1) fa(x2).

By construction,
5=foy;

moreover, f is uniquely determined by this condition. It remains to verify that f is an algebra
homomorphism. From

61(01)82(v2) + 82(v2)61(v1) =0
it follows that

fi(x1) fo(xz) = (—1)3eBED B £ (30,) £ (7).

Therefore, f is an algebra homomorphism. ]

Remark 22.3. Proposition 22.2 together with Theorem 11.21, Example 16.2, and Example 16.3
allows for the computation of C#(q) for every quadratic form gq. See, e.g., the Computation of
the real Clifford algebras and Computation of the complex Clifford algebras. &

Remark 22.4. The literature is littered with proofs of Proposition 22.2 that: (1) suppose that
dim V; < oo, and (2) use the dimension formula for C#(q;). The advantage of the above Proposi-
tion 22.2 proof is that it can be used to establish dim C¢(q) = 2™V —provided dim V < oo by
appealing to Proposition 22.2, Theorem 11.21, Example 16.2, and Example 16.3. According to
[Knuog1], this observation is due to Kneser (but I could not locate the lecture notes that Knus
refers to). *
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Lecture 4

In this lecture, I introduce the filtration on the Clifford algebra. This will be used to prove the
dimension formula. A more elegant approach is via the symbol and quantisation maps. The last
part of the lecture prepares the computation of the real and complex Clifford algebras.

23 Filtered algebras

Situation 23.1. Let k be a field. X

Definition 23.2. Let V be a vector space. A filtration on V is a subspace F'V C V for every
r € Ny such that

F'V c F'*lv
for all » € Ny and
v=|]JFv.
reNy
A vector space together with a filtration is called a filtered vector space. .

Every graded vector space V has a canonical filtration given by
FV=v<=ve
S<r

Definition 23.3. Given a filtered vector space V, the associated graded vector space GrV is

GrV = EB Gr'V with Gr'V :=FV/FV.
r=0

Here we use the convention F~1V = {0}. o
Remark 23.4. If V is a graded vector space, then the associated graded vector space GrV of V
with the canonical filtration is isomorphic to V. *
Remark 23.5. If V is a filtered vector space, then there is a canonical linear map i: V — GrV.

The map i is injective and, hence, an isomorphism if V is finite-dimensional. *

Definition 23.6. Let A be a k—algebra. A filtration in A is a filtration on the underlying vector
space such that
F'A-F°Ac F*A.

Remark 23.7. If A is a filtered algebra, then Gr A inherits the structure of graded algebra. &

Definition 23.8. If A is a filtered algebra, then Gr A is called the associated graded algebra. e

Remark 23.9. Let A be a filtered algebra and let I be an ideal in A. Given r € Ny, define
F'(A/I) = (FTA)/(INF"A).

This defines a filtration on A/I. )
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24 The filtration of the Clifford algebra

Definition 24.1. Denote by 7: TV — C¢(q) the projection map. The filtration of C¢(q) is
defined by

-
F'Ce(q) = n(F'TV) with F'TV := Hve. .

i=0
Proposition 24.2. The homomorphism Grz: TV = GrTV — GrC¢(V, q) factors through an

isomorphism
k: AV = GrCe(V,q).

Proof. The map Grz: TV =GrTV — GrCf(V, q) is surjective. Since

kerGrr = DTV 0 (I + F7'TV) = I,
r=0

ker Gr z factors through «, and « is an isomorphism. [

Since there always is a (non-canonical) vector space isomorphism Gr A = A, this implies
the following.

Theorem 24.3 (Poincaré-Birkhoff-Witt Theorem for Clifford algebras). dim Ce¢(g) = 24™V,
Moreover, if {e; : i € {1,...,dim V}} is a basis of V, then

{ei1~-~ei 1<11<1r<d1mv}

r

is a basis of C£(q).

Remark 24.4. The first section of Theorem 24.3 holds whether dim V' < oo or not. *
Remark 24.5. The original(?) Poincaré—Birkhoff-Witt Theorem is about Lie algebras and

their universal enveloping algebras. The terminology seems to have spread to many related
situations. *

25 The symbol map and the quantisation map

Situation 25.1. Let k be a field. Let g: V — k be quadratic form. X

Remark 25.2. Proposition 24.2 implies that there exists an vector space isomorphism C¢(q) —
AV. Indeed, the algebra isomorphism Gr(gq) — AV is canonical, but the vector space isomor-
phism Cf(q) — Gr(q) might not be. Chevalley [Ches4, Proof of IL.1.2] already observed that a
lift of q to a blinear form b € Hom(V ® V, k) induces a vector space isomorphism C¢(gq) — AV.
The following elegant construction is due to Bourbaki [Bouo7, §9]. )

Definition 25.3. For every A € V* denote by iy € Der_;(TV) the unique derivation of degree
—1 such that

ir(v) = A(v).
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Remark 25.4. If A, p € V*, then i) and i, anti-commute. Indeed, [iy,i,] = iyi, +i,i) is a graded
derivation of degree —2 and, therefore, vanishes. )

Definition 25.5. Let b € Hom(V ® V, k). Set 0" (w) := b(v ® w). Define the algebra homomor-
phism ¥, : TV — End(TV) by

Yp(v)x =0 @ x +ip(x).

Define ®, € End(TV) by
Op(x) = Pp(x)1. °

Lemma 25.6. Let b, b, b, € Hom(V ® V, k).
(1) ®y: TV — TV is uniquely characterised by ©,(1) = 1 and
Op(v®x) =0 ®Op(x) +i,HOp(x)
foreveryv e Vandx € TV.
(2) ©¢ =idry and ©p, 0 ®p, = O 4p,; in particular: ® is an isomorphism.
(3) ©ply C I—o(p); in particular, ©y, descends to a linear isomorphism

0p: CL(V,q) — Ct(V,q—Q(b)).

Proof. (1) is obvious.
Evidently, ®¢ = idry. The proof of the second assertion in (2) requires the identity

Opiy = i)0y.

The proof of this identity is by induction on the degree. Evidently, it holds on TV® = k. Moreover,
if the identity is know to hold on x, then

Op(ix(v ® x)) = Op(A(v)x — v ® i)x)
=A0)Op(x) =0 ® Op(izx) — i,pOp(ixx)
=0)Op(x) =0 ® i1Op(x) — ipiyOp(x)
=A0)Op(x) =0 ® iOp(x) +iyipOp(x)
= ix(v ® Op(x) +i,pOp(x))
=iOp(v ® x).

Therefore,

By, (Bp, (0 ®x))) = Op, (0 ® Op, (x) + iy, Op,(x))
=0 ® Op, (O, (x)) +iyp, Op, (Op,(x)) + Op, ip, Op, (x)

This proves (2).
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To prove (3), observe the following. Since
iyp(w®w—q(w)) =0,
if ©4(x) € I;_g(p), then (by induction) O, (v ® x) = v ® Op(x) +i,,Op(x) € I;_o(p). Finally,

Op((1®Vv—q())®x) =0v@OL(V®x)+ipOp(v®x) —q(v) ® Op(x)
=(v®v-qv)+b(vt®v)) Op(x). ]

Corollary 25.7. If g = Q(b), then the symbol map
op =0_p: Ct(V,q) > AV

and the quantisation map
Kp = Qb: AV — Cf(V, q)

are vector space isomorphisms (and inverses of each other). ]

Remark 25.8. See https://empg.maths.ed.ac.uk/Activities/Spin/SpinNotes.pdf for some
background on on the terminology. &

This immediately implies Theorem 24.3.

Remark 25.9. If chark # 2, then b = %p is the canonical choice to define 0 := ogand k == k;. &

26 Artin—-Wedderburn Theorem

Remark 26.1. What does it mean to determine an algebra? A key reason to care about algebras
are their modules. The Artin-Wedderburn theorem says that the structure of finite-dimensional
semi-simple algebras is determined by their simple modules. *

Situation 26.2. Let k be a field. Let A be a k—algebra. X
Definition 26.3.

(1) An A-module is a k-vector space V together with an algebra homomorphism A —
End(V).

(2) An A-submodule W of V is an is a k—vector subspace such that xW c W for every x € A.
(3) An A-module V is simple if 0 and V are its only submodule.

(4) If V, W are A-modules, then

Homuy (V,W) == {f: V — W : f is A-linear}.

(5) The commuting algebra of a module V is

Ends (V) := Homy (V, V). °
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Lemma 26.4 (Schur’s Lemma). Let V, W be simple A—modules. If f € Homs(V, W), then f =0
or f is invertible. ]

Corollary 26.5. IfV is an simple A—module, then End (V) is a division algebra over k; that is,
every non-zero x € Enda (V) is invertible. [

Theorem 26.6 (Frobenius). IfD is a finite-dimensional division algebra overR, then D is isomorphic
to either R, C, or H.

Proposition 26.7. Ifk is an algebraically closed field, e.g., k = C, then any division algebra over k
is isomorphic to k.

Definition 26.8. The Jacobson radical of A is

J(A) = {x € A: xV =0 for every simple A-module V}.
A is semi-simple if J(A) = 0. °
Remark 26.9. J(A) is an ideal of A. )

Example 26.10. Let V be a vector space. The Jacobson radical of AV is

J(AV) = (D Aty

k>1

that is: the ideal generated by V' c AV. To see this, let x € V and let W be an simple module
of AV. Setkerx = {w € W : xw = 0} and imx := xW. Since AV is graded commutative,
ker x and im x are submodule of W. Since W is simple, ker x = 0 or ker x = W. Since x? = 0,
im x C ker x. This forces, ker x = W. o

Theorem 26.11 (Artin-Wedderburn Theorem). Suppose that dim A < oo.

(1) A has only finitely many simple modules Vi, ..., V, (up to isomorphism) and each V; is
finite-dimensional.

(2) If D; denotes the commuting algebra of V;, then
r
A/J(4) = | | Endp, (V). .
i=1
See Representation theory of finite groups.

27 Frobenius’ theorem on real division algebras

Definition 27.1. Let k be a field. A k—algebra D is a division algebra if it has no zero divisors.

Theorem 27.2 (Frobenius [Fro77, last paragraph]). If D is a finite-dimensional real division
algebra, then D is isomorphic to either R, C, or H.
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Proof. Since D is a division algebra, left multiplication defines an inclusion
D < End(D).

Set d := dim D and
ImD = {x € D: x* € Rand x* < 0}.

Lemma 27.3. Im D = ker(tr: D — R). In particular: D = R & Im D.

Proof. Let x € D < End(D). Denote the minimal and the characteristic polynomial of x by
1 € R[A] and y € R[A] respectively. Decompose y into irreducible factors as follows

a b
x=[]a-r-[]a-sn@-5
i=1 j=1
with
ri,...,rqe €R and  s1,5;,...,8,5 € C\R.
By the Cayley—Hamilton theorem,
x(x) =0 € End(D).

Since D is a division algebra, the minimal polynomial y is one of the irreducible factors of .
Since p and y have the same roots, either:

(1) y=p%and p(1) = A - r withr € R, or
(2) x=p%?and p(A) = (A —=s)(A—=35) =A% —2Res - A + |s|? with s € C\R.

In the former case, for x € R the assertion is obvious because RN Im D = 0 = ker(tr: R — R).
Since

¥ =24 —tr()A

in the latter case,
tr(x) = —d Re(s).

Therefore, if tr(x) = 0, then Re s = 0; hence: x? = —|s|?> < 0. Conversely, if x? = —t* with
t € R, then p(A) = A2 + t2; hence: tr(1) = 0. [ |

Define the quadratic form ¢g: ImD — R by
q(x) = —x%

Denote the polarisation of g by p. Set b = %p. By construction, b is a Euclidean inner product
onImD. Let S € Im D be a minimal subspace which generates D as an R-algebra. Let ey, .. ., €5
be an orthonormal basis of S. By construction,

e=-1 and eej+eje;=0 and (i#j€{l,...,s}).

1

Evidently:
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(1) If n=0,then D = R.
(2) fn=1,then D = C.
(3) If n=2,then D = H.
Finally, if n > 3, then x := ejeze3 # +1 satisfies
0=x>-1=(x+1)(x—-1).
This contradicts D being a division algebra. ]

Remark 27.4. Palais [Pal68] has another short elementary proof. )

Remark 27.5. Frobenius’ theorem on real division algebras implies that the Brauer group B(R)
agrees with C, and is generated by H: H® H = M4(R) ~ R with ~ denoting Morita equivalence.
L)

28 Representation theory of finite groups

Situation 28.1. Let k be a field. Let G be a finite group. X
Theorem 28.2 (Maschke’s Theorem). If char k does not divide |G|, then k[G] is semi-simple.

Proof. Let V be a k[G]-module. Let W C V be submodule. Let 7 € End(V) be a k-linear
projection onto W. By averaging over G, & can be assumed to be G-invariant; that is: k[G]-
linear. Therefore, W’ := ker 7 is a complementary k[G]-submodule.

By the above, k[G] decomposes into simple modules k[G] = @D}_, Vi. Every non-zero x €
k[G] acts non-trivially on k[G] and thus on at least one of the simple modules V;. Consequently,

J(k[G]) = {0} ]

Corollary 28.3. Ifchar k does not divide |G|, then G has only finitely many irreducible represen-
tations V1, ..., V,, and

k[G] = ]_[ Endp, (V;). n
i=1

For comparison, Serre [Ser77] is a classical reference on the representation theory of finite
groups.
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Lecture 5

The goal of this lecture is to compute the Clifford algebras of all non-degenerate quadratic forms
over R and C. Our computation more or less follows [ABS64] and [LM8&9, Chapter I §4], which
is quite straight-forward and a lot of fun. There are many alternative methods to arrive at the
same result; see, e.g., Roe [Roeg8, p. 59] for an approach using the representation theory of
finite groups due to to J.F. Adams [Roeg8, p. 68]. (An important consequence of the computation
is a mod 8 (resp. mod 2) periodicity—related to Bott periodicity).

As a result of our computation one can read off the simple modules of the Clifford algebra.
(These govern the coarse theory of spinors over pseudo-Riemannian manifolds.) Spelling out
what they are is a simple exercise whose solution is written up in the lecture notes. You should
look at this and make sure you understand why this works. In the lecture, I will only briefly
discuss the role of the volume element.

29 Computation of the real Clifford algebras

[LM89, Chapter I §4]

Definition 29.1. For r,s € Nj set
Ct,s =Ct(qrs) with grs:=(1)*" L (~1)*° defined over R. o
Theorem 29.2. Foreveryr,s € {0,...,7}, Ct, is as in Table 1. Moreover, for everyr,s € Ny
Clriss = Clrs @ Mis(R) and Cty s = Clrs ® Mig(R).
Lemma 29.3. Letq: V — k be a quadratic form with dimV < co. For everya,b € k
Ct(q L {a,b)) = Ct(~(ab)™" - q) ® Ct({a, b)).

Proof. Denote by (ey, e;) the standard basis of k®2. Define §: V @ k%% — Ct(—(ab)™!-q) ®
Ce((£1)*2) by
0(v,x1,%2) = v ®eres +1Q®x11 +1Q x3€5.

Since
(0, x1,x2)° = q(v) + ax® + by?,

there is a unique algebra homomorphism f: Cf(q L {(a, b)) — Ct(—(ab)™! - q) ® Ct({a,b)).
Since f maps onto a set of generators, it is surjective. For dimension reasons it also injective
and, hence, an algebra isomorphism. ]

Proposition 29.4.
(1) CerC=CaC,

(2) C®r H = M;,(C), and

35


https://en.wikipedia.org/wiki/Frank_Adams
https://en.wikipedia.org/wiki/Bott_periodicity_theorem

9¢

Ct,s | r=0 1 2 3 4 5 6 7
s=0| R R®? Mz (R) M;(C) M (H) Mz (H)®?  M4(H) M;(C)
1| C Mz (R) Mz(R)®*  My(R) M4(C) M4(H) M;(H)®*  M;s(H)
2| H M, (C) My(R) M4(R)®*  Ms(R) M;g(C) Mg (H) Mg (H)®?
3| H® Mp(H)  My(C)  Ms(R)  Ms(R)®*  M;g(R)  Miy(C)  Mys(H)
4 | Mz(H) M (H)®? My (H) M4 (C) Mi6(R) Mis(R)®?  Msz(R) M3, (C)
5| My(C) M4(H) Ms(H)®*  Mg(H) Ms(C) Ms;(R) Mz (R)®2 Mes(R)
6 | Mg(R) Mz(C) Mg (H) Ms(H)®*  Myc(H) M;6(C) Mg4(R) Mes(R)®?
7| Msg(R)®2  Mi6(R) Mi4(C) Mi6(H) Mis(H)®?  Msz(H) Ms,(C) Mi23(R)

Table 1: The periodic table of Clifford algebras.



(3) Her H = My(R).
Proof. The isomorphism C ® C — C & C is given by
ZQW > zZw @ zw.
Identifying H=C & Cj = C?, C ®g H acts on C? via
(z®q) - v = z0q.
This action is C-linear. A computation shows that the resulting map C ® H — End¢(C?) =

M;(C) is an isomorphism.
Identifying H = R*, H ®g H acts on R* via

(p®q)-v=pog.

This action is C-linear. A computation shows that the resulting map H ®g H — Endgr(R*) =
M4(R) is an isomorphism. [ |
Corollary 29.5. For everyr,s € Ny:

(1) Clriise1 = Clrs @ Ma(R).

(2) Clryas = Cls, ® Ma(R).

(3) Clrs42 = Cts, ® H.

(4) Clrias = Clrygs = Clr s ® Ma(H).

(5) Clrigs = Clrigs = Clrs ® Mig(R). u

Proof of Theorem 29.2. It remains to determine the entries of Table 1 by the following procedure:
(1) Example 16.2 and Example 16.4 determine

C[0,0 = R, C[I,O = RGBZ, C{JO,I = C, C[z,() = Cfl,l = M, (R), and CfO,z = H.

(2) Clriz0 = Clyyr @ Ma(R) = Clyyp determines Ce3p.

(3) Clpst2 = Clso ® H determines C# 3.

(4) Clyia0 = Cly, ® My(H) determines C?,. for every r € Ny.
(5) Clys+a = Clys ® My (H) determines Cf s for every s € Ny.

(6) Clri1s+1 = Clyrs ® Ma(R) determines the Ct, s for every r, s € Ny. [}
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Remark 29.6. Theorem 29.2 immediately determines the commuting algebra of C¢, 5 up to
isomorphism (of R-algebras):

R ifr—s=0,2mod 8
C ifr—s=37mod38
Dy, = Endcy, (Ct,s) = {H ifr—s=46mod8

R®R ifr—s=1mod38
HoH ifr—-s=5modSs.

In particular:

(1) If r —s = 3,6 mod 8, then every irreducible representation P of Cf,; admits complex
structure; that is: an homomorphism p: C — Endcy,  (P) of R-algebras. Since Aut(C) =
0(2) = C,—generated by complex conjugation -, there is no distinguished complex
structure on P. In fact, p and p’ := p o - are not equivalent; that is: there is no C €
Endc,,  (P)* = C* satisfying p’ =CopoC™'

(2) If r —s = 4,5,6 mod 8, then every irreducible representation P of C¢, ; admits quater-
nionic structure p: H — Endcy,  (P). Since Aut(H) = SO(3), there is no distinguished
quaternionic structure either. However, for every ¢ € Aut(H), there is a y € H* such
that ¢(-) =y - y~'. Therefore, p and p’ := p o ¢ are equivalent via ® := p(y).

(3) If r —s = 1,5 mod 8, then C¢, s has two nonequivalent irreducible representations P, P’.
Again, among those two none is distinguished.

It turns out that a choice of orientation of R™** resolves the above ambiguities. *
Remark 29.7. Here is a slightly more abstract perspective of the salient point of Remark 29.6.
Let A be an k—algebra. Let V be an A-module. Denote by D := End4 (V) € Endi (V) the
commuting algebra of V. Evidently, V can be regarded as D ®; A-module.
By Schur’s lemma, D is a division algebra if V is simple. If k = R, then by Frobenius’ Theorem
on real division algebras D is isomorphic to K € {R, C, H}. Therefore, V can be regarded as a
K ®r A-module after a choice of isomorphism D = K has been made: K @, A = D ®, A —

¢
Endi (V). If ¢ € Aut(K), then K ®; A = K Qr A = D ® A — Endi (V) yields another structure
of a K ® A-module on V. If ¢ is an inner automorphism, then these structures are isomorphic.
In general, there are (up to) Out(K) = Aut(K)/Inn(K) many non-equivalent choices. )

Remark 29.8. The above discussion is somewhat unsatisfactory in that it treats C¢, s as an
algebra an not a superalgebra. Section 33 determines C¢} ;. This ameliorates the situation to an
extend. This approach is common in the literature on spin geometry, but it would probably be
better to carry out the computation with the supermindeset. Lam [Lamos, Chapter V §4] shows
how it should be done. Oh well! *

30 Computation of the complex Clifford algebras

Definition 30.1. For r € N set

Ct, := C¢((1)*") defined over C. °
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Remark 30.2. By Proposition 11.17 every non-degenerate quadratic form gq: V — C with
r :=dimV < o is isomorphic to (1)*". *

Theorem 30.3. For everyr € Ny

ce, = {Mzr/z (C) ifr is even
M,r-12(C)®%  ifr is odd.
Lemma 29.3 and Example 16.4 immediately imply the following.
Corollary 30.4. For everyr € Ny
Ct,y1 = Ct, ®c My(C). [ ]

Proof of Theorem 30.3. C€y = C and Example 16.2 determines C#; = C @ C. Therefore, Corol-
lary 30.4 finishes the proof. |

Remark 30.5. Of course, for C¢, only the ambiguity discussed in Remark 29.6 (3) remains (if r is
odd). *

31 Pinor modules

Situation 31.1. Let r,s € Ny. Let C¢,  be as in Definition 29.1. Suppose that an orientation on
R®(+s) has been chosen. X

Definition 31.2. The volume element
w:=e1- €5 €Clg

with ey, ..., ;45 denoting a positive orthonormal basis for g, s. (A moment’s thought reveals
that w does not depend on the choice.) .

Proposition 31.3. For every homogeneous x € Ct,

wx = (_1)(degw+1) degxxa);

in particular: if r + s is odd, then
w € Z(Clys).

Moreover:

o, J1  ifr—s=0,1mod4
-1 ifr—s=2,3mod4.

Proof. By direct computation, for every v € V

vw = (=1)"1wo.

39



This implies the first assertion. Moreover,

_ r+s—1_2
€1 Crys €1 Epys = (_1) €1€2° " €ris €2 Eryg

(r+s)(r+s-1)
— —— 2,2 2
=(-1) : €16y €

(r+s)(2r+s—l) +s

= (-1)
Finally, observe that

(r+s)(r+s—1)+2s=(r—s)(r—s—1) mod 4. [ |
Remark 31.4. This resolves the ambiguities in Remark 29.6 (1) and (3). )

Definition 31.5.
(1) If r —s = 0,2 mod 8, then the pinor module P is the irreducible C¢, s—module.

(2) If r —s = 1 mod 8, then the positive pinor module P* and negative pinor module P~ are
the irreducible C¢, s;—module on which w acts as 1 and —1 respectively.

(3) If r —s = 3,7 mod 8, then the pinor module P and the conjugate pinor module P are the
irreducible C ® Cf, s—modules on which w acts as i and —i respectively.

(4) If r —s = 4,6 mod &, then the pinor module P is the irreducible H ® C¢, ;—module.

(5) If r —s = 5 mod 8, then the positive pinor module P and negative pinor module P~ are
the irreducible H ® C¢, s;—module on which o acts as 1 and —1 respectively. °

Remark 31.6. By Theorem 29.2, the pinor modules exist and are unique up to isomorphism. &

32 Complex pinor modules

Situation 32.1. Let r € Nj. Let C¢, be as in Definition 30.1. Suppose that an orientation on R®"
has been chosen. X

Definition 32.2. The complex volume element

€ = iLrTHJel ---e, € Ct,
with ey, ..., ;45 denoting a positive orthonormal basis. (A moment’s though reveals that €
does not depend on the choice.) °
Remark 32.3. If r = 3,4 mod 8, then € = —o. &
Proposition 32.4. Ifr is odd, then »© € Z(C¢,); moreover, for everyr, (w°)? = 1. [ |

Definition 32.5.
(1) If r is even, then the complex pinor module P is the irreducible C¢,—module.

(2) If r is odd, then the positive complex pinor module P* and negative complex pinor
module P~ are the irreducible C¢,~modules on which »® acts as 1 and —1 respectively. o

Remark 32.6. By Theorem 30.3, the complex pinor modules exist and are unique up to isomor-
phism. &
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Lecture 6

The pinor modules over C¢, s from the last lecture can also be considered as modules of the even
subalgebra Cf? . C C¢,. The simple modules of C£) ; are the spinor modules. It is important to
understand how the pinor and spinor modules are related. Again, this is largely an exercise
given the classification derived in the last lecture. The lecture notes contain the answer to this
exercise, but in the lecture I will only dicuss a few examples to illustrate how this is done.
The second part of this lecture works towards the construction of spin group Spin(q). First
I will explain that if q is non-degenerate, then C¢(q) is a CSSA, a central simple superalgebra.
Then I will discuss the Clifford group I'(¢g) and the special Clifford group ST'(q), a precursor of

Spin(q).

33 The even subalgebra of the Clifford algebra

Situation 33.1. Let k be a field. Let g: V — k be a quadratic form with dimV < co. X

Proposition 33.2. For every a € k*
Ct(q L {a)’ =Ce(V,-a"'-q).
Proof. Sete = (0,1) € V@ k. Define §: V — Ct(q L {(a))° by
6(v) = ev.

Since
5(v) = evev = —e*0® = q(v),

there is a unique algebra homomorphism f: C¢(q) — C¢(q L {(a))? with § = f o y. Evidently,
f is surjective (it maps to a set of generators). Multiplication with e induces a vector space
isomorphism C¢(q L (a))? = Cf(q L (a))'. Consequently, dim C¢(q L (a))® = 24mV+1/2 =
dim C¢(q). Therefore, f is an isomorphism. ]

Proposition 33.3. For everyr,s € Ny

ce?

r+l,s

= Cts, and ce®

r,s+1 = CZV,S' u

Remark 33.4. Proposition 33.3 explains the symmetry Cf,.1 s & Cfsy1, apparent from Table 1. &
Proposition 33.5. For everyr,s € Ny

Ct), = Cts,—1 = Cty,. ]

41



34 Spinor modules

Situation 34.1. Let r,s € Ny. Let C¢, ¢ be as in Definition 29.1. Suppose that an orientation on
R®(+9) has been chosen. Denote the volume element by w € Ct, . X

Definition 34.2.

(1) If r — s = 0 mod 8, then the positive spinor module S* and the negative spinor module
S~ are the irreducible C#} ;—-module on which w acts as 1 and —1 respectively.

(2) If r —s = 1,7 mod 8, then the spinor module S is the irreducible C¢? ;-—module.

(3) If r —s = 2,6 mod 8, then the spinor module S and the conjugate spinor module S are
the irreducible C ® Cf? .-modules on which w acts as i and —i respectively.

(4) Ifr — s = 3,5 mod 8, then the spinor module S is the irreducible H ® C¢? .-module.

(5) If r —s = 4 mod 8, then the positive spinor module S* and the negative spinor module
S~ are the irreducible H ® Cf? .-module on which @ acts as 1 and —1 respectively. o

Remark 34.3. By Theorem 29.2, the spinor modules exist and are unique up to isomorphism. &

Remark 34.4. The symmetry of Definition 34.2 under exchanging r and s is a consequence of
the isomorphism C¢? = C#3,. *

35 Decomposition of pinor into spinor modules

Proposition 35.1.
(o) Ifr —s =0mod 8, then

(a) P=S"®S™ asCtd -modules, and
(b) y: R®*)  End(S*,S7) ® End(S™, S*).

(1) Ifr —s =1mod 8, then P* = S as C¢) ;—modules.
(2) Ifr —s = 2mod 8, then

(a) C®e P =5@85 asC® Cl) —modules and
(b) 1c ®ry: RO(+s) Endc (S, S)e Endc(g, S).

(3) Ifr —s = 3 mod 8, then

(a) P=P =S asC® Ct) ,—modules and
(b) y: R®+) — Endc(S).

(4) Ifr —s =4 mod 8, then

(a) P=S"®S™ asH® Ct) —modules, and
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(b) y: R®C*) — Endyy(S*,57) ® Endpa (5™, 5%).
(5) Ifr —s = 5mod 8, then

(a) P* =S asH® Cl? —modules, and
(b) y: R®U+) _ Endy(S).

(6) Ifr —s = 6 mod 8, then

(2 P=H®cS=5aS asH® Ct) —modules, and
(b) y: R®*) — Homc(S, ) ® Home(S, S)

(7) Ifr —s =7 mod 8, then

(a) P=C@®gS asC® Ct? —modules, and
(b) y: R®U+) 5 10 ® End(S).

36 Complex spinor modules

Situation 36.1. Let r € Nj. Let C¢, be as in Definition 30.1. Suppose that an orientation on R®"
has been chosen. Denote the complex volume element by w® € C¢,. X

Definition 36.2.

(1) If r is even, then the positive complex pinor module S* and negative complex pinor
module S~ are the irreducible C£2~modules on which ¢ acts as 1 and —1 respectively.

(2) If r is odd, then the complex spinor module S is the irreducible C¢#2-modules. .

Remark 36.3. By Theorem 30.3, the complex spinor modules exist and are unique up to isomor-
phism. *

37 Decomposition of complex pinor into complex spinor modules

Situation 37.1. Let r € Ny. Let C¢, be as in Definition 30.1. Suppose that an orientation on R®"
has been chosen. Denote the complex volume element by »© € C¢,. Consider the complex
pinor and complex spinor modules; see Definition 32.5 and Definition 36.2. X

Proposition 37.2.
(1) Ifr is even, then

(a) P=S*® S~ as C~modules, and
(b) y: C® — Hom¢(S*,S7) ® Home(S™, S*).

(2) Ifr isodd, then P* = P~ = S as C¢2—modules.
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38 The Lipschitz group

Situation 38.1. Let k be afield. Let g: V — k be a quadratic form. Let S be a C#(g)-module. X

Definition 38.2. The Lipschitz group of S is
L(S) := {x € GL(S) : xy(V)x~' c y(V) c End(S)}. .

Remark 38.3. For k = C the Lipschitz group was introduced by Friedrich2o00a. It mediates the
Clifford module perspective and the principal bundle perspective on spin geometry. Trautman
[Traog] contains a very clear and concise discussion of the role of the (complex) Lipschitz group
(even for real spinors). Lazaroiu and Shahbazi [LS19] develop the real theory in exuberant
detail—indeed; the theory turns out to be suprisingly intricate. &

Definition 38.4 (Lazaroiu and Shahbazi [LS19, Definition 3.9]). S is weakly faithful if the map
y: V — Cf(g) — End(S) is injective. .

Proposition 38.5. IfS is weakly faithful, then there is a unique homomorphism Ad: L(S) — O(q)
such that

Y(Ad(x)0) = xy(0)x ™
that is: y: V — End(S) is L(S)—equivariant.
Proof. Evidently, the above condition defines a homomorphism L(S) — GL(V). Since
g(Ad(x)0) = y(Ad(x)0)* = (xy(2)x™")" = xy(0)*x ™" = q(0),
it factors through O(gq). [ |
Proposition 38.6. If'S is weakly faithful, then
D* =ker(Ad: L(S) — O(q)).
with D = Endcy(q)(S) denoting the commuting algebra of S. [ ]

Remark 38.7. Determining im(Ad: L(S) — O(q)) is a bit more involved; cf. [LS19, Theorem
4.9]. &

39 The supercentre of C¢(q)

Situation 39.1. Let k be a field. X

Definition 39.2. Let A be a k—superalgebra. The supercommutator is the bilinear map [-,-]: A®
A — A defined by
[x,y] = xy — (-1 e e Yy

for homogeneous x,y € A. The supercenter of A is
Z(A) = {x € A: [x,y] =0 for every y € A}.

A is supercentral if Z(A) = k. °
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Lemma 39.3. If A, B are k—superalgebras, then
Z(A® B) = Z(A) & Z(B).

Proof. Evidently, Z(A) ® Z(B) c Z(A&® B).
If z € Z(A ® B) is homogeneous, then

-
z= a; ® bi.
i=1
with ay,...,a, € A and by,...,b, € B linearly independent and homogeneous. By direct
computation, for every a € Aand b € B

0=[za&1] = Y (-1)*E"[a,a]®b; and 0=[z1&b] =) (-1)*E"a; & [b;b].
i=1 i=1

Therefore, ay,...,a, € Z(A) and by,...,b, € Z(B) ]
(The above argument is from [Lamos, Chapter IV Theorem 2.3(1)].)

Theorem 39.4. If q is non-degenerate and dim'V < oo, then
Z(Ct(q) = k.

Proof. In the light of Lemma 39.3, Proposition 11.17 and Theorem 11.21 (2) it consider the following
two cases:

(1) Consider {a): V = k — k with a € k* and chark # 2. Sete := 1 € V. By direct
computation, for every x = xo + x1e € C£({a)) (xo,x1 € k)

[x, e] = 2x;a.
Therefore, Z(Ct({a))) = k.

(2) Consider [a,b]: V = k® — k with a,b € k and chark = 2. Set e; := (1,0),e, =
(0,1) € V. By direct computation, for every x = xp + x1e; + X263 + x3e162 € C£([a, b])
(%0, X1, X2, X3 € k)

[x,e1] = x2 +x3e; and [x, ey] = x1 + x3e5.
Therefore, Z(Ct([a, b]) = k. [ |

Remark 39.5. Although the above proof is quite straight-forward, I would be interested in a
more conceptual proof. It might not be reasonable to expect one to exists, however. *
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40 Tensor products of supercentral supersimple superalgebras

Situation 40.1. Let k be a field. X

Definition 40.2. Let A be a k—superalgebra. A is supersimple if it has no non-trivial proper
homogeneous ideals. .

Lemma 40.3. Let A, B be k—superalgebras. If A is a supercentral and supersimple and B is
supercentral, then A ® B is supersimple.

Proof. Let I C A ® B be a non-trivial proper homogenous ideal. If z € I is homogeneous, then

r
zZ = Zai é)bl
i=1

with ay,...,a, € Aand by,. .., b, € Blinearly independent, homogeneous, and deg a; + deg b; =
deg z. Choose a non-zero homogeneous z € I of with minimal r.

Since A is supersimple, the homogeneous ideal (a;) generated by a; is A. Therefore, there
are homogeneous ¢y, dy, - -+ , ¢5, ds € A with

1= ZS:Cjaldj

=

and deg c; + degc; = deg a;. By construction,

s r
Z = Z(q@l)z(dﬂél)=i1®b1+za;®biEI'

=1 i=2
Since degc; + degc; = degay, a} is homogeneous. Since by, ..., b, are linearly independent,
z' # 0. By the minimality of 7, £1, aj, .. ., a; are linearly independent.

An analogous construction with b; instead of a; construct a non-zero homogeneous

-
Z’ :1®1+Za§®b; el
i=2
with 1,b;, ..., b; linearly independent and homogeneous. Evidently, deg a; = deg b;.
Ifr =1,then > (1® 1) = A ® B—contradicting that I is proper. Therefore, r > 2.

For every b € B
-

[,1&b] =Za;® [b},b] € 1.

i=2

By the minimality of r, [2/,1 ® b] = 0. Since a,, ...,a, are linearly independent, [b},b] =
0. Therefore and since B is supercentral, b; € k—contradicting that 1,5, ..., b; are linearly
independent. [ ]

(The above argument is from [Lamos, Chapter IV Theorem 2.3(2)].)
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Theorem 40.4. If q is non-degenerate, then C£(q) is supersimple.

Proof. Inthe light of Lemma 40.3, Proposition 11.17 and Theorem 11.21 (2) it consider the following
two cases:

(1) Consider (a): V := k — k witha € k*. Sete := 1 € V. Let I c Cf({a)) be a proper
homogeneous ideal. Let x = xy + x1e € I (xp, x1 € k). Since I is homogeneous,

1> (x) and ID (xie) D (x1€%) = (x1).
Therefore and since I is proper, x = 0. Hence, I = 0.

(2) Consider [a,b]: V = k®? — k with a,b € k and chark = 2. Set e; := (1,0),e; := (0,1) €
V. LetI c Cf([a,b]) be a proper homogeneous ideal. Let x = x + x1e1 + xzez + x3e163 € I
(0, 1, X2, x3 € k). Since I is homogeneous,

ID(xp), ID(xie;+xze3), and I D (xserey).
Indeed, since
[x,e1] =x2+x3e1, [x,e] =x1+x3e5, and [[x, e1], e2] = x3,

and I is homogeneous, I D (xp), I D (x1), I D (x3), and I D (x3). Therefore and since I is
proper, x = 0. Hence, I = 0. [

Remark 40.5. Although the above proof is quite straight-forward, I would be interested in a
more conceptual proof. It might not be reasonable to expect one to exists, however. *

41 The Clifford group

Situation 41.1. Let k be a field. Let g: V — k be a quadratic form. X

Definition 41.2. Let A be a k—superalgebra. The supergroup of homogenous units of A is
AP = (A" U AY) N Ax. .

Definition 41.3. The twisted adjoint representation is the homomorphism Ad: Cel(q)™ —

Aut(Ct(q)) defined by .
Ad(x)y = (—1)degx-deg Uxyx L.
The Clifford group I'(g) is
T(q) = {x € Ct(q)" : Ad(x) € O(¢g)}. .
Proposition 41.4. The diagram

(g9 —2— 0(g)

L

Ce(g)n™ —294s Aut(Cr(g)).

is a pullback diagram. [ ]
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Proposition 41.5. If q is non-degenerate and dimV < co, then

0—>kX—>F(q)A—d>O(q)—>0
is exact.

Proof. By Theorem 39.4, ker Ad = kX C I'(q). If v € V is anisotopic, then v € I'(q) and, by
direct computation, .
Ad(v) =r, € O(q).

Therefore, the Cartan-Dieudonné Theorem implies that Ei(l“(q)) = O(g)—except possibly in
the case ¢ = [1,1] L [1,1] with k = F;. According to Remark 14.6, it remains to find x € I'(q)
such that Ad(x) interchanges the summands [1, 1]. A direct computation reveals that

x'=1+4+e1ey+ejeq+e2e3+ €364
does just that.? ]

Remark 41.6. As a consequence of the proof, I'(q) is generated by anisotopic vectors (and x in
the exceptional case g = [1,1] L [1,1] with k = F5). &

Remark 41.7. The use of the Cartan-Dieudonné Theorem in the proof of Proposition 41.5 can be
(and probably should be) replaced with an application of a the Skolem—Noether theorem for
supercentral supersimple superalgebras; cf. Elduque and Villa [EV o8, Proposition 8]. &

Remark 41.8.

(1) Chevalley [Ches4, §2.3] considered the adjoint representation Ad: f‘(q) — O(q) defined
by
y(Ad(x)0) = xy(0)x"
with f(q) = Z(Ct(q))*T(q); cf. [LS19, §1.18]. Of course, if deg: T'(q) — Z/2Z denotes

the grading on I'(g), then .
Ad = (—l)deg Ad|r(g)-

Therefore, Proposition 41.5 does not (quite) hold with Ad instead of Ad; cf. [Chesy, p. IL.3.1].

(2) Atiyah, Bott, and Shapiro [ABS64, Part I §3] observed that signs might be in order because

C?(q) is a superalgebra, and introduced Ad: T'(q) — O(g)—although with an a priori
different definition of T'(q).

(3) Atiyah, Bott, and Shapiro only defined Ad: I'(q) — O(q) and hid the degree by using
the involution « = Cf(-1). In doing so they have laid a trap! Most geometers (e.g.:
[LM89, Chapter II (2.11); Hargo, (10.9); Roeg8, p.57]) define Ad: Ct(q)* — Aut(Ct(q))
with two defects: (a) the domain is too large, and (b) deg y is not taken into account. This
is ultimately almost inconsequential, but it fails to take C#(q) seriously as a superalgebra.
(I only realised this after reading [Knug1, Chapter IV (6.1)].) )

11 found this by a brute-force search using Sage.
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42 The special Clifford group

Situation 42.1. Let k be a field. Let g: V — k be a quadratic form. X

Definition 42.2. The special Clifford group is
ST(q) =T (q) N Ct(q)".
The special orthogonal group is
SO(q) := Ad(ST(g)) < O(q). .

Remark 42.3. If char k # 2, then by Theorem 14.5 SO(q) = ker(det: O(q) — {£1}). Ifchark = 2,
then the latter is clearly unsatisfactoy and the above is the correct definition. It turns out that
even in char k = 2, there is a homomorphism D: O(q) — Z/2Z, the Dickson invariant, such
that SO(q) = ker D; cf. [Knug1, Chapter IV §5]. )

Remark 42.4. On ST(q), the twisted adjoint representation Ad agress with the adjoint represen-
tation Ad. *

Proposition 42.5. The diagram

ST(g) —24— 50(q)

[ [

Ce(q)™ —2% Aut(Ce(g)°)

is a pullback diagram. ]
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Lecture 7

The goal of this lecture is complete the construction of Spin(q) and investigate it in a bit more
detail for non-degenerate real quadratic forms.

43 The spinor norm

Situation 43.1. Let k be a field. Let g: V — k be a non-degenerate quadratic form. X

Definition 43.2. The transposition -*: Cf(q) — C¢(q) the unique anti-involution that extends
idy. °

Proposition 43.3. For every x € T'(q), x'x € k*.
Proof. Since -! extends idy, for every x € I'(q) and v € V
xox~ 1t = (xox™ 1! = (xh) lox!.
Therefore, x'x € ker Ad = k*. n
Definition 43.4. The norm is the homomorphism N: I'(q) — k* defined by
N(x) = x'x. °

Remark 43.5. Since N(x) € k*, it evidently is a homomorphism; moreover, N(x) = xx’. For
some reason the latter is more commonly used as the initial definition. In the literature, one
also finds a version of the norm with -’ replaced by the anti-involution - that extends —idy. I
prefer the above, because N(v) = g(v) for every anisotropic v € V. )

Definition 43.6. The spinor norm N: O(q) — k*/(k*)? is the homomorphism induced by the
norm. Set
Q(q) =kerN cO(q) and SQ(gq) :=SO0(q) N Q(qg). °

The norm and the spinor norm fit in the following commutative diagrams with exact rows:

k* I'(q) O(q) k* ——— ST'(g) — SO(q)
(43.7) l .2 lN lN and l -2 lN lN
(k*)? « k> k< (k*)? (k*)? « k> k[ (k)2

Example 43.8. Let r,s € Ny. Consider g, := (1)*" L (—1)** defined over R. Set
Oys = 0(qrs)-
O, s has 2¢(rs) connected components with

0 ifr=s=0
c(r,s)==31 if(r>1ands=0)or(r=0ands > 1)
2 ifr,s > 1.
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By the Cartan-Dieudonné Theorem, for every T € O, there are v with +q(vf) > 0 (i €
{1,...,a.}) such that

T = ot oo Toh Top o T,
Identifying R*/(R*)? = {+1},
detT = (-1)*** and N(T)=(-1)*.
Therefore, if r = 0, then N = det, if s = 0, then N = 1. A moment’s thought shows that
det X N: my(Op) — {£1}%
In particular, SQ(q, ) is the identity component of O, ;. [

Example 43.9. Consider the above in the Lorentzian signature (r,s) = (1,3). A Lorentz
transformation is a T € Oy 3. T is proper if det T = 0; that is: T € SOy 3.

A vector v € R* is time-like, space-like, and light-like if g(v) > 0, g(v) < 0, and g(v) = 0
respectively. The light-cone ¢~'(0) separates R* into three connected components:

(1) the future light-cone {v € R* : q(v) > 0,0y > 0},
(2) the past light-cone {0 € R*: q(v) > 0,0 < 0}, and
(3) the elsewhere {v € R* : g(v) < 0}.

AT € O, might swap the future and past light-cones. If it does not, it is orthochronous.

A moment’s thought shows that SQ(g,s) = SOj3, the group of proper, orthochronous
Lorentz transformations.

The quotient Oy 3/SO7 ; is isomorphic to the subgroup of O, 3 generated by

T =diag(-1,1,1,1) and P =diag(1,-1,-1,-1). '

44 Pin(q) and Spin(q)
Situation 44.1. Let k be a field. Let g: V — k be a non-degenerate quadratic form. X
Definition 44.2. The pin group associated with g is the group
Pin(q) := ker(N: T'(q) — k™)
The spin group associated with g is the group
Spin(q) := Pin(q) N ST(q). °

Proposition 44.3. Consider {+1} C k*. The sequences

0 — {+1} — Pin(q) E) Q(q) — 0

and .
0 — {+1} — Spin(q) Ad SQ(q) = 0

are exact.
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Remark 44.4 (Pin(q) and Spin(q) if char k = 2). If char k = 2, then {+1} C k* is trivial; hence,
Pin(q) = Q(q) and Spin(q) = SQ(q). &

Proof of Proposition 44.3. Since {+1} = ker(-2: k* — (k*)?), the commutative diagrams with
exact rows (43.7) extend to the commutative diagrams with exact rows:

{+1} —— Pin(q) — Q(q) {+1} —— Spin(q) —— SQ(q)
K I'(q) O(gp  ad kX ——— ST(g) 50(q)
l(-)2 lN lN l(-)2 lN lN
(kX)Z ¢ kX kX/(kX)Z (kX)Z ¢ k> kX/(kX)Z_ m
Remark 44.5.
(1) There are numerous and sometimes inequivalent definitions of Pin(g) and Spin(q) in

(3)

the literature. The above agrees with that found in most references on algebraic groups.
I believe that this is the correct definition, and I also believe that the other definitions are
wrong and misguided.

Unless k = F2, dimV =4, and i(q) = 2,

Pin(q) = {/101 evg € Cl(q)™ : A2 1—[ q(v;) = 1} and

i=1

2a
Spin(q) = {/101 c+ 0y € CE(q)* 1 A2 ]_[ q(v;) = 1}.

i=1

This is sometimes used to define Pin(g) and Spin(q). Indeed, in light of the Cartan—
Dieudonné Theorem this is a rather sensible approach. But, of course, it does give the
wrong answer in the exceptional case of the Cartan-Dieudonné Theorem.

References on spin geometry (cf. [LM89, (2.25)]) often use
Pin(q) := ker(N*: T(q) — (k*)*) and Spin(q) := Pin(q) N ST(q)

instead of Definition 44.2, sometimes in the guise of a variation of (2). The apparent
advantage is that Ad maps Pin(g) and Spin(g) onto O(q) and SO(q) respectively. This,
however, can also be seen as a disadvantage because it prematurely gives up the free-
dom the twist over the non-identity component of SO, ; see Dabrowski [Dab88] and

Dabrowski’s Pinjfﬁ.".

Fortunately, in the setting relevant to Riemannian geometry (that is: k = R and negative
definite g), none of the above makes any difference for Spin(g). However, neither Pin(q)
nor Pin(q) might be appropriate for physics; cf. Janssens [Janzo]. *
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Proposition 44.6. Let S be weakly faithful C£(q)—-module. Denote by L(S) the Lipschitz group of
S. The action of Ct(q)** on S induces a group homomorphism Spin(q) — L(S) such that

Spin(q) —— L(s)
lAd lAd
5Q(q) —— O(q)

commurtes. |

45 The spin group of a perpendicular sum

Situation 45.1. Let k be a field. Let g¢;: V; — k (i = 1, 2) be non-degenerate quadratic forms. X
The following is important to establish the “2 out of 3 principle” for spin structures.
Proposition 45.2.

(1) The isomorphism Ct(q,) ® C£(qz) = C(q; L go) (constructed in Proposition 22.2) induces
an inclusion 1: Spin(q;) X{+1} Spin(gz2) < Spin(gq1 L g2).

(2) The canonical inclusion j: O(q1)x0(g2) < O(q1 L g2) restricts to an inclusion j: SQ(q;)X
5Q(qq) — SQUq1 L q2).

(3) The diagram
Spin(q:) X{+1) Spin(qz) SELEEN Spin(q; L g2)

| |

SQ(q1) X $Q(qz) —L— SQ(q1 L g2).

is a pullback diagram.

46 Spin,

Situation 46.1. Let r,s € No. Set g5 := (1)™" L (=1)** defined over R. Set SO; ; := SQ(q,,s)
ker N N SO(qy.s)-

Definition 46.2. Set
Spin, ¢ = Spin(qy.s). o

Notation 46.3. Abbreviate
Spin,, = Spin(n) = Spin,) . °

Proposition 46.4.
(1) Spin, C (C{’g’s)>< is a closed Lie subgroup.

(2) The group homomorphism Ad: Spin, ; — SOJ | is a smooth {+1}—principal covering map.
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(3) Spin, ; is connected if and only if (r,s) € {(1,0), (0,1), (1, 1)}.
Proof. (1) and (2) are obvious. To prove (3) observe the following:

(1) If(r,s) ¢ {(1,0),(0,1), (1, 1)}, then there are ey, e; with g(e;) = g(ez) = +1and p(ey, e5) =
0. The path y: [0,7/2] — Spin, ; defined by

y(t) = (e1 cos(t) + ey sin(t))(eg cos(t) — ez sin(t))

satisfies
Y(ﬂ/z) = ef =+1 and }/(77,'/2) = —eg = Fl,

Therefore and since SO . is connected, Spin. . is connected.
r,s 1

(2) SO}, =SOg, = {1} and

+ _ J[cosht sinht) N
5011 = {(sinht cosh t) e R} =R

Therefore, the covering map Ad must be trivial in these cases; hence: m(Spin, ) =
{+1}. ]

Remark 46.5. The {+1}-principal covering maps Ad: Spin.; — SO; and Ad: Spin, —

r,s

SO;, = SO; ; is isomorphic. *

Remark 46.6. If r, s are quite small, then Spinr’s can often be identified with more familiar
groups. For example:

(1) Sping, = Sp(1) = SU(2).
(2) Spin, , = SL,(R).

(3) Sping, = Sp(1) X Sp(1) = SU(2) x SU(2).
(4) Spin, 5 = SL,(C).

(s) Spings = Sp(2).

(6) Spiny; = SU(4).

Finding the above isomorphisms and the corresponding adjoint representations is an exercise.
(It can be solved by reading [Hargo, pp. 298-307]; see also https://en.wikipedia.org/wiki/
Exceptional_isomorphism.) L)

Remark 46.7. It also is a fun exercise to determine the

_1(cosht sinht
sinht cosht|’
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47 spin,

Definition 47.1. Set
spin, ; := Lie(Spin, ). °

Since Spin, ; C (CeY ;)™ is a Lie subgroup, spin, ; ¢ Cf? with the Lie bracket agreeing
with the commutator. Set b = b, := £, ;. Denote by k: A*R™ — Ct? the map induced by
the quantisation map. Of course, with respect to the standard basis e, . . ., €4s,

k(e A ej) = eje;j.
Identify A*R™* = sp, s via
(u ANo)w = ub, (v, x) — vby s (u, x).
Proposition 47.2.
(1) spin, agrees with the image of the quantisation map k: A*R™ — Ct’(r)’s.
(2) Lie(Ad) o k() = 2a for every & € A’R™S = sp, .

Proof. Denote the standard basis of R™** by ey, ..., ey45. Define x;;: R — Spin, ¢ by

(ei cos(t) —ejsin(t) - (e; cos(t) + e sin(t)) ifi<j<
xij(t) == { (e; cos(t) + ejsin(t)) - (—e;cos(t) +e;sin(t)) ifr+1<i<j
<

(sinh(t)e; — cosh(t)e,)(sinh(t)e; + cosh(t)ey) ifi<r <
_ | cos(2t) + sin(2t)e;e; fi<j<rorr+1<i<j
cosh(2t) +sinh(2t)e;e; ifi<r < j.
Since %;;(0) = e;e; = kx(e; A e;), this proves (1).
To prove (2), observe that
[eiej,v] = ejeju — veje; = 2e;b(ej,v) — 2e;b(ej,v) = 2(e; A e;j)v. [ |
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Lecture 8

The first part of this lectures completes the algebraic discussion. The second part introduces
the “axiomatic” approach to Dirac operators.
48 Spin%

Definition 48.1. Letr,s € Nj. Let G be a Lie group. Lete: {+1} — G be a group homomorphism.
Set
SpinffS = Spin, ; X(+1} G. .

Proposition 48.2. The sequences

1 — G — Spin® A sor 0

rs rs
and

0 — Spin, ; — Spin{; — (G/{+1}) = 0
are exact. [
Remark 48.3. Of course, there is also a homomorphism Spinfs — G/{x1}. )
49 Spiny”

Remark 49.1. Possibly the most important instance is G = U(1) with e(—1) = —1. This group is
often denoted by SpingS (or similarly). A warning is in order: SpingS is not the spin group for
gr.s over C, but it can be obtained from it using the real structure on C"™*%; cf. [ABS64, p.9]. &

The significance of Spinlrj,gl) is that for C ® C¢, ;—modules it can take the role of the spin
group.

Proposition 49.2. LetS be a C ® Ct, s—module which is weakly faithful as a C¢, s—module. Denote
by L(S) the Lipschitz group of S. The action of C* X Ct’(r)f; on S induces a group homomorphism
Sping,gl) — L(S) such that

Spinlrj’gl) — L(S)

lAd lAd
S0F, —— Oy,
commutes. u
Spin[,f(l) also interacts well with U(n).
Proposition 49.3 (Atiyah, Bott, and Shapiro [ABS64, pp. 10, 13, 14]). Letn € N.

(1) The map p: U(n) — SO(2n) does not lift to Spin,,,.
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U(1),

(2) The map p x det: U(n) — SO(2n) x U(1) lifts to Spin,, "’ ; that is,
Sping,fl)
/// l]xﬁx(—)?

U(n) ﬁ» S0(2n) x U(1).

(3) The complex pinor module P be can be identified with Ac(C")* such that the lift U(n) —
Spin®(n) makes the following diagram commutative:

U(n) Spin;,

| l

Ende(C?) %% Ende(Ac(CM)).

The Clifford multiplication on Ac(C")* is given by

y()a=0v"Aa—-i(v)a.

Proof. (1) is a consequence of the fact that 7;(p): m1(U(n)) — 71(SO(2n)) is surjective, but
m1(Ad) : 7 (Spin(2n)) — m1(SO(2n)) is not.

(2) is proved by constructing the lift explicitly. Given f € U(n), chose a unitary basis
(e1,...,ep) of C" in which f is diagonal; that is: f = diag(e'®,---,e'"). An orthonormal
basis of the 2n—-dimensional real Euclidean space C" is given by (ey, iey, ..., ey, ie,). Define
f € Spin‘(2n) by

f = l_[[(cos(aj/Z) +sin(a;/2)e;j(ie;)), e%“f].
j=1

Observe that ¢ € R/27Z, so aj/2 € R/nZ. Consequently, the both factors individually are only

RV
defined up to a sign. Their product, however, is well-defined. Clearly, ( = ef“f) = det(f).

The fact that p(f) = ATi( f ) follows from following observation.

Proposition 49.4. Let (ey, e;) be an orthonormal basis of R* and let « € R. We have

cos(a) - sin(a)) '

Ad(cos(a/2) +sin(a/2)ese) = (sin(a) cos(a)

Proof. Since
a (cos(a/2) + sin(a/2)ee;) ! = cos(a/2) — sin(a/2)ee,,

we have
Ad (cos(ar/2) + sin(a/2)ere;) e; = (cos(ar/2) + sin(a/2)ere;)? ;
= (COS(O(/Z)Z — sin(a/2)*
+2cos(a/2) sin(a/2)erez)e;
= (cos(a) + sin(a)e es) e;.
From this the assertion follows directly. ]
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The formula for the Clifford multiplication defines how Spin®(2n) acts on Ac(C")*. Proving
(3) is a matter of a calculation using the explicit formula for the lift constructed above. ]

50 Dabrowski’s Pin®®
Situation 50.1. Let r,s € Nj. X

Since Spin, ; only covers SO} , it is interesting to determine which double covers Piny’y —
O, s fit in a commutative diagram of the form

{1} = {#1}

l l

. . >+
Spin, ; —— Pin;;

|

SO:—,S € Ors Ty (Or,s) .

The discussion (mildly) depends on r, s since

1 ifr:s:()
A= 1{z1} if(r>1s=0)or(r=0s>1)
{1} x {1} ifr>1s> 1.

The case r = s = 0 is trivial. In anycase, 7y(O, ) lifts to a subgroup A < O, . Conjugation
defines a homomorphism A — Aut(SO; ) and

O, = A= SO} ..

Set
A= 77! (A) < Pin},.

Evidently, conjugation defines a homomorphism A — Aut(SOj ), and

pig* = A = Spin, ¢

s {x1}
By covering theory, A — Aut(Spin, ;) is the unique lift of A—A— Aut(SOj ). Therefore,
Pin is determined by 7: A — A. Conversely, every 7: A — A with ker 7 = {+1} defines a
Piny.
The above can be made more concrete because the homomorphisms 7 can understood
as follows. For every T € A, T?> = 1 for every T € A. Therefore, if T € n~!(T), then
T? € ker = {#1}; moreover, T2 depends only on T, and 12 =1.

(1) The case r = s = 0 is trivial.
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(2) Ifeitherr =0 ors=0,then A =(T) < O, with T := —1; ® 1,,,. Set
A* = (-1,T | (-1)*=1,T*=£1,(-1)T =T(-1))
and, define 7*: A* — A by 7(-1) := 1 and 7(T) = T. More explicitly:
(a) AT = {x1}2 with-1=(-1,1) and T = (1,-1).
(b) A~ ={x1,+i} <C*with-1=-1and T = i.
These gives rise to Piny .

(3) Ifeitherr,s > 1, then A = (T}, T;)2 < O, s with T; i= =1y ® 1,451 and T == 1,451 & —14,
For a,b,c € {£} set

Aabc = <—1, fl,fz | R>

with R denoting the following relations
(-1)* = Lﬁz = aljzz =b1,(TiT)* = c1, (-1)Ty = Ty (-1), (-1)T; = To(-1),

and define 7: A%¢ — A by 7%¢(~1) := 1 and 7%°(T;) := T;. With D4 == (R,S | R? =
S* = RSRS = 1) denoting the dihedral group of order 8 these above are more explicitly
given as:

+

These gives rise to Pin; ; see Dabrowski [Dab8s, p. 11].

Remark 50.2. Of course, there are up to 32 non-isomorphic double covers of O, ;. These have
been studied by Trautman [Trao1]. )

51 Bilinear forms on pinor modules

I should have probably said the following in an earlier lecture.

The (complex) (s)pinor modules P (defined in Section 31, Section 34, Section 32, and Sec-
tion 36) admit non-degenerate bilinear forms b € Hom(P ® P, R) with respect to which the yov is
skew-adjoint for every v € R"**. The construction of these b is quite formidable and discussed
in [Hargo, §13]. If r = 0 or s = 0, then b can be assumed to be positive definite.
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52 Clifford algebra bundles

Situation 52.1. Let r,s € Nj. Let X be a smooth manifold. Let 7: V — X be a vector bundle of
rank r +s. Let ¢ € T(Hom(S?V, R)) be a symmetric bilinear form on V of signature r —s. Denote
the O, s frame bundle of (V, q) by (p: Fr(V,q) — X,R). Identify, V = Fr(V, q) Xo,, R™™. X

Definition 52.2. The Clifford algebra bundle associated with q is the algebra bundle
Ct(q) =Fr(V,q) xo,, Clys.
Denote by y: V — C¢(q) the canonical bundle map. .

Remark 52.3. The Serre-Swan Theorem identifies vector bundles V over X (more precisely: their
spaces of sections I'(V)) with finitely-generated projective modules over the ring R := C*(X).
The symmetric bilinear form is nothing but a quadratic form g: I'(V) — R. Clifford algebras can
be defined over arbitrary rings. An the above construction can be carried out in this framework.

I do not know if this is useful for anything. *
Example 52.4. The most important example is V = TX and g := —g with g a pseudo-Riemannian
metric. o

Proposition 52.5. For every orthogonal corvariant derivative V: T(V) — QY(X,V) there is a
unique covariant derivative Vep: T(CE(V)) — QY(X, Ce(V)) such that

Veey(0) = y(Vo)  and  Vee(xy) = (Verx)y + x(Veey).

53 Clifford module bundles

Situation 53.1. Let (X, g) be a pseudo-Riemannian manifold. X
The following concept comes from Atiyah, Bott, and Shapiro [ABS64].

Definition 53.2. A Clifford module bundle over (X, g) is a vector bundle 7: S — X together
with a smooth map of algebra bundles C¢(—g) — End(S). If S is a Clifford module bundle, then
the induced map y: TX — End(S) is called the Clifford multiplication. °

Remark 53.3. The minus sign is not a mistake, but might appear somewhat awkward. A typical
“solution” is to push the minus sign into the definition of the Clifford algebra. Another “solution”
is to keep in mind that (in an not unreasonable convention) the symbol of the differential
operator A is —g. *

Example 53.4. C¢(—g) is a Clifford module bundle. '
Example 53.5. The bundle of exterior algebras
$:=AT'X = (PAT'X
r=0
is a Clifford module bundle with

y(@)a = o’ Aa—iya. o

60


https://en.wikipedia.org/wiki/Serre\T1\textendash Swan_theorem

54 Dirac bundles

Situation 54.1. Let (X, g) be a pseudo-Riemannian manifold. X
Definition 54.2. A Dirac bundle over (X, g) consists of:

(1) a Clifford module bundle (S, y),

(2) anon-degenerate bilinear form b € Hom(S ® S,R), and

(3) a covariant derivative V = V5: T'(S) — Q!(X,S)
such that:

(@) V2 (y(0)9) =y(V0)$ +y(0) V39,

(5) b(y(0)¢.¥) +b(4,y(0)¢) = 0, and

(6) db(¢,¥) = b(V9, ) +b(, V°Y).

A complex Dirac bundle is a Dirac bundle together with an almost complex structure i which
commutes with y and is V°-parallel. A quaternionic Dirac bundle is a Dirac bundle together
with an almost complex structures i, j, k which commute with y, are Vs—parallel, and satisfy
ij=—-ji=k °

Remark 54.3. This deviates from [LMS89, Part II Definition 5.2] in that b is not required to be a
Euclidean inner product; that is: symmetric and positive definite. This is necessary because (in
indefinite signature) the pinor modules do not always have Spin, ;—invariant Euclidean inner
products. *

Once a Dirac bundle has been found, further examples can be obtained by twisting.

Definition 54.4. Let (S, y, b, Vs) be a Dirac bundle. Let (E, h, Vg) be a vector bundle together
with a bilinear form h and a covariant derivative Vg with Vh = 0. The twist of (S, y, b, Vs) by
(E,h,Vg) is

(S®E,)/®id5,b®h,V5®VE). o,

For index theory, the following concept is fundamental.

Definition 54.5. A grading of a Dirac bundle (S, y, b, Vs) is an ¢ € T'(End(S)) such that:

(2) ye+ey =0,
(3) b(eg,ep) =0, and
(4) Ve=0. .

Example 54.6. AT*X has an obvious grading (leading to the Euler characteristic), but its
complexification AT*X ® C has another grading (leading to the signature); see Section 9.
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I didn’t do so in the lectures, but I think (in hindsight) it would have
been good to introduce the following concept.

Definition 54.7. A pre-Dirac bundle over (X, g) is a Clifford module together with a (non-
degenerate) bilinear form b € Hom(S ® S, R) with respect to which y(v) is skew-adjoint for
every v € TX. Set

oce(S) = {T € End(S) : [,T] =0 and b(T--) = b(- T-)}. .

Proposition 54.8. Let (S, y,b) be a pre-Dirac bundle. The space </ (S, y, b) of covariant derivatives
V on S with respect to which y and b are parallel is an affine space modelled on Q' (X, 0c;(S)). m

The significance of this concept is it isolates the “discrete”, “topological”,
“algebraic” data of a Dirac bundle from the “continous”, “analytical” part.

55 Dirac operators

Situation 55.1. Let (X, g) be a pseudo-Riemannian manifold of signature (r,s). Let (S, y, b, Vs)
be a Dirac bundle over (X, g). X

Definition 55.2. The Dirac operator D: I'(S) — I'(S) associated with (S, y, Vs, b) is the com-
position

3 id
I'(S) 25 M(T*X ® S) 2%, 1(Tx & §) 5 I'(S).
Here the isomorphism §: T*X — TX defined by g(fa,v) = a(v). o
Remark 55.3. Suppose that dim = r + s and g has signature r —s. If ey,..., .45 is a (local)

orthonormal frame then

r+s

D¢ = Z eiy(e)Ve, ¢ with ¢ = g(e;, e;) € {£1}.

i=1

It is not difficult to see that this expression does not depend on the choice of ey, . . ., er4s. The
signs ¢; are crucial! &

Example 55.4. S = ATM with its natural Fuclidean metric and covariant derivative is a Dirac
bundle. The corresponding Dirac operator is

D=d+d": ATM — ATM. o
Proposition 55.5. For every ¢,y € T'(S)
b(D¢.y) = b($, DY) =divo  with (v,-) = b(y(")¢,¥).

In particular, if X is closed, then
/ b(Dé¢, ) voly =/ b(¢$, D) voly.
X X

62



Proof. This is proved by direct computation. ]

Remark 55.6. If ¢ is a grading, then S be decomposed into the +1-eigenbundles S* of ¢ and the
Dirac operator decomposes accordingly as
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Lecture 9

This lecture discusses two fundamental facts about Dirac operators: the Weitzenbdck formula
and the conformal invariance. For some reason, this lecture went really slow and I
didn’t manage to get to the existence and classification of spin structures.

56 The Weitzenbock formula

Situation 56.1. Let (X, g) be a pseudo-Riemannian manifold of signature (r,s). Let (S,y, b, V)
be a Dirac bundle over (X, g). Denote by D the associated Dirac operator. X

Definition 56.2. Define v € I'(End(S)) by

n

v = % Z eiejy(e)y(ej)Fy (e, ej). L

ij=1

N

Proposition 56.3 (Weitzenbock formula for Dirac bundles). D satisfies the Weitzenbick formula
D?* = V'V + Fy.

Proof. Let x € X. Pick a local orthonormal frame (e, ..., e,+s) defined in a neighborhood of x
with (Ve;)x = 0. By direct computation at x € X,

n n
D ity (e Vsey(e)Vse, = Y ciejy(ey(e;)Vse,Vse,

i,j=1 i,j=1

n n
== Z VS,eiVS,ei + Z Eigj)/(ei))/(ej) [VS,ep VS,ej]
i=1

i<j
n
=V'V + Z eiejy(ei)y(ej)Fs(ei €5). .
i<j

Remark 56.4. According to Proposition 56.3, the Dirac operator still is almost a square root of
the Laplace operator. &

Remark 56.5. The Weitzenbock formula is at the heart of vanishing and estimating theorems
established using the Bochner technique. Most of these applications require further information
on Fy. )

57 The curvature of a Dirac bundle

Situation 57.1. Let (X, g) be a pseudo-Riemannian manifold of signature (r,s). Let (S, y, b, V)
be a Dirac bundle over (X, g) X

The following innocent looking lemma is quite important.
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Lemma 57.2. Let S be a C¢, ;—module together with a (non-degenerate) bilinear form with respect
which y(v) is skew-adjoint for everyv € R™*. The map -s: 0,5 — 0(S) defined by
1 r+s
As =2 ) aly(e), y(Ae)]

4 i=1

satisfies
[As, y(0)] = y(Ao)

for everyov € R"™.

Proof. Pick a local orthonormal frame (e, ..., e,4s). By direct inspection

[y(e)y(e)). y(ex)] = =2y(ei)exdjk + 2exy(€)di = —2y(ei)g(e), ex) + 2y (ej)ges, ex).
Therefore,
%[[)’(u), y(@)]y(w)] = —y(w)g(v, w) +y(0)g(u, w).
By direct computation

r+s

[As,y(0)] = ) &y (Aen)g(es,0) = y(Av) =

i=1
Proposition 57.3. Foreveryx € X andu,v,w € T, X
[Fv(u,0),y(w)] = y(R(u,0)w).

Definition 57.4. Let (S,y,b,V) be a Dirac bundle. Define the twisting curvature F%W €
Q*(X, 0ce(S)) by

Fy" = Fy — Rs. .
Remark 57.5. The above is useful because 0¢y(S) is usually rather small and therefore Ftvw is
quite restricted. &
Remark 57.6. Fy" plays an important role in the Atiyah-Singer Index Theorem. *

58 The refined Weitzenbock formula

Situation 58.1. Let (X, g) be a pseudo-Riemannian manifold of signature (r,s). Let (S,y, b, V)
be a Dirac bundle over (X, g). Denote by D the associated Dirac operator. X

Proposition 58.2 (refined Weitzenbock formula for Dirac Bundles). With

1 r+s
g;éw = > Z g,-ejy(el-)y(ej)FtVW(e,-, ej)

ij=1

and scaly denoting the scalar curvature of g

1
2 * tw
D* =V V+—450alg+9V .
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Remark 58.3. Proposition 58.2 exhibits the role of scalar curvature for Dirac operators as the
universal term in the Weitzenbock formula. The fact that F;W is C¢(—g)-linear often restricts it
severely and facilitates the computation of F¢". *

Remark 58.4. cf. [LM89, Theorem 8.17] where this is proved for S ® E. )
Remark 58.5. Schrédinger [Sch32, pp. 126-128] first computed D? and observed the appearance
of iscalg. *

The proof relies on the following computation.

Proposition 58.6. Ifey,..., e is an orthonormal basis, then

n

n
Z eeeiejy(ee)y(ei)y(ej)(R(ek, ep)ei ej) = =2 Z e;iy(e;))Ric(eg, e;)) and
ije=1 i=1
n

D, execsiejy(en)y(en)y(ey(e))(Rlex, ede ej) = 2scaly.

i,j,k,t=1

Proof. The first identity implies the second directly. To prove the first identity, observe the
following:

(1) If i, j, ¢ are pairwise distinct, then
y(ee)y(ei)y(e;) = y(e)y(e;)y(er) =y(ej)y(er)y(es).
By the algebraic Bianchi identity
(R(ex, er)ei ej) + (R(ex, ei)ej, er) + (R(ex, ej)ep, e;) = 0.

Therefore, the sum of terms with i, j, £ pairwise distinct appearing the the left-hand side
vanishes.

(2) The terms with i = j vanish because R(ex, e;) is skew-symmetric.
(3) Ifi # j =¢, then

eecicjy(er)y(ei)y(ej)(R(ex, er)ei, €5) = eiy(e)(R(ex. €j)ei €5)
= —¢;y(ei)(R(ej, ex)ei, e;).

Therefore, the sum of these expressions contributes
n
- Z ey (ei)Ric(eg, e;).
i=1

(4) If j #i=1¢, then

eceiejy(er)y(ei)y(e;)(R(ex, er)ei, ej) = —¢jy(ej)(R(e; ex)e;, e;)

Therefore, the sum of these expressions also contributes

— Z ey (e;))Ric(eg, e;). -

i=1
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Proof of Proposition 58.2. By the above,

1w ,
5 i]z_zll é‘ié‘j}/(ei)}/(ej‘)Rs(ei, Ej) = Zscalg'

This finishes the proof. n

59 Bochner technique

This is really a baby version: the vanishing version. More interesting
applications use the estimating technique; see https://walpu.ski/Teaching/
RiemannianGeometry.pdf.

Proposition 59.1 (Bochner). IfX is compact and Fs is non-negative definite (that is: (Fs®, ®) > 0),
then DO = 0 implies Vs® = 0. Moreover, Fs is positive definite somewhere, then ® = 0.

Proof. If D® = 0, then we have

/ [VO|? + (Fs®, D) = 0. n
M

60 Conformal invariance of Dirac operators

Proposition 60.1. Let (X, g) be pseudo—Riemannian manifold. Let f € C*(X). Set g: e’ g. The
Levi-Civita connections V and V of g and g are related by

Vow = Vow + (L H)w+ (Lo — glo,w)Vf.

Proposition 60.2 (Hitchin [Hit74, §1.4]). Let (X,g) be a pseudo-Riemannian manifold. Let
f eC®(X). Set § := e*f g. Let (S,y,b, V) be a Dirac bundle over (X, g).

(1) Set
pi=ely. and V,:=V,+ Ll-l[y(v 1),y(©)]
(S,7,b, @) is a Dirac bundle over (X, g).
(2) The Dirac operator D associated with (S, y, b, V) and the Dirac operator]i associated with

(S.7,b, V) satisfy

_ n+l n-1

D=e¢ "7 De™

Proof. Evidently, 7(v)? = e*f g(v,v). Moreover, i[y(Vf), y(v)] is b—skew-adjoint. Therefore, b
is V—parallel. It remains to verify that j is V-parallel; that is:

Vo(7(w)$) = 7(Vow)$ — 7(w) Vo = 0.
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Since the Levi-Civita connection V of § satisfies

Vow = Vow + (L f)w + (L f)o — g(o,w)VF,

this amounts to verifying that

ef(j—l[[y(Vf), y@)Ly(w)l¢ —g(Vf, w)y(v) +g(o,w)y(Vf)|$ = 0.

The latter is a consequence of the following lemma. This proves (1)
If ey, ..., e, is g-orthonormal, then é; := efen,...,ep =eTe,is g-orthonormal. Since
eiy(ei)[y(e;), y(e;)] = 2(1 = 6ij)y (e;),
n
D= &)V,

i=1

a3 eiy(ei)(vei + 2V, y(e»])

_ n—1
-t 0+ ")
= e_nTJr1 DenT_lf.
This proves (2). [ ]

Lemma 60.3. ;[[y(u),y(0)],y(w)] = y(0)g(u, w) — y(u)g(v, w).

Proof. Pick alocal orthonormal frame (ey, . . ., e,4+5). It suffices to prove the above for {u, v, w} C
{e1,...,er+s}. By direct inspection

[y(ey(e)). y(ex)] = =2y (ei)g(ejs ex) + 2y(ej)g(ei ex).

Therefore,

[[y(en).y(ej)]. y(ex)] = [y(en)y(e)). y(ex)] — [y(ep)y (e y(ex)]
= —4y(e;)exdjk + 4y(ej)erdik
= —4y(en)g(e;, ex) + 4y (e;)g(ei ex). =
61 Reduction of the structure group

Situation 61.1. Let G, H be Lie groups. Let A: H — G be a Lie group homomorphism. Let
(p: P— B,R: P O G) be a G-principal bundle. X

Definition 61.2. A A-reduction of (p, R) consists of:

(1) a smooth manifold Q,
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(2) a smooth right action S: Q O H, and

(3) an H-equivariant smooth map £: Q — P; that is: for every x € Q and g € H:
&(xg) = &(x)A(g)

such that (¢ := po &: Q — B,S) is an H-principal fibre bundle. .
0 ——r
P
B

N
N
N
N
7

Figure 4: A A-reduction of (p, R).

Remark 61.3. Let (Q, S, &) be a A-reduction of (p, S). Define r: QXygG — Bbyr([x,g]) = p(x)
and T: (Q Xy G) X G — Q Xy Gby T([x,gl,h) == [x,gh]. The map ¢: Q Xy G — P defined
by

$([x. g]) = £E(x)A(g)

is an isomorphism (r,T) — (p, R) of G—principal bundles. &

Definition 61.4. Let (Q;, S;, &) (i = 1, 2) be A-reductions of (p, R). Anisomorphism ¢: (Q1, Sy, &) —
(Q2, Sz, &) is an isomorphism ¢: (g, S1) — (gz, S2) of H-principal bundles such that

S0 =101 .

At this point it would be good to discuss the “gauge group of a reduction
of structure group”; and the space of “connections on a reduction of structure
group”.

62 Spin structures on pseudo-Euclidean vector bundles

Situation 62.1. Let X be a manifold. Let V — X be an space- and time-oriented Euclidean vector
bundle of signature (7, s). Denote the frame bundle of V by (p: Frso+(V) — X, R). Denote by
Ad: Spin, ; — SOj the adjoint representation. X

Definition 62.2. A spin structure on V is a Ad-reduction (s, U, &) of (p: Frso(V) — X,R). e

Definition 62.3. A spin manifold is a pseudo-Riemannian manifold (X, g) together with a spin
structure on TX. .

Remark 62.4 (M. Hirsch [Mil63, Alternative Definition 1]). Since {+1} < Spin; - SO;

r,s>

if (s,U, &) is a spin structure on V, then &: s — Frgo+(V) is a {£1}—principal covering map.
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Moreover, for every s € s the pull-back of s via R;: SOJ; < Frgp+(V) is isomorphic to
Ad: Spin, ; — SO} ;:

| l,f

SOF, s Freor(V).

Conversely, every such {+1}-principal covering map arises from a spin structure on V. More-
over, (s;, Uj, &) (i = 1,2) are isomorphic if and only if & (i = 1, 2) are isomorphic. )

Proposition 62.5. Let (s,U, &) be a spin structure of V. Sets = po &: s — X. The map
A (p,R) — o (s,U) defined by
04 > Lie(Ad)™ 0 &0,

is a bijection. [

Remark 62.6. Since 71(GL}, (R)) = Z/2Z, GL/, (R) has a unique non-trivial {+1}-principal

r+s r+s

(R). The composition of Ad: Spin, ; — SOj; with the

(R) lifts to an inclusion Spin, ; < 61:;3

covering map p: a,:+s(R) — GL/,
inclusion SOf ; < GL;

S (R). Indeed, these maps form
a pullback diagram:

. —~+
Spin, ; —— GL,(R)
Ja I
SOy, — GL;,((R).

This can be understood as a very efficient construction of Spin, ;. However, it does not help
with understanding the representation theory of Spin, ;. Indeed, the spinor representations do
not extend to GLY, ((R). )

Remark 62.7. Remark 62.6 induces a bijection between Ad-reductions of Frgo+ (V') (up to iso-
morphism) and p-reduction of Frgy+(V) (up to isomorphism). This observation is sometimes
useful to compare spin structure with respect to different Euclidean metrics on V. *

63 Stiefel-Whitney classes

See Milnor and Stasheff [MS74, §4, §8].
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Lecture 10

The aim of this lectures is to (finally!) study the existence and classification of spin structures.

u(1)

The rest of this lecture is concerned with spin*~'" structures and Kahler manifolds.

64 Existence and classification of spin structures

Situation 64.1. Let X be a manifold. Let V — X be an space- and time-oriented Euclidean vector
bundle of signature (r, s). Denote the frame bundle of V by (p: Frso+(V) — X, R). Denote by
m: Spin, ; — SOJ ( the vector representation. X

Definition 64.2. Let (s,U, ) be a spin structure on V. Let A: X — X be a {+1}-principal
covering map. The twist of (s, U, £) by A is the spin structure (s, U, £) defined by

&= (sxx X)/{£1}, U([o,x],9) = [U(o,g),x], and &([o,x]) = &(0). .

Remark 64.3. {+1}—principal covering maps X — X are classified via their monodromy by
H'(X,Z/2Z). Twisting defines an action of H' (X, Z/2Z) on the set of isomorphism classes of
spin structure on V. &

Proposition 64.4.
(1) V admits a spin structure if and only if wo(V) = 0.

(2) Ifwo(V) =0, then the set of isomorphism classes of spin structures on'V is a H'(X,Z/2Z)-
torsor.

(See also Haefliger [Haes6] and Greub and Petry [GP78].)

Proof. The following argument is due to Milnor [Mil63, p. 199].

Without loss of generality X is connected. By Remark 62.4, it suffices to classify {+1}-
principal covering maps &: s — Frgo+(V) whose restriction to every fibre is non-trivial. The
5-term exact sequence associated to the Leray—Serre spectral sequence of p: Frgo+(V) — X is

res

0 — H'(X,Z/2Z) 2 H! (Freor (V), Z/22) =5 H'(SOF, Z/27) 255 HA(X, Z/22).

r,s?

(This can also be obtained by applying Hom(-, Z/2Z) to the long exact sequence of homotopy
groups associated with p.) Since {+1}-principal covering maps of Frso+(V) are classified
through their monodromy by

H' (Frso+ (V), Z/2Z) = Hom(m (Frso+ (V)), {£1})

and similarly for SOj ;. [See, e.g., my lecture notes on Differential Geometry III]. Therefore, the
set of isomorphism classes of spin structure on V is res™'([Ad]) with [Ad] € H' (SO}, Z/2Z)
denoting the class of Ad: Spin, ; — SO; .
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Since the above sequence is exact, V admits a spin structure if and only if
Sv([Ad]) € H3(X,Z/2Z)

vanishes. This is nothing but w; (V). This either requires a proof (cf. [Kar68, Proposition (1.1.26)])
or can be taken as the definition of wy (V).

The above exact sequence exhibits res™!([Ad]) as a H! (X, Z/2Z)-torsor. The H! (X, Z/2Z)
action is given by twisting with isomorphism classes of {+1}-principal covering maps. [ ]

Remark 64.5. See Milnor’s warning about spin structure vs Spin, ;—principal bundles [L.M8o,
Chapter II Remark 1.14]. &

65 Spinor bundles and the Atiyah-Singer operator

Situation 65.1. Let X be a manifold. Let V — X be an space- and time-oriented Euclidean vector
bundle signature (7, s). Denote the frame bundle of V by (p: Frso+(V) — X, R). Denote by
m: Spin, ¢ — SOJ | the vector representation. Let (s, U, £) be a spin structure on V. X

Definition 65.2. Denote by P an irreducible C#, ;—module; cf. Section 31 and b as in Section 51.
The spinor bundle associated with P and b is the Dirac bundle (S, y, b, V) defined as follows:

(1) Set
S=s XSPinr,s P - X.

(2) The Clifford multiplication induces y: TX — End(S).
(3) The bilinear form b is induced by the bilinear form b above compatible with y.

(4) The Levi-Civita connection of Frsg+(V) induces a connection on s which induces a
covariant derivative Vg on S. By construction, y and b are parallel. °

Remark 65.3. As a vector bundle S does not depend on the choice of P, but y does.
(1) If r —s = —3, -7 mod 8, then P carries a complex structure.
(2) Ifr —s = —4,-5,—6 mod 8, then P carries a quaternionic structure.
(3) If r —s = 0,—2 mod 4, then P is essentially unique.
)

(4) If r —s = —1, then either the volume element w € Cf(—g) acts as +i or as —i; but then
these are unique.

(5) If r — s = =5, then either the volume element w € Cf(—g) acts as +1 or as —1; but then
these are unique.

The discussion in Section 35 governs the further decomposition.

Remark 65.4. If r —s = 0 mod 4, then S inherits a canonical grading from P.

Definition 65.5. Assume the situation of Definition 65.2. The Atiyah—Singer operator is the
Dirac operator D associated with the spinor bundle (S, y, b, V). °
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66 Weitzenbock formula for the Atiyah-Singer operator

This should probably be called the Schrodinger formula or the Lichnerowicz
formula (or both).

Situation 66.1. Let X be spin manifold. Denote by (S, y, b, V) a spinor bundle. X

Definition 66.2. Define Rs € Q?(X, End(S)) by

n

Rs(o.w) i= 7 )" cer(edy(e) (R wheier). .

ij=1

Proposition 66.3. The curvature Fs of the covariant derivative induced by the Levi-Civita connec-
tion is
Fs = Rs.

In particular,

1
D? = ViVs + Zscalg.

Therefore, if scal, > 0, then every harmonic spinor is parallel; if scal, is positive somewhere, then
harmonic spinors must vanish.

Proof. The twisting curvature F¢" is 2-form with values in skew-symmetric endomorphisms of
S which commute with the Clifford multiplication. Since S arises from an irreducible represen-
tation, by Schur’s Lemma an endomorphism of § commuting with the Clifford multiplication
must be a scalar. A skew-symmetric scalar vanishes. This shows that F§" = 0. ]

Alternative proof/Exercise. One can proof directly that Fs = Rs. ]

Exercise 66.4. If S = W is a complex spinor bundle, associated to a spin®-structure prove that
F;W € Q2(M, iR). Identify F;W in terms of the curvature of the connection on the characteristic
1

line bundle L. More precisely, prove that F;¥ = ;Fa where F4 denotes the curvature of the

connection on L.

67 Parallel spinors and Ricci flat metrics

Proposition 67.1 (cf. Hitchin [Hit74, Theorem 1.2]). Let X be a spin manifold. If there exists a
non-zero spinor ® € T'($) such that
Vo =0,

then X is Ricci flat.

Remark 67.2. This is well-known among physicists, because non-zero parallel spinor are closely
related to super symmetry. *
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Proof. Since Ric is a symmetric tensor, we can chose a local orthonormal frame and functions

A1, ..., A, such that
Ric(ei, ej) = /11'51']'.

If @ is parallel, then in particular R¢® = 0. By Definition 66.2 and Proposition 58.6, this means
that

0=>"y(er)Rs(ex, e)®
=1
=23 enrleny(e) (Riex er)e ey

4 L,j,t=1

1 v _
= —3 >, v(e)Ric(er, )
i=1

1
= —Elk}’(ek)q)-
It follows that A; = - - - = A,, = 0 and therefore Ric = 0. [ ]

All known Ricci flat manifold have special holonomy, that is, Hol(g) is a strict subgroup of
SO(n). It is a famous open question whether there are any compact Ricci-flat manifolds with
Hol(g) = SO(n). If M admits a parallel spinor, then it is impossible that Hol(g) = SO(n), because
the holonomy group of the spin bundle must reduce to a subgroup Spin(n — 1) C Spin(n). The
possible holonomy groups have been classified by Berger [Berss]. The following theorem
clarifies the relation between parallel spinors and special holonomy.

Theorem 67.3 (Wang [Wang89]). Let X be a complete, simply connected, irreducible spin manifold
of dimension n. Set d := dimker Ip. If X is not flat, then one of the following holds:

(1) n=2m, Hol(g) = SU(m) (that is: M is Calabi-Yau,) and d = 2.

(2) n=4m, Hol(g) = Sp(m) (that is: M is hyperkdhler), andd = m + 1.
(3) n="7,Hol(g) =Gy, andd = 1.

(4) n=8,Hol(g) =Spin(7), andd = 1.

Remark 67.4 (Friedrich and Trautman [FToo, Chapter 3, Exercise 4]). For ¢ > 0, the metric

x , xX1+¢
9= ——(dx)? +x(dx)? + 21 sin(x)* (dws)” + =—— (dxy)?
xX1+¢ X1
is Ricci flat, but does not admit a non-trivial parallel spinor. *
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68 Spin" structures on pseudo-Fuclidean vector bundles

Situation 68.1. Let X be a manifold. Let V. — X be an space- and time-oriented Euclidean vector
bundle of signature (r,s). Denote the frame bundle of V by (p: Frso+(V) — X, R). Denote by
m: Sping; — SO} the adjoint representation. X

Definition 68.2. A spin® structure on V is a 7-reduction (s, U, &) of (p: Frso(V) — X,R). e

Proposition 68.3. Let (s,U, &) be a spin® structure of V. Denote by (q,S) the G/{+1}~principal
bundle associated with p: Spinfs — G/{x1}. Denote by n: s — q the induced map. Set
s=pou: $— X. Themap o (p,R) x A (q,S) — d(s,U) defined by

(64,08) = Lie(x X p)~" 0 (£°04,1"0p)
is a bijection. [

Remark 68.4. Of course, every spin structure induces a spinG structure. L

69 SpinV"V structures

Situation 69.1. Let X be a manifold. Let V. — X be an space- and time-oriented Euclidean vector
bundle of signature (r,s). Denote the frame bundle of V by (p: Frso+(V) — X, R). Denote by
m: Spin, ; — SO; | the vector representation. X

Definition 69.2. Let (s, U, ¢) be a spin”(!) structure on V. The characteristic line bundle of a

spinVV) structure is the Hermitian line bundle associated with the homomorphism Spinggl) —

U(1)/{+1} — U(1). .

Definition 69.3. Let (s, U, £) be a spinV") structure on V with characteristic line bundle L
Let A be a unitary covariant derivative on L. Denote by P an irreducible C ® Cf, ;—module;
cf. Section 32 and b as in Section 51. The complex spinor bundle associated with P and b is the
Dirac bundle (S, y, b, V) defined as follows:

(1) Set
SIISXS . v P — X.
plnr,s

(2) The Clifford multiplication induces y: TX — End(S).

(3) The bilinear form b is induced by the bilinear form b above compatible with y.

(4) The Levi-Civita connection of Frso+ (V) and A induce a connection on s which induces a
covariant derivative Vs on S. By construction, y and b are parallel.

If dim X is even, then a complex spinor bundle inherits a canonical grading ¢ from Section 37. e
Definition 69.4. Assume the situation of Definition 69.3. The complex Atiyah—-Singer operator

is the Dirac operator D associated with the spinor bundle (S, y, b, V). .

75



Definition 69.5. Let (s, U, £) be a spin’?) structure on V. Let (1: P — X, A) beaU(1)-principal
bundle. The twist of (s, U, £) by (A, A) is the spin® structure (3, U, £) defined by

§:=sxum P, Ullo.xl.9) = [U(s,9).x], and E&([o,x]) := &(0). .
Remark 69.6. This construction does not work for arbitrary spin® structures. It hinges on the
fact that U(1) is abelian (s, 3, &) *

Definition 69.7. Denote by f,: H*(X,Z/2Z) — H*'(X,Z) the Bockstein homomorphism
induced by the exact sequence 0 — Z RN Z/2Z — 0. Set

Wi (V) = fawie(V). .
Proposition 69.8.

(1) V admits a spin’V structure if and only if wy(V) € im(H?*(X, Z) — H?(X,Z/2Z) if and
only if W3(V) = 0.

u(1)

(2) IfV admits a spin® Y structure, then the set of spin’!) structures is a torsor over H2(X, Z).

Proof. Exercise. ]

70  Spin structures and spin”!) structures on Kihler manifolds

The following is based on Hitchin [Hit74, Section 2.1].
Definition 70.1. If X is a complex manifold, then its canonical bundle is
Hx = NETHX
and the anti-canonical bundle is . .

Remark 70.2. If X is a Kihler manifold with volume form vol, then there is a pairing (A"T*%*) ®
(A"T%IX*) — C given by
anp

a®pf— .
vol

In particular,
Hy = A"TOX* = A"THX. &

Proposition 70.3. Suppose X is a Kdhler manifold.

(1) For any Hermitian line bundle L, there is a unique spin’") structure (s,U, &) on X whose
complex spinor bundle is

n
S = @AkTo’lX* ®L
k=0

whose characteristic line bundle is L®? ®c K. Moreover:

2
St = @ A*TOX* L and S™ = @ AZKHTOL e o T
k=0 k=0

n (n-1)
2

76



(2) The Clifford multiplication on S is given by

y@a = V2" A a — V2i(0*Y)a.

(3) IfA is a Hermitian connection on L, then the corresponding connection on S induced by the
Levi-Civita connection on A¥(T*X)%! is compatible with the Clifford multiplication.

4) If A induces a holomorphic structure do on L (that is: F** = 0), then
P A
D =V2(dg +3%): Q™ (X, Z) - Q" (X, 2).

In particular, if X is compact, then the space of positive and negative harmonic spinors can
be identified with the cohomology groups

Ln/2] L(n-1)/2]
@sz(x,g) and @ HE*(X, Z).

k=0 k=0

Proof. If X is a Kahler manifold, then the structure group of TX is canonically reduced from
SO(2n) to U(n). It follows from Proposition 49.3, that any Kahler manifold has a canonical
spin’) structure; moreover, the complex spinor bundle is given (P}_, A¥(T"X)*! and the
Clifford multiplication is as asserted. It is computation to verify that the characteristic line
bundle of the canonical spin’(!) structure is given by % '« Taking into account that the set of
spinU(!) structures is a torsor over the group of Hermitian line bundles, the above proves (1)
and (2). (3) is obvious and the first half of (4) follows by a direct computation. The second half
of (4) follows by Hodge theory. ]

Proposition 70.4. A spin’") structure (s,U, £) arises from a spin structure if and only if its
characteristic line bundle is trivial. The set of spin structures inducing a fixed spin®) structure is
a torsor over ker(H (X, Z;) — H*(X,Z) (that is: the group of Euclidean line bundles with trivial

complexification).
Proof. Spin¥" (n) = Spin(n) Xz, U(1) and we have an exact sequence
0 — Spin(n) — Spin"™ (n) — U(1) — 0.

Since characteristic line bundle is associated to the representation SpinU(l) (n) — UQ1), its
triviality is precisely the obstruction to lifting a spin”!) structure to a spin structure. This
proves the first section. The second section follows by observing that any two spin structures
differ by a Euclidean line bundle [, while any two spin”(") structures differ by a Hermitian line
bundle. ]

Remark 70.5. Serre duality asserts that for a holomorphic vector bundle & over a compact
complex manifold,
HN(X, &) =~ H"*(X, &* @ Hx)*".
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In terms of the Dolbeault resolution, this duality is induced on chain-level by the pairing
(ATOX* @ &) @ (A" FTOX* @ & @ Hx) = K @ Hx @ E @&
— A"'T*'X®C
— C.
This pairing induces an isomorphism
ATOX* @ & = (A" FTOIX* @ & @ Hx)".
Using the Hermitian inner product on #x, we obtain an anti-linear isomorphism
o: AFTOX* @ & = A" FTOIX* @ &* © Hx.
In particular, if & is a square root of #x (that is: £®? = Hy), then

o: AFTOX* @ & = A" *T0Ix* @ 2.

Proposition 70.6. Let X be a Kihler manifold.
(1) X admits a spin structure if and only if there is a complex line bundle L satisfying L®? = Hx.

(2) Suppose X is compact. There is a bijective correspondence between the set of spin structures on
X and the set of isomorphism classes of holomorphic line bundles & satisfying ®* = Hx.
(Each such & inherits a Hermitian metric from Fx.)

(3) Suppose that £ is a square root of Zx and W denotes the associated complex spinor bundle.
There is a spinor bundle S such that:

(a) Ifdimc X =1 mod 4, then
$=W and I=V25+7).

The is a complex structure ] on $ which commutes with Clifford multiplication and
anti-commutes with the complex structure i.

(b) Ifdimc X = 2 mod 4, then
$5=W* and D =V2(0+9);

moreover, there is a complex structure J on $* which commutes with Clifford multipli-
cation and anti-commutes with the complex structure i.

(c) Ifdimc X = 3 mod 4, then is a real structure on W which respect to which V2(d + 9*)
is real. With respect to this real structure we have

$=ReW and I =V2(0+9).
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(d) Ifdimc X = 4 mod 4, then is a real structure on W* With respect to this real structure
we have
$ =ReW* and Ip=+V2(9+3).

Proof. (1) follows from Proposition 70.4.
(2) Denote O™ the sheaf of nowhere vanishing holomorphic functions on X. There is a short
exact sequence of sheaves

2
157, —» 0% 255 0% > 1.

The corresponding long exact sequence in cohomology reads as follows:

HO (X, 0%) — HY(X, 6%) — H'(X,Zy) % H' (X, 0%) — H(X,0%) D> HA(X, Z,)

The map « is injective, because the map C* = H°(X, 6*) — H’(X,0*) = C* is surjective.
Recall, that H' (X, ©%) classifies a holomorphic line bundles. A holomorphic line bundle # has
a square root if and only if S([Z£]) = (¢1(L) mod 2) = 0. If F([Z£]) = 0, then by the above the
set of square roots is a torsor over H! (X, Z,).

For the proof of (3), using 1, one first analyzes the relationship between the spinor rep-
resentation S and the complex spinor representation W in dimension n and determines the
following:

(1) If n = 2 mod 8, then S = W and W has a complex anti-linear complex structure J. S = H,
W=wWrew =CoC.

(2) If n = 4 mod 8, then S* = W* and W* have a complex anti-linear complex structure J.

(3) If n = 6 mod 8, then there is a real structure on W and S = Re W. This real structure does
not respect the splitting W = W* @ W~. Clifford multiplication is real with respect to
this real structure.

(4) Ifn = 8 mod 8, then there is a real structure on W* and S* = Re W*. Clifford multiplication
is real with respect to this real structure. [

The above linear algebra should probably have been discussed earlier.
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Lecture 11

71  Homogeneous pseudo-Riemannian manifolds

Situation 71.1. Let G be a Lie group and H < G a closed subgroup. Since R: G O H is free and
proper, (p: G — X := G/H, R) is an H-principal bundle. Set g := Lie(G), b := Lie(H). Denote
by ug € Q'(G, g) the Maurer—Cartan form. X

Proposition 71.2. If 7: g — Y be an H—equivariant projection, then
0 =mo HG

is a G-invariant H—principal connection 1-form on (p,R) Moreover, every G—invariant H—
principal connection 1—form is of this form.

Proof. By construction, for every g € H and ¢ € Lie(H) C Lie(G)
Ry0 = moRyug =moAd(g™") o yig = Ad(g™ )0

and
0(§) =mopu(é) =&

Therefore, 6 is an H-principal connection 1-form. For every g € G
L =moLyu=0.

Therefore, 0 is G-invariant.
Conversely, if 6 is H-principal connection, then 7 = 0|r,¢: T1G = g — b is an H-
equivariant projection. Moreover, if 6 a G-invariant, then 6 = 7 o yg. ]

Proposition 71.3. Let 7: g — b be an H-equivariant projection. Set 0 := o y € of (p,R)® and
m := ker 7.

(1) The H—equivariant horizontal 1-form o € Qllmr(G’ m)! defined by
c=0Q-m)opus
is a solder form.
(2) The torsion of (0, o) satisfies
do+[0A0] = —%(1 —m)onco] € @} (Gm)".
In particular, (0, o) is torsion-free if and only if [m, m] C }.

(3) The curvature of 0 satisfies

1 1
do+ [0A0] =-omloAo] € Qo (G. ).
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Proof. This first part is obvious if one can recall what a solder form is. See §4.9 in my lecture
notes on gauge theory.
By the Maurer—Cartan equation and since [}, )] C b and [h, m] C m,

do + [0 A o] I—%(l—ﬂ') o[(@+0)A(0+0)]+[0A0]
- —%(1 _m)[o Aol
Similarly,
0+ [0 A 0] =—%7to [(0+0) A (0+0)] +%[9/\9]
= —Eﬂ[a Aa]. u
Proposition 71.4. Let 7: ¢ — b be an H—equivariant projection. Set 0 = m o u € o (p,R)°,

m :=kerz, and o == (1 - 1) o yg € QY(G, m)".

(1) If § € Hom(S?m,R)" is an H-invariant pseudo-Euclidean inner product, then § o S%c
descends to a G—invariant pseudo-Riemannian metric g on X. Moreover, every G-invariant
pseudo-Riemannian metric on X is of this form.

(2) If[m,m] C b, then 6 induces the Levi-Civita connection of g. [
Exercise 71.5. What is the Levi-Civita connection if [m, m] ¢ §?

Definition 71.6. A homogeneous pseudo-Riemannian manifold is a pseudo-Riemannian mani-
fold of the form (G/H, g) obtained from (G, H, 7, §). A symmetric pseudo-Riemannian man-
ifold is a pseudo-Riemannian manifold of the form (G/H, g) obtained from (G, H, r, §) with
[m,m] Cb. .

[Bes87, Chapter 7]

72 Spin structures on homogeneous pseudo-Riemannian manifolds

Situation 72.1. Let G be a Lie group and H < G a closed subgroup. Since R: G O H is free and
proper, (p: G — X := G/H, R) is an H-principal bundle. Set g := Lie(G), b := Lie(H). Denote
by uc € Q'(G, g) the Maurer—Cartan form. Let 7: g — T be an H-equivariant projection. Set
m := ker 7. Let § be a pseudo-Euclidean inner product of signature (r, s). Choose an isometry
(m,g) = (R™**, g, ). Denote by g the induces pseudo-Riemannian metric on X induced by §. X

Definition 72.2. A homogeneous spin structure on X is a homomorphism H — Spin, ; which
lifts K — SOj ¢ along Ad: Spin, ; — SOJ .. o

The frame bundle Frso+(TX) is G Xy SO, . Therefore, a homogeneous spin structure
H — Spin, ; defined a spin structure (fs: G Xy Spin, ,U: s O Spin, (,&: $ — Frso+(TX). If
P is a C¢, s;—module, then the corresponding spinor bundle is

r,s’

S:=GxgP.
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If X is symmetric (that is, [m, m] C b), then 8 induces the spin connection.
A spinor ¢ € I'(S) can be identified with a H-equivariant map

$¢: G— P with ¢(gk) = Ad(k™")y(g).

The Clifford multiplication by v € T, X = m is given simply by the Clifford multiplication of
m on S. The derivative Vi € Q(X, S) can be identified with the H-equivariant 1-form on G
with values in S defined by

(VP)(€) = (dy) (D) +ad(0(8)y

Therefore, if (e, ..., e,4s) is an orthonormal basis for m, the Dirac operator D: C®(G, P) —
C*(G, P)! is is given by

r+s

D¢ = Z eiy(ei)Le, 9.

i=1
Henceforth, suppose that g, in fact, arises as the restriction of a from G-invariant Euclidean
inner product on g.

Definition 72.3. The Casimir operator of G is the differential operator Qg : C*(G) — C*(G)
defined by

n
Qg == Lo
i=1

for some orthonormal basis (ey,...,e,) of g. °

Proposition 72.4.

1
D? = Qg + gscal.

Sketch of proof. Since [e;, e;] € h and, for £ € h, Ly = —ad(&), we have

DY =" y(e)y(e) Lo, Loy

i,j=1
m 1 m
= L+ > D V(v () Lice ¥
i=1 ij=1

m

- 2 LoV - % Z y(en)y(epad([es e;]).

ij=1

Let (fi, ..., fx) be an orthonormal basis of f). The above formula can then be written as
k B . 1 m ~
D* = Qg+ Y ad(f)ad(f) - 5 ). yley(ead([es e;])y.
j=1 2 5=
A computation identifies the sum of the last two terms with éscal. [ ]
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Here is why the above is useful. The scalar curvature scal of a symmetric space is constant.
L2T'(S) is acted upon by G and can be decomposed into irreducible representations

L2T(S) = @ V).

AEA

On an irreducible representation, the Casimir operator acts as a constant c¢(4). Consequently,
the spectrum of D? is given by

1
spec(D?) = {c(/l) + gscal i A e A}.

This can (in principle) be used to compute the spectrum of D? using representation theory.

Example 72.5 (Toy example). Consider the circle S' = R/27Z. It has two spin structures. For
one of them, the spinor bundle is the trivial bundle S = C and the Dirac operator is simply
D = i9;. Consequently,

specD =7

with eigenspinors given by (1) = e’*.

We can think of S! as the symmetric space U(1)/{e}. Since Spin(1) = {+1} and U(1) is
connected, there is a unique homogeneous spin structure on S'. This is the spin structure
considered above. The irreducible representation of U(1) are parametrized by Z: given k € Z,
U(1) — GL(C), z + z* is irreducible. Each of these representations appear with multiplicity
one in L?T(S) (by Fourier theory). The Casimir operator on the representation parametrized by
k € Z takes value k2. Consequently, the above discussion tells us that

spec D? = {k* : k € Z}.
Of course, this derivation is the same as direct derivation in the previous paragraph. [

Remark 72.6. This method has been used by Sulanke to determine the spectrum of D on
S§™ = SO(n + 1)/SO(n) in her PhD thesis; cf. [Sul80]. A simpler way to determine the spectrum
of D on S" was found by Bar [Barg6]. In fact, Bar’s method also determines an explicit eigenbasis
with respect to D. *
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Lecture 12

73 Killing Spinors
Definition 73.1. Let X be a spin manifold. A Killing spinor is a spinor ¢ € I'(S) satisfying

Vo = py(0)y =0
for some constant p € R and all v € TX. We call y the Killing number of ¢. °

Proposition 73.2. A Killing spinor with Killing number u is an eigenspinor with eigenvalue —n.

73.1  Friedrich’s lower bound for the first eigenvalue of D

As far as I know, the origin of the study of Killing spinors is the following result.

Theorem 73.3 (Friedrich [Fri8o]). Let X be a compact spin manifold with non-negative but non-
vanishing scalar curvature. Denote by A* and A~ the smallest positive and negative eigenvalues of
D respectively. With

scalp := min scal,

we have "
252> lo.
(457> 4 TR
If equality holds, then X admits a non-trivial Killing spinor with Killing number +ﬁscal or
n
—4(n—_1)scal.

Remark 73.4. The obvious lower bound on A* arising from Proposition 66.3 is A* > %scalo. )

The proof is based on an important trick. The basic idea is that if f € C* (X, R), then there
is a Weitzenbock formula for D + f which give sharper bounds that Proposition 66.3. More
generally, one can replace f with a suitable endomorphism of S.

Definition 73.5. Given f € C®(X,R), define the covariant derivative /V on S by

IV,® = Vo - fy(v)d.

Remark 73.6. YV, ® is an orthogonal covariant derivative. *

Proposition 73.7. We have

1
(D +£)? =fV*fV+Zscal+(1—n)f2
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Proof. Since
D(f¢) =y(Vf) + fD(¢),

we have
(D+f)2=D*+2fD+y(V)f + f~
By Proposition 66.3, we have
1
(D+ )2 =V*V+2fD+y(Vf) + f*+ Zscal'
We have

n
fyfy = _vaeifvei

i=1

== > (Ve, = f(e0) (Ve, = fy(er)
i=1

n
== (V2 = £ = v(e)Vaf - 2fy(e)Ve,)
i=1
=V*V+nf2+y(Vf) +2fD,
which can be rewritten as
V'V = vy —nf? —y(Vf) - 2fD.
This proves the asserted identity. ]

Corollary 73.8. If is compactly supported, then

2 = lsca —n)f? 2 2
a0 = [ (st - mg?) s oy
|

Proof of Theorem 73.3. Suppose A is an eigenvalue of D and ¢ is an eigenspinor for A. Using
Corollary 73.8 with f = p a constant, we obtain

0= /X (iscal+ (1= - (A +,u)2) WP + V.

Consequently,
1
Zscalo <A+ p)%+(n—1)2

The minimum of the right-hand side is Z=1A?; it is achieved at g = —A/n. This implies the

n

bound. ]
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73.2 Killing spinors and Einstein metrics

Proposition 73.9. If X admits a non-trivial Killing spinor with Killing number y, then X is Einstein
with Einstein constant 4(n — 1)(y/n)?.

Proof. The curvature of vis given by
FFee = [Vie = fye Ve — fre]
= le( — Ok fyrYe + Ocfyeyi + f2 [yk vel-

Since Ric is a symmetric tensor, we can chose a local orthonormal frame and functions A4, ..., 4,
such that
Ric(ei, ej) = /11'51']'.

Arguing as in the proof of Proposition 67.1 with f = —A/n, we have

0= Z y(ee) Flex, er)y

=2 D reDr ey (e (Riew een e+ Y (Anr(en (e, y(eoly
ij,t=1 =1

_ _% > vlenRic(er, ey +2(n = 1)(A/m)y(ex)y
=1

= (—%Ak +2(n- 1)(A/n)2) y(ex)y.

It follows that
Ric = 4(n - 1)(A/n)>. [
73.3 The spectrum of the Atiyah—-Singer operator on S"

Theorem 73.10. Letn > 3. On S™, we have
spec(D) = {x(n/2+k) : k € No}.

The multiplicity of ALy = £(n/2 + k) is

k+n-1
kS - .

Proof. The following argument goes back to Bar [Birg6].

Proposition 73.11. Let n > 3. The spinor bundle S of S" can be trivialized by Killing spinors with
Killing number +1/2 and also by Killing spinors with Killing number —1/2.

Proof. Consider the covariant derivative *1/2V defined by *'/2V ¢/ = Vi ¥ 1/2y(v)¥. A com-
putation shows that the curvature of *'/2V vanishes. Since S™ is simply-connected, it follows
that S admits a trivialization by *12V*-parallel spinors. [
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Proposition 73.12. We have
1
(Dilﬂf:iWV“mV+ZM—lﬁ
Proof. This is Proposition 73.7. [ |

Pick Killing spinors (5, . . ., ¥;,) with Killing number +1/2 forming a basis for S point-wise.
Here m = rkS. Let (fi) be a complete L? orthonormal basis of eigenfunctions for A on S™.
Denote by A the eigenvalue corresponding to fi.

Proposition 73.13. We have
spec(Agn) = {k(n+k —1) : k € Ny}.
The eigenvalue Ay = k(n + k — 1) has multiplicity

_— n+k—-1\n+2k-1
ok n+k—1

Clearly (fiy;) forms an L? orthonormal basis of L*T'(S). Since ¢/ is £1/2y_parallel we have,

(0112 (5g5) = 3+ 1= 1) .
Therefore, (flgbji) is an eigenbasis for (D + 1/2)%. Using Proposition 73.13, we can compute the
spectrum of (D + 1/2)2.
Corollary 73.14. We have
spec ((D 1/2)2) = {k(n +k-1)+(n-1)7%/4:ke NO}.
The eigenvalue A, = k(n+k — 1) + (n — 1)2/4 has multiplicity

n+k—1)n+2k—1

PR e ara LS

m(Ak) = (
Proposition 73.15. If A%x = A%x, then x* = +]Ax + Ax satisfy
Ax® = £Ax".
We have Vk(n+k—1)+(n—-1)2/4 =k + "T_l For ¢ = +1, define
= (D + 1/2) (g + ek + (n = 1)/2) ).
A brief computation shows that
7 =e(x(1-n)/2+e(k+(n=1)/2) (ithi) +y (Vi)Y -
Except /7, and {5, these spinors are non-vanishing. It follows that

spec(D +1/2) c {e(k+(n—1)/2) : e =1,k € No}\{x(n —1)/2)}.

This implies the claim about spec(D). For the computation of the multiplicities we refer the
reader to [Barg6, Lemma 5]. [ |
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Lecture 13

The purpose of the next couple of lectures is to give a quick but complete discussion of L? elliptic
theory. The foundation of this approach is the following discussion of the Fourier transform.

74 Fourier transform on L!

Situation 74.1. Let n € Ny. Let V be complex Hilbert space. X

Definition 74.2 (Fourier transform). Let f € L!(R", V). The Fourier transform of f is the map
f: R" — X defined by

(74.3) f(&) = /R ) e~ EX) £(x) dx. R

Remark 74.4 (The appearance of the factor 2;r). The theory of the Fourier transform contains
an inextinguishable 2. T have put it in front of the inner product in (74.3). As a consequence
it pops out in Proposition 74.8. Another option is to renormalise the measure dx by a factor
of (27)™"/? (and possibly use the notation dx := (27)/2dx). The factor then resurfaces in
Proposition 74.12. Another option is to omit it from (74.3) altogether. The factor then appears in
Theorem 79.2 and in the formula for the inverse Fourier transform. &

Proposition 74.5 (Fourier transform on LY). If f € LY(R", X), then f € C,(R",V) and

(74.6) £z < I1f Nl

Proof. The estimate (74.6) is immediate; indeed,

for=|[ e epmad < [ rwiac i

To prove that f is continuous, observe that for every £,n € R* and R > 0
F(© = fonl < [ o720 - 2o ) ax
Rn

< sup [eERD |l +2 / ()] dx;
R™\Bg(0)

x€BR(0)

and, moreover,

lim sup |e#%¥ _1|=0 and lim [f(x)]dx = 0. [
{0 xeBgr(0) R—co Jrm\Bg(0)

Remark 74.7. The Riemann-Lebesque Lemma strengthens the conclusion of Proposition 74.5;
see ??. However, as far as I know is is an open problem to determine the image of the Fourier
tranform on L', &
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Proposition 74.8. Letk € {1,...,n}. If f,ocf € LY(R™, V), then
of = 2miif.
Proof. By integration by parts,
AT = [ () dx = 2mit O .
Remark 74.9. Proposition 74.8 can be understood as saying that the Fourier transform diago-

nalises differentiation. This fact makes the Fourier transform an enormously powerful tool in
the theory of linear differential equations. *

Proposition 74.10. Letk € {1,...,n}. If f,xif € L*(R", V), then akf € CZ(R”, V) and
R
xif = 2—9kf~
P
Proof. For every t # 0 and ¢ > 0

fE+te) - £(8)

: +x:f (9 < / |2t~ (e7 2% — 1+ 2mit) [|xi f(x)] dx
2mit R™
< sup [sTH(e™™ = 14is)| - [xefll
|s|<2me
+ (2671 +1) |3k f ()] dx =2 I(¢e) + (e, t).
|xi|>e/t
Since
limlim I(¢) + Il(e, t) = 0,
el0 t—0
6kf exists and agrees with ZT”JT;C? By Proposition 74.5, 8kf € Cg (R™, X). ]

Remark 74.11. It is customary to define the Fourier transform directly on Schwartz space
§'(R™, V). But then one still has to prove that it actually maps &'(R", V) to itself. Proving this
basically necessitates Proposition 74.8. *

Proposition 74.12. For every f,g € L'(R", C)

fxg=1-g.

Proof. By change of variables,

o= [ e [ o= ngway)ax

=[] e g () dy
=f(® - 4(d). -
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75 Fourier transform of a Gaussian
Proposition 75.1 (Fourier transform of a Gaussian). For everya > 0
e-malx (§) = q~"/2p~7lél /e,
Remark 75.2. This simple fact plays an important role. *
Proof of Proposition 75.1. For every a > 0 and f € L!(R")
flax) = a"f(¢/a).

Therefore, it suffices to prove the formula for a = 1. By Fubini’s theorem, it suffices to consider
n = 1. By direct computation,

e—nxz(g) :/e—nxz—zmxfdx
R

=e—7r§2/e—7r(x+i§)2 dx.
R

Since the holomorphic function e~7#" has no poles, by Cauchy’s integral theorem, the integral
is independent of . For & = 0, it is well-known to evaluate to 1. ]

Proposition 75.3 (Fourier transform of a multivariate Gaussian). Let A € M, (R) be symmetric
and positiv definite. Define f € S(R",C) by

Flx) 1= A
Its Fourier transform f satisfies
F(&) = det ATV2emmATIED,

Proof. For A = 1 this is an immediate consequence of Proposition 75.1. Therefore, since (Ax, x) =
|A1/2x|? and by the change of variables y = A'/?x,

f(f) = / e~ 2miEx) g =(AIx)?
Rn

_ det A1V / e~ 2miATEY) 10l gy

= det A™V/2g~mATIED) [}

76 Schwartz space

Situation 76.1. Let n € Ny. Let V be a Banach space space. X

Definition 76.2 (Schwartz space, &).
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(1) A smooth map f € C*(R",V) is a Schwartz function (is rapidly decreasing) if for every
pair of multi-indices «, f € N{’

1fllep := sup [x*0 f (x)] < .
x€eR”
(2) The Schwartz space is the Fréchet space §'(R", V) of Schwartz functions defined by the
semi-norms ||-||4,p (o, B € N{"). .

Remark 76.3. U is an open in & (R", X) if and only if for every f € U there are a finite subset
A C NJ" x Ng* and € > 0 such that

() {9 S®RLV) :llg—fllag < £} C U. .
(a.f)eA

Example 76.4.

(1 CZRLV) c SRYLV).

(2) The function x%e~* ” is Schwartz function.

(3) The function (1 + |x|)~2 is not a Schwartz function.

(4) The function e™* I* sin(|x|?) is not a Schwartz function. .
Definition 76.5.

(1) A smooth function f € C*(R", C) has moderate growth if for every o € N there is a
k = k(a) € Ny such that
aa
RLTIC

(1+ x[)
(2) Denote the ring of smooth functions of moderate growth by O},. .
S (R", V) is an Oy, —module.

Proposition 76.6. Let f: R" — C be measureable. If for every ¢ € S(R", V) also f¢ € S(R", V),
then f € O}, and the endomorphism of f-: S(R",V) — &(R", V) is continuous, then f € O},.
77 Fourier transform on Schwartz space
Situation 77.1. Let n € Ny. Let V be a complex Hilbert space. X
Proposition 77.2 (Fourier transform on &).

Q) Iff € SR, V), then f € SR, V).

(2) The map*: SR, V) — S(R",V) is continuous.
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Proof. Let f € S(R™, X). For every a, f € N, 3*xP f € L'(R", X). By Proposition 74.8 and
Proposition 74.10,
1Bl=lal —
asff_ (2”) o+ 0/ pn
&P f e *xPf € C,(R", X).
Therefore, f e (R, X).
By Proposition 74.5,
1fllap = 1E°0° flle < (2m)P=1el10 P £
< @)Vl ) =YL ) o ]

Therefore, * is continuous. []

78 Fourier inversion theorem on Schwartz space

Situation 78.1. Let n € Ny. Let V be a complex Hilbert space. X

Theorem 78.2 (Fourier inversion theorem on Schwartz space). The Fourier transform*: §(R™", V) —
S (R™, V) is an isomorphism, and its inverse*: S(R", V) — &(R", V) satisfies

g = [ (e d

Remark 78.3. Evidently,
g(x) = g(—x). s

Proof of Theorem 78.2. By Remark 78.3 and Proposition 77.2, * is continuous. Therefore, it suffices
to prove that * is the inverse of *.
Let f € S(R", V). By the dominated convergence theorem,

fly) =tim | e EDTTIE {6 d
=lim / / e~ 2miEx—y) 4 £(50) dxd,

For t > 0 the integrand is integrable on R"” X R". Therefore, by Fubini’s theorem,

J;(y)=1tiig(Kt* Hy) with K(z) = / em2milE) 4t g

n

By Proposition 75.1,

(This is the heat kernel.) Therefore,

Similarly or by Remark 78.3, § = g. ]
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Here is an important consequence of Theorem 78.2.

Proposition 78.4 (Fourier transform of a product). Forevery f,g € §(R",C)

—_— N

fg=1xg

Proof. By Proposition 74.12 with f and ¢,

Therefore and by Remark 78.3,
Fa(o) = / F(—& = n)(n) dn = / F(E+mg(—m) dy = / FE—miw)dn = (F)(&. m
R” R” R”

79 Plancherel’s theorem

Situation 79.1. Let n € Ny. Let V be a complex Hilbert space. X

Theorem 79.2 (Plancherel’s theorem). Forevery f,g € S(R", V)

(fr oz = (f. )z

Proof. By Theorem 78.2, the assertion is equivalent to
o9z = (f. e
By Fubini’s theorem,
G = [ € 0,906 dnde
R" JR®

- [ [ e gy aean
=(f. 9> ]

Corollary 79.3. The Fourier transform extends to an isometry*: L*(R", V) — L*(R", V). [ |

93



Lecture 14

80 Tempered distributions

Situation 80.1. Let n € N. Let V be a complex Hilbert space. X
Definition 80.2 (tempered distributions, §”).
(1) A tempered distribution is a continuous linear map T: &(R", V) — C.

(2) Denote by §’(R", V) the topological vector space of tempered distributions equipped
with the weak—x—topology. .

Proposition 80.3. For everyp € [1,00] the map T.: LP(R",V) — &’ (R™, V) defined by

9) = [ @00, ) d

is a continuous injection.

Proof. Evidently, T. is an injection. It is continuous because for every ¢ € §(R"?, V) the map
f > Tr(¢) is continuous by Holder’s inequality. [

Notation 80.4. It is convenient to identify LP (R", V) with its image under T.. The statement
T e LP(R",V)

is to be understood as T = Ty for a (unique) f € LP(R", V). o

Proposition 80.5. (R, V) — &'(R", V) is a continuous inclusion with dense image.

Proof of Proposition 8o.5. Since & (R", V) < L*(R", V) is continuous, §(R", V) < &’(R"V)
is continuous.
Let T € §'(R", V). Every open neighborhood U’ of T contains an open neighborhood of T

the form
U={Ses"(R"V):|T(§) —S(p)| < ¢ for every ¢ € ®}

with ® C & (R", V) finite. In fact, with out loss of generality, ® is L?~orthonormal. In this case,
evidently,

fi=), @) eU.

ped
Therefore, (R", V) c &’(R", V) is dense. [
Definition 80.6. Letk € {1,...,n}. The weak derivative 9. : &’(R",V) — &’ (R", V) id defined

by
(kT)(¢) = —T(k¢). .

Proposition 80.7. Letk € {1,...,n}. The map d: S'(R", V) — §'(R", V) is continuous and
agrees with the usual derivative 9 on S (R", V) c 8’ (R", V).
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Proof. By integration by parts, the weak derivative agrees with the usual derivative on &' (R", V).
It is continuous, because d;: S(R", V) — §(R", V) is continuous. [

Remark 80.8. If f € &' (R", V) satisfies 3* f € C°(R", V) for every |a| < k, then f € CK(R", V).
*

Definition 80.9. Let f € O}, be a smooth function of moderate growth with values in V For
every T € 8’ (R",Hom(V,W)) define Tf € 8’ (R", W) by

(Tf)(¢) =T($f"). .

Proposition 80.10. Let f € O},. The map - f: §"(R", V) — &' (R",V) is continuous.

81 Convolution with tempered distributions

Situation 81.1. Let n € N. Let V, W be finite-dimensional Hermitian vector spaces. X

Definition 81.2. Let T € &’ (R",Hom(V,W)) and f € &S(R" V). Define the convolution
T+ f eS8 (R, W) by )
(T = f)(¢) =T(¢=f7). .

Proposition 81.3. The map - * -: §'(R",Hom(V,W)) X S(R", V) — &'(R", W) extends the
convolution of Schwartz functions.

Proof. f T € S(R",Hom(V,W)) and f € §(R", V), then
(T % f)(x), $(x)) dx = / (T() f(x - 1), $(x)) dydx
R R”? JR?
- / / (T(y). (0 f (x — 1)) dydx
er Rn
- / / (T(y), (0 f (x — 1)") dxdy
R™ JR?
- [ . o i .
Proposition 81.4. If T € 8’ (R",Hom(V,W)) and f € S(R", V), thenT = f € C*°(R", W). [}

82 Fourier transform on tempered distributions

Definition 82.1 (Fourier transform on tempered distributions). Let T € &’(R"). The Fourier
transform of T is the tempered distribution T € &’ (R") defined by

T(¢) = T(§). .

Proposition 82.2. The Fourier transform*: &’ (R", V) — &’(R", V) is continuous and extends
D S(RLV) - SRMV).

95



Proof. * is continuous because *: §(R", V) — &(R", V) is. For T € S(R", V) and ¢ € S(R", V)
/ (T(8), $()) dE = / (e7EOT (x), $(£)) dxdé
R" R™
= [ (T(x).e09(8)) dédx
er.
= [ 6o, g0) a. .

Proposition 82.3 (Fourier inversion on &”). The Fourier transform*: &’'(R",V) — &’(R", V) is
an isomorphism, and its inverse*: S'(R", V) — &’ (R", V) satisfies

T(9) =T(9).
Proof. This is immediate from Theorem 78.2. [ ]
Proposition 82.4. ForeveryT € §'(R", V) the following hold:
(1) 9°T = (2ri)ll g1
(2) xoT = (=2mi)~lelgeT.
(@) T«f=T-f.

Proof. (1) and (2) are obvious. To prove (3), observe that

T+ f($) =T(¢* f*)
and
(T-F)@®) =T (H"
=T(F ¢ ().

Therefore, the assertion follows from

83 Sobolev spaces W*? via Fourier transform
Situation 83.1. Let n € N. Let s € R. Let V be a complex Hilbert space. X
Definition 83.2. Define (1+A)%%: §'(R", V) — &’ (R, V) by

(14 8)2f = FTHEYF ()

with
(x) = (1+472|x]?) ",
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Remark 83.3. This notation is justified by Proposition 74.8; indeed: (1 + A)%*/2 = (1 + A)¥ for
every k € Ny. *

Definition 83.4. The Sobolev space W*?(R", V) is the Hilbert space
WS2(R™, V) = (1+A)PLER V) c S'(R™, V)

with
G, sz = ((L+A)% - (1+ A% ) e, .

Remark 83.5. Evidently, H*(R", V) = L(R", V). *

Proposition 83.6. Lets € R. The bilinear form B: W™S2(R", V) ® WS?(R", V) — R defined by

B(f®g) = ((1+A) /2 f, (1 + A)2g)

induces an isomorphism
W3R, V) = W(R™, V)",

Proof. For s = 0 this is the the Riesz representation theorem for L?(R", V). This implies the
assertion for every s € R. ]

Remark 83.7. By Plancherel’s theorem,
B(f ®9) = ((1+ M) f, A%2g) 2 = (()*f, ()" gz = /R RUIGE
= Je (f, 9 (x) dx. &

Proposition 83.8. S(R", V) c WS*(R", V) is dense.

Proof. Since (1 + A)™SS(R",V) = &(R",V), this is a consequence of (R, V) c L%(R%V)
being dense. ]

Proposition 83.9. Lets,t € R. f € WS*2(R™ V) if and only if (1 + A)!/*f € WS(R",V);
moreover,
I f llwseez = 11(1+ A2 F]lyyse. n

Proposition 83.10. If's € Ny, then f € WS2(R", V) if and only if
*f e L*(R"V) forevery aeNI with |a|<s;

moreover,

Ty (1) X s

k=0 la=k
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Proof. By Theorem 79.2 and Proposition 74.8,
|mmﬂ5£@wwwﬁﬁam }]WN;=ABMWV@F@
n |erl=k n

By the binomial theorem,
N

=3y (Z)|27rx|2k.

k=0

This implies the assertion. ]

Proposition 83.11. Letp € R[xy,...,x,] ® L (V) be a polynomial of degree deg(p) = k. The linear
map p(9): S'(R™, V) — &' (R", V) restricts to a bounded linear operator p(3) : Ws*c2(R™, V) —
WS2(R, V).
Proof. There is a ¢ = ¢(p) > 0 such that

PO < (&

for every & € R™. Therefore, by Theorem 79.2,

1P fllwsz = 1Y p()Flle < el Flle = 1 f llyysee. u

84 Morrey embedding W*? < C*¢ via Fourier transform

Theorem 84.1 (Morrey embedding). Letn € N, k € Ny, a € (0,1). Let V be a Banach space. Set

n
s=—+k+a.
2

There is a constant ¢ = c(n,s) > 0 such that WS*(R%, V) C C’;’a(R”, V) and for every f €
WS2(R", V)

(84.2) Ifllcke < cllfllwsa-

Lemma 84.3. Letn € N, p > 0, @ € (0,1). There is a constant ¢ = c¢(n, p, @) > 0 such that for

everyx € R
|e2mi{Ex) _ 1|p
/nw—mpdfw-ixi“f’-

Proof. Denote the integral by I(x). The integrand blows-up like |£]~"*?(1=®) near 0, and decays
like |£]~("*P) near co. Therefore, I(x) < co. Evidently, I is O(n)-invariant; hence: it only
depends on |x|. By change of variables,

I(tx) = t*P1(x).

This proves the assertion with ¢ := I(ey). [ |
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Proof of Theorem 84.1. Tt suffices to prove (84.2) for f € §(R", V). Indeed, oS’(R" V) c WS(R™, V)
is dense. If (f;;) € S(R", V)N converges to fe WS2(R", V), then, by (84.2), (fn) is Cauchy in
ka(R" V). Therefore, (f,) converges to f € Cka(R" V). Both f and f are limits of (f,) in
S’(R", V). Since &’ (R", V) is Hausdorff, f = f
It suffices to prove (84.2) k = 0. By Theorem 78.2, for every f € S(R",V ® C)

<O Nz - IO F(D s

ol = | [ e

moreover, by Lemma 84.3,

£ = F )l = [ [ -0y o) ag

< [P EXY S | - IES F(E)
<clx=yl* - I F (). n
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Lecture 15

This lecture finishes the discussion of Sobolev spaces via the Fourier transform. We end with a
little digression on the (sharp) trace theorem.
85 Sobolev multiplication W*? @ W*? — W*?2 via Fourier transform

Theorem 85.1 (Sobolev multiplication). Letn € N. Lets > n/2. There is a constant ¢ = ¢(n,s) > 0
such that if f,g € WS2(R"), then fg € WS2(R") and

(85.2) lfgllws < cllfllwszllgllws2-
Remark 85.3. In fact, if s > n/2,0 < r < s, f € WS2(R") and g € WS, then

Ifgllwrz < c(n )|l f llwszllgllwra. &
The proof relies on the following elementary observation.

Lemma 85.4 (Triangle inequality for (-)*). Letn € N. For everyx,y € R" ands > 0
(x+y) <2°((0) + (y)*).

Proof. By direct computation,

T2 () e @) < 2 () 4 (y)°).

Gty = (1+ |x+y2)* < (1+20x]? +2y)?)
Proof of Theorem 85.1. It suffices to prove (85.2) for f, g, € S(R"). By Proposition 78.4,
Ifgllwsz = 1KE)* Fgllz < IKE(f * ) lle.
By Lemma 85.4,
(@' (@I < | KOFE=mgmldy
<2 [ 1=+ m))F(E = mgtldn

<2 /R E = £(E = G|+ 1 = Iy gl dy
= 2°((&* I+ 191 + 11 * 18-

Therefore and by Young’s inequality,

1fgllgse < 22 (I =2 gl + 1T lgllws2).
By the Cauchy-Schwarz inequality,
A1z < G N2 ll () £l e

This proves the assertion with ¢ = 25*||(x) 5| . [
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86 Schwartz representation theorem

Theorem 86.1 (Schwartz representation theorem).

S®RLV) = | Fa+n)cry)
k,feNy

Theorem 86.2 (Schwartz representation theorem in terms of Sobolev spaces).

S’ (R%, V) = U (W2 (R V).
kENO
seR

Remark 86.3. Theorem 86.2 is crucial for interior elliptic regularity. It provides the foundation
for the bootstrapping argument. *

Proof Theorem 86.2. Let T € 8’(R", V). Since T is continuous, T~!B;(0) ¢ &(R", V) is an open
neighborhood of 0. Therefore, it contains an open set of the form

{$ € SR.V) : [0 llck < e}

Consequently,

T < 1) Pl
By Theorem 84.1, for s > k + n/2
IT(P)] < cllpllap < 16X Gllys2.
for s > n/2. Therefore, T € ((x)_kWs’z)* = (x)kw =2, [ |
Proof of Theorem 86.1. Let T € 8’(R™, V). By Theorem 86.2, there is a g € L*(R", V) with
T=(x)"*1+AM) 1+

with k, £ € Ny and s > n/2. By Theorem 85.1, f i= (1+ A)™/?g € Cg(R”, V). [ |

87 The Bessel kernel

Situation 87.1. Letn € N. Let s > 0. X

Definition 87.2. The Bessel kernel G; € C*°(R"\{0}, (0, »)) is defined by

_mlx?

4
-s

1 /°°e 7 dr .
(4m)s?T(s/2) Jo  t*+% ‘

(87.3) Gs(x) =

Proposition 87.4.
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(1) Gs has the following asymptotic asx — 0

|x[*~"  ifs<n r(\ngsl
Gs(x) ~cl-{—loglx| ifs=n with ¢) = { 25 ifs#n
1 o=
1 ifs>n ~yigan fs=n

(2) Gs has the following asymptotic as x — co

oo e_lxl . oo 1
Gs(x) ~ ¢y + ——=— with ¢ = -

ntl-s

|| 2 2" T T(S)

(3) Gs € LY(R") and
FH(Gs) = (x)™°.

In particular,

(14 M) f =Gy * f.

Proof. This is not terribly difficult, but quite lengthy to do in detail; see [Ste70, Chapter V §3].
Using 1/a = fooo e~ '?dt and Proposition 75.1 it easy to compute G,; see [Evaio, §4.3.1(b)
Example 1]. For s # 2 one uses

a—s/Z — 1 / e_att%_l dt
I'(s/2) Jo

for s > 0 which is easy to prove from the integral formula of the I function. ]

88 Sobolev multiplication: Cl*1 ® W*? — W*?

Theorem 88.1 (Sobolev multiplication). Letn € Ng. Let s > 0. There is a constant ¢ = ¢(n,s) > 0
such that if f € CIEH(R") and g € WS*(R", V), then fg € WS*(R", V) and

[s]
(88.2) £ gl < e D IV Fllzs - llglls—ez.
£=0

Proof. If' s € Ny, then it follows from Proposition 83.10. Therefore, by Proposition 83.9 it remains
to consider 0 < s < 1.
By Proposition 83.9
fgllwsz = 111+ A) D2 (fg)[[yyre.

By Proposition 87.4,
(1+28)C7V2(fg) = Gis = (f9).

By Young’s inequality,
1(1+A) SV 2(Fg)lle < N1Gi=slip - Iflleo - 9]l -

102



By direct inspection,
V(Greer (f9)(0) = [ (V610 = 0f g(w) dy
~ 10 | (VG- ugt) dy
er
- [ (F6106 =) (F) = Fgtw) dy

The first term is f(x)V(1 + A)~1/2g. By the fundamental theorem of calculus,

I () = F@W)I < I fller - max{|x —y|, 2}.
Moreover, by Proposition 87.4, |VGy—g| - max{| - |, 1} < ¢G;_s. Therefore,
IV +8) V2 (gl < lIfllen - V(1 +8) 57D 2g]) 12
+fllcr - llgllws-rz.

This proves the assertion. ]

89 Rellich’s theorem via Fourier transform

Theorem 89.1 (Rellich’s theorem). Letn € N, s < t, a < . The inclusion
x)PWH(R?) — (x)"“WH(R?)

is compact.

Proof. Without loss of generality, s = f = 0. Let (f;,) € W52 (R™)N with || f,||y:2 < 1. By the
Banach-Alaoglu theorem, after passing to a subsequence, (f,,) weakly converges in W%?(R™)N,
Without loss of generality, the weak limit is 0. It remains to prove that it is the strong limit
in (x)"*L?(R") as well. Let R > 0. Denote by ¢r € C®(R",[0,1]) a smooth function with
Pr(x) = 1 for x € Bg(0) and ¢gr(x) = 0 for x & Byr(0) and ||¢grllc1 < ¢ = ¢([t]) > 0. By
Theorem 79.2, .

Ufull ooz < Igrfallie + 2R = |Ffil s + 2R

Since ( f,;) weakly converges to zero in L? and

Brfn(E) = (Pr(x)e2ED £ (x)),

(@,) converges point-wise to zero and is uniformly bounded. By the dominated convergence
theorem,

lim |prfol? dE = 0.
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Moreover, by Theorem 88.1,

/|§|>R|@|Z dé < R‘2t||<§>f@”]z:2

= R7||grfall}y e
< cR7%,

Therefore,
lim [ fyll oy o1 < (RS +R7)
n—oo

for every R > 0. The assertion follows upon passing to R — co.

Remark 89.2. There is another proof using Arzela—Ascoli; cf. [LM89, Theorem IIL.2.6].
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Lecture 16

9o The L? trace theorem

Situation 9o.1. Let n € N. Consider R” = R x R""! with coordinates (t, x). X

Definition 9o.2. Let k € Ny. Define 1: R"™! — R" by i(x) := (0, x). Define the k—jet restriction
map res;: S(R%,V) — SR 1, V)% by

resi(f) = ((9Ff) © o, .
Theorem 90.3 (L? Trace Theorem). Lets > % andk € Ng withk > s — %

(1) The k—jet restriction map resi: S(R™, V) — &R, V)®k extends to bounded operator

k
resg: WS4(R" V) — @ Ws_f_%’z(Rn_l,V)-
=0
(2) resy has a bounded right inverse
k 1
exty : @ WS 22(RL V) — WSE(RY, V).
=0

Remark 9o.4. Theorem 9o.3 fails for s = k + %; see https://math.stackexchange.com/
questions/4431637/the-trace-theorem-for-functions-in-h1-2-omega. &

The proof of the L? Trace Theorem relies on the following.
Proposition 9o.5 (Fourier transform and restriction). DefineI: &(R", V) — S(R"™1,V) by
NG = [ flex
R

For every f € S(R", V)
reso(f) = If.

Proof. By the Fourier inversion theorem on Schwartz space,

resg f(x) = / 62”i<(r’§)’(0’x)>f(f, & drdé

eZni(§,x) 7 T r
[ e | frpara
= UF . .
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Proof of Theorem 9o0.3. By Theorem 79.2 and Proposition go.5,

Iresa(PlEee = [ OF s IO de

- [ o] frp

A 2 A
/ fr.bde < / (r.8) > dr - / (5. OY|f(z. O dr.
R R R

By the change of variables 7 = (¢)7,
[@F oy e = [ ==
R R

Therefore and by Plancherel’s theorem,

Iresa(NIE, 1. <o) [ [ (n0)#1f OF drdt = ol T

This proves (1) for k = 0 and, therefore, evidently, for every k € Ny.
Let y € S(R) with y(0) = 1 and and ! y(0) = 0 for every £ € N. For g = (go, ..., gx) €
S(R™1,V)®k get

de.

By Cauchy-Schwarz,

k
tl’

exte(9)(t,x) = ) o
=0 '

[ e neni o a

By the Fourier inversion theorem on Schwartz space,

resi o extr(g) = g.
Therefore, it remains to estimate ||exti(g)||ys2. By the Fourier inversion theorem on Schwartz
space,
2

N /Rn_lezm<x,§>x(<§>t)g*[(§) - /Rn_l@zs (/lem)(f)lzdf)léf(§)|2d§.

W2

=1(£)
By Plancherel’s theorem and the change of variables t = (¢)t,
1(§) = / (O dt = ¢ (&)™ with ¢ = / 0 y(t)* dt.
R R
Therefore,

llexty (g) [lws2 <
¢

This proves (2).° [ |

k
X gel
t s—e-12°
! w ’
¢! ?

T'(s— % )
T(s) °
31t is a curious (but probably meaningless) observation that exty is bounded for every s € R—although resy is
only for s > k — 3).

2A computation reveals that c(s) = V&
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91 Differential operators on open subsets of R"

Situation 91.1. Let n € N. Let Q@ C R" be an open subset. Let V, W be vector spaces. X

Definition 91.2. A differential operator of order k is a linear map D: C*(Q,V) — C°(Q, W)
of the form

Df = ) aqo"f
|| <k
with a, € C°(Q,Hom(V,W)) (a € N?). °
Definition 91.3. The principal symbol of D is op € C°(Q, Hom(S*(R")*, Hom(V, W))) defined
by
op(x)(8) = ) ag(x)E".
|a|=k
[ J
Remark 91.4. If p € Hom(S*R", Hom(V, W)), then
p(O)f = p(2mid)f. *

Definition 91.5.

(1) A polynomial p € Hom(S¥(R")*, Hom(V, W)) of degree k is elliptic if, for every ¢ €
R™\{0}, p(&) is invertible.

(2) D is elliptic if, for every x € Q, op is elliptic. o

Proposition 91.6. Let p € Hom(S*(R")*, Hom(V, W)). Consider the formal differential operator
D =p(9): Rlxy,...,x,] ®V — Rlxy,...,x,] ® W. If p is elliptic, then D is is surjective.

Proof. Exercise. u

92 Interior elliptic estimate

Situation 92.1. Let n € N. Let Q C R” be an open subset. Let ¢, € C°(Q). Suppose that ¢y = 1
on a neighborhood of supp ¢. Let V, W be finite-dimensional Euclidean vector spaces. Let

D= Z Ag0”

la|<k

be a differential operator on Q of order k. Let s € R. Suppose that a, € CIS**I1(Q) for every
a € Ng. X

Theorem 92.2 (interior elliptic estimate). There is a constantc > 0 such that if ¢ f € WS*K2(R™, V),
then

¢ fllwsea < c(I$Df sz + Y f llysr-rz).
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Remark 92.3. This is an a priori estimate in that it assumes that ¢ f € W**%2(R™, V). This is later
complemented by interior elliptic regularity. &
Proposition 92.4 (elliptic estimate for p(d)). Let p € Hom(S*(R™)*, Hom(V, W)) be an elliptic
polynomial of order k. There is a constant ¢ = c¢(p) > 0 such that for everys € Rand f €
WS2(R™, V)

1 llwseee < cCllp(@) fllwsz + [ fllws2)-

Proof. Since p is elliptic, there is a constant ¢ = ¢(p) > 0 such that for every ¢ € R"\{0} and
veV

Ip(27ié)o| > c|€*o].
Therefore and because (£)F < 2%(1 + |£[F),
1 lhwseee = KO Flliz < 2°¢lKEY° (@) fllze +2°14EY* Flliz = 2¥ellp(@) fllwsz + 2| fllyy=z. ®
Proposition 92.5. There are constants § = §(D), ¢ = ¢(D) > 0 such that for every f € W52 with
supp f C ¢ ~1(1) and diamsupp f < §

[ fllwsez < c(IDfllwse + 1 fllysee-r2)-
Proof. Let x € supp f. Set p := op(x). Evidently,

(D = p(3))fllws2 < ellfllystrz + c1llf|ystr-12
with

= Y llaa = ag(0)ll=(ouppyy and 1= Y llaallctsi) supp f)-
x| =k la|<k

Therefore, with ¢, = ¢(p) from Proposition 92.4

||f||Ws+k,2 < Cz”Df“WS,Z + Cz(Cl + C2)||f||ws+k—1,2 + Cz€||f||ws+k,2.

By uniform continuity, c,¢ < % if diam supp f < § <« 1. Rearranging the last term proves the
asserted estimate. ]

Remark 92.6. The argument in the proof of Proposition 92.5 is sometimes called “freezing
coefficients”. )

Proof of Theorem 92.2. With ¢ as in Proposition 92.5. Choose a finite set {y; : i € I} € C.°(Q)
with
diamsupp y; < § and Z xi=1 on supp¢.
iel
By Proposition 92.5 and Theorem 88.1,
g Fllwsviz < ) ILxigfllyyssee
il
<o ) WD fllwse + 19 X8 f lyysoere
iel

<2 ) IWxDS sz + 11D, xig 1 fllwse + e yses
< C3(||¢Df”WS:2 + ||¢f||ws+k—1,2)
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because [D, y;¢] is a differential operator of order k — 1. ]

93 Interior elliptic regularity
Continue assuming the situation of Section 92.
Theorem 93.1. Let f € 8'(R", V) compact support such that Df € WS*(R", W).
Proposition 93.2. Ifn € L'(R") and f € WS2(R", V), then
17 fllwsz < lIpllpsllfllwsz.

Proof. By Proposition 82.4, Plancherel’s theorem, and Proposition 74.5,

I # Fllwse = IKE*Afllze < IAlle=I1KE* fllze < nll 1K) Fllz- "
Proof of Theorem 93.1. Let n be a Friedrich’s mollifier. By Theorem 86.2, there is an £ € Ny with

£ e (x)wst2 (R v),

Therefore, ¢f € WS~42(R™, V).
The convolution 5, * ¢ f is smooth, has compact support, and

D, ne * 1@ fllws-enz < cll@fllws-ea.

If ¢ > 1, then, by Theorem 92.2,

I7e % @ flliysst-eonz < c(lIne = DG lwgs-esne + 10 * ¢ fllygseic12)
< c(lYDfllws-crz + 1 fllyser-ronz).

Therefore, there is null-sequence ¢, such that 1., * ¢ f weakly converges in WS =“1(R", V).
Hence, ¢ f € WSk=H1(R" V),
Iterating this argument with a nested sequence of cut-offs proves the assertion. ]
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Lecture 17

94 Sobolev spaces on manifolds

Situation 94.1. Let (X, g) be a closed oriented Riemannian manifold of dimension n. Let ./ be a
neighborhood of A € X x X such that for every (x,y) € / there is a unique shortest geodesic
Yy from x to y. Let E be a Euclidean vector bundle over X. X

Definition 94.2. For s € (0, 1) define

ltrayx (¢(x)) — p(y)[2)/?
[gb]ws,z = (//V ra)’y ¢ X ¢ y .

d(x’ y)n+23

For s € N set

N
Ipllws = D NV Bllze.
£=0

For s € (0, 00)\N set
Ls]

Ipllwsz = Y IV Gllzz + IVEIBllyye-rone.
=0
Denote by W%?T'(X, E) the completion of I'(E) with respect to the norm ||-|yys2. For s < 0 set
WST (X, E) = W™S*T' (X, E*). .

Remark 94.3. Sometimes it can be useful to replace E* with E' := E* ® A"T*X. )

From the discussion in ?? it is should be clear that the results proved for W$(R", V) carry
over to WSI'(X, E). In particular, the following results hold.

Proposition 94.4. T'(X, E) ¢ WS?T'(X, E) is dense.
Proposition 94.5. Ift > s, then the inclusion W'*T'(X, E) — W%?T(X, E) is compact.

Proposition 94.6. Ifs = n/2+k + a with & € (0, 1), then W*T'(X, E) < C**T(X,E) and there
is a constant ¢ > 0 such that

[llcra < ll¢llwsz.

Definition 94.7. Let D: T'(X,E) — I'(X, F) be a differential operator of order k. The principal
symbol of D, op: I'(Hom(S*T*X, Hom(E, F))), is characterised by

o0 (de)$() = (1D, 1))

with f(x) = 0. D is elliptic if, for every x € X and every non-zero ¢ € T, X", op(§) €
Hom(E,, Fy) is an isomorphism. °

Proposition 94.8. IfD: I'(X,E) — I'(X, F) is a differential operator of order k, then it extends
uniquely to a bounded linear operator D: W***2I'(X, E) — W*T'(X, F).
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Remark 94.9. More generally, one can consider differential operators with possibly non-smooth
coefficients. These usually don’t define maps I'(X,E) — T'(X,F) but only Ws**2['(X, E) —
W$2T' (X, F) for suitable ranges of s. )

Proposition 94.10. Lets € R. Let D: T'(X,E) — T'(X, F) be an elliptic differential operator of
order k. There is a constant ¢ = ¢(D,s) > 0 such that for every ¢ € W*52T'(E)

$llwsez < c(IDBllwsz + 1llyser-z2).
With the help of ?? the norm in last term in the inequality can be replaced by weaker norms;
e.g.
Corollary 94.11. Lets > 0. Let D: T (X, E) — T'(X, F) be an elliptic differential operator of order
k. There is a constant ¢ = c¢(D, s) > 0 such that for every ¢ € WS*2T(E)

¢llwsekz < c(IDPllwsz + lI9ll11)-
|

Denote by 9'T'(X, E) the dual space of I'(X, E) equipped with the weak—+-topology—the
space of distributional sections of E. As usual one can make sense of differential operators
acting on @'T'(X, E) etc. Evidently, W?T'(X, E) ¢ 9'T(X, E).

Proposition 94.12. Let D: T'(X,E) — I'(X, F) be an elliptic differential operator of order k. Let
¢ € D'T(X,E). IfDp € WHT (X, F), then ¢ € WS*K2I'(X, E).

95 Chern genera

Definition 95.1. Let r € Ny. Let V be a complex vector bundle of rank r over X. Denote by
¢v: Hom(Sgl,(C),C)A¢ — Hggr(X) the Chern-Weil homomorphism associated with V defined

by
ov(f) = [f(Fa)l.
Let f € C[[x]]. The Chern f-genus of V is
cr(V) = ¢v(detof (5 -)) € Hir(X, C). .

Remark 95.2. Denote by resy: Hom(Sgl, (C), C)Ad = C[[xy, ..., x,]]% isomorphism induced
by restriction to diagonal matrices. Evidently,

cr = resA(detOf(i -)) = ﬁf(%)
j=1

In particular, the Chern class ¢(V) corresponds to f(x) =1+ x. *

Example 95.3. The Todd genus td(V) is the Chern genus associated with
x

1—ex’

Proposition 95.4.
(1) IfL is a complex line bundle, then cg(L) = f(c1(L)).
(2) If Vi and V; are two complex vector bundles, then cy (Vi ® Vo) = ¢ (V1) U cp(V2). [
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96 Pontrjagin genera
Proposition 96.1. For every formal power series of the form
f=1+--
there is a uniqueg =1+ --- withg®> = f. ]

Definition 96.2. Let r € Nj. Let V be a real vector bundle of rank r over X. Denote by
dvec: Hom(Sgl,(C),C)Ad — Hyr(X, C) the Chern-Weil homomorphism defined by

gv(f) = [f(Fa)l.
Let g € C[[x]] with g(0) = 1 The Pontrjagin g—genus of V is

Pg(V) = dvac(detof (3 -)) € Hr(X,C). with f(x) = vg(x?). .

Remark 96.3. Denote by resy: Hom(So(r), R)Ad = R[[4%..., yfrm]]stf/ﬂ the isomorphism
induced by restriction to block diagonal matrices with blocks of the form

(0 ‘Oy) or (0).

y

Since 2
. 2
0o =Y Y 0 y2
detf|;, 27 |=|detg|*’ =g|=|.
ef(% O) (eg(O y_ZZ)) 9(471.2
4
Therefore,
Lr/2] y?
" j _ J
pg = resp(detof (5= -)) = g g w2l
In particular, the Pontrjagin class p(V) corresponds to g(x) = 1+ x. *

Proposition 96.4. If'Vy and V; are two real vector bundles, then py(Vi® V) = pg(Vi) Upy(Vz). =

Example 96.5. The L genus is the Pontrjagin genus associated with £(x) := ﬁ It appears
in the Hirzebruch signature theorem. »
Example 96.6. The A genus is the Pontrjagin genus associated with d(x) := Sm‘}/i/;c 72 It appears
in the Atiyah-Singer Index Theorem. L
Remark 96.7. If
g(x) = Z arx",
k=0
then .
n oo 2
Yi
po=] |2 k(a)
j=1 k=0
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Evidently, p, can be expressed in terms of the Pontrjagin classes
2k J1 Jk*
@™ i< Dhetrrey

Doing this properly means developing the combinatorial theory of multiplicative sequences.
Here is how to do this (a little bit) for the A-genus. recall that

x/2 X 7x?
=1

= +
sinh(+/x/2) 24 5760
Therefore,
2
. 19 7 (Y
A= - ———+ —— [ — ] +
i 24 472 5760 | 47
11 < 1V 7 & 1
=1- —— 2.+— - ‘%+— 2. 2. ..,
24 4x? ny (471'2) (5670ny 576 Z iz
J=1 J=1 1<j1<je<n
Since

it follows that

A 1 1 )
A=1—ﬂp1+—(7p1—14p2+10p2)+~~

5760
PR 7Pt — 4ps
=T 24P T T s7e0
See https://gradmath.org/wp-content/uploads/2020/10/Sati-et-al-GIM-2018. pdf for
more useful results along those lines. &

Remark 96.8. The inclusion u(r) < 0(2r) induces Hom(So(r), R)A4 — Hom(Su(r), R)4. The
corresponding map R[[y%,...,y%]] = R[[x,...,x,]] is induced by identifying x; = y;. Since

r LX;

_ 27T
Ctd - in

j=11—e 2r

and )
. iy;
_Llsr 7J 2T
Par— i=1
pa=e 1 L

j=11—¢e 2n

the Todd genus and the A genus of a Hermitian vector bundle V are related by

td(V) = e22 M A(V). *
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97 Atiyah-Singer index theorem for Dirac operators

Situation 97.1. Let (X, g) be a closed Riemannian manifold. X
Definition 97.2. The A genus of a vector bundle V over X is

Vx/2
sinh y/x/2

and p; denoting the Pontrjagin d—genus. .

A(V) = pa(V) € Hr(X) with a(x) =

Denote by D the associated Dirac operator.

Definition 97.3. Let (S, y, b, V, ¢) be a complex Dirac bundle over (X, g) together with a grading.
Denote the twisting curvature if $ by F". Denote by str: Endc,(S) — C the supertrace defined
by str(A) := tr(eA). Define ch™ (S) € Hgr(X) by

2n

tw lFtVW
ch™(S) = strexp . °

Theorem 97.4 (Atiyah-Singer Index Theorem). Let (S,y, b, V, ) be a complex Dirac bundle over
(X, g) together with a grading. The index of D*: T(S*) — TI'(S™) satisfies
indexc DT = (A(TX)ch™(S), [X]).

Remark 97.5. If S arises from a spin then, structure ch™ (S) = 1. In particular, ch™ (S®E) = ch(E).
This is useful both for computations and for making guesses. &

The Atiyah-Singer Index Theorem is insanely powerful. Here are a few applications.

Example 97.6. Let (X, g) be a Riemannian manifold and S = AT*X ® C with the obvious grading.
With some work one can show that

Therefore, the Atiyah—Singer Index Theorem implies the Chern-Gaufi-Bonnet theorem
X (X) = (e(TX), [X]). 0
To prove the above one first needs to determine Fy".
Proposition 97.7. Define §: TX — End(AT*X) by
5() =" A-+i(0).
The twisting curvature of AT*X satisfies
1 n
== > Ry Ael @8(er)d(er).
ij k=1
with
Rl.ji = (R(ej, ej)ek, er).

and (ey, ..., e,) orthonormal.
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Proof. If R € Q?(X, 0(TX)) denotes the Riemann curvature tensor, then Fy € Q?(X, 0(AT*X))
satisfies

Fy = —-AR".
Therefore,

n

Fy = Z —Riji-ei/\ej@)ekAi(e()

i,j,k,t=1
= i Z Rif ce' Nel ® (y(ex) +O(er))(y(er) — (er))
i,j,k,t=1
=2 D0 Ryl A6 ® (e en) — Ble)len) + Bleny(en — y(e0)3(er).
i,j,k,0=1

The contributions from first term are Rs. The last two term vanish since y(v)d(w)+5(w)y(v) = 0.
This proves the assertion. ]

The Chern-Gauf3-Bonnet theorem finally follows from:
Proposition 97.8. Let R € 0(2n). Define F™ € o(A(R*")*) by
pvos L ZZ R - 5(e)5(0).
4 k=1 ¢
With respect to the grading ¢ = (—=1)%€ on AT*X

t iFtv\  Pf(R)
SIr €xX — | = Y& .
Vo )T AR

The proof of this is an exercise.

Example 97.9. The Hirzebruch signature theorem follows from the Atiyah-Singer Index Theo-
rem applied to AT*X ® C with the signature grading. Indeed,

ch™(s) = 22 N

Example 97.10. Let X be a closed Kéhler manifold. Let & = (E, dg) be a holomorphic vector
bundle together with a Hermitian metric. The Todd class of E is

_{Faj2m 1)] € Har(X).

eiFA/Zﬂ.' _

td(E) = [det(

Applying Atiyah—-Singer Index Theorem to S = AcT*X ®c E with the obvious grading implies
the Hirzebruch-Riemann-Roch theorem

(&) = )" (<)) dimH'(X, &) = index(9 + 33 Q°(X. E) - Q"*(X, F))

= (td(TX)ch(E), [X]). .
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Lecture 18

In this lecture I discussed how to compute/understand the terms in the Atiyah-Singer Index
Theorem. (I don’t have typed notes for this.)

98 Divisibility of A

Theorem 98.1 (Atiyah-Singer; Rokhlin [Roks2]). Let (X, g) be a compact Riemannian manifold
with dim X = 4 mod 8. If w2 (X) = 0, then (A(TX), [X]) is even; in particular, if dim X = 4, then
o(X) is divisible by 16.

Proof. Choose a spin structure on (X, g). The corresponding real spinor S bundle has a quater-
nionic structure because dim X = 4 mod 8. The complex spinor bundle W agrees with the real
spinor bundle but only remembers one of the complex structures; however, because wc = —w
for dim X = 4 mod 8 the gradings of S and W are the opposite of each other. Therefore,

—indexc(D*: T(W*) = I[(W")) = indexc(D*: T(S*) — T(57))
- %indexR(DJ’: I(s") - T(S7))
= 2indexy(D*: T(S*) - I'(§7)).
By the Atiyah-Singer Index Theorem
(A(TX), [X]) = indexc(D*: T(W') — T(W)).

If dim X = 4, then by the Hirzebruch signature theorem, (A(TX), [X]) = —i(pl(TX), [X]) =
1
—§O'(X) |

Theorem 98.2 (Freedman). There exists unique a compact simply connected topological 4—
manifold with wy(M) = 0 and intersection form

2 -1
1 2 -1
-1 2 -1
1 2 -1

Es = -1 2 -1 -1/

1 2 -1
-1 2

-1 2

Since o(Eg) = 8, it follows that M cannot admit a smooth structure.
Rohklin’s theorem also leads to the following invariant of a spin 3—manifold.

Definition 98.3. Let (N, s) be spin 3—manifold. The Rokhlin invariant of (M, s) is defined as
H(N,s) = 0(M) mod 16 € Z/16Z.

where M is any compact spin 4-manifold with oM = N. °
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Invariants of this type still play an important role in geometry and topology. One of the
recent applications of this idea is the v—invariant of G,—manifold due to Crowley and Nordstrém
[CN12].
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Lecture 19

This lectures begins the final part of this course. I will introduce the Seiberg-Witten equation
and sketch the construction of the Seiberg-Witten invariant.
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99 The Seiberg-Witten equation

The Seiberg-Witten equation originates in Seiberg and Witten [SWo4]; see also the discussion
in [Witg4; Wito7].

Consider Ad: Spin(4) — SO(4). Denote by P the pinor module of Cfy4 = M;(H). The
volume element v decomposes P = S* @ S~ into irreducible representations of Spin(4). More-
over, S* carry the structure of an H-module. The Clifford multiplication y: R* — End(P) is
equivariant and H-linear and exchanges S* and S™. Define y: AR* — Endy(P) by

y(i A Aog) =y (o) -y (vk)
for vy, ..., v; orthogonal. Of course, this is nothing but the quantisation map.
Proposition 99.1.
(1) Ifa € A*R* and ¢ € S*, then y(a)¢ = 0.
(2) The image of R ® A*R* in Cty 4 is a subalgebra and isomorphic to H via

epANeyt+esNe > 2i, e ANes+esANey— 2j, e Aeg+es Aest— 2k.

(3) y(A™RY) =sp(S7) C Endu(S7).
Proof. This is proved by a direct computation. ]

SpinV!) = Spin(4) x (11} U(1). The complex pinor module of C¢, = M4(C) is C* and agrees

with P considered as a complex with the complex structure induced by i € H. The complex
volume element wc = —iw (!) decomposes P = W* @ W~. A moment’s though reveals that

w* =S,
The above establishes an isomorphism
y: ATR* — su(W).
Define the quadratic map y: W+ — A*R* ® iR by
u(@) =y~ (pg" - 3191* - 1).

(This goes under various different notations in the literature, but I prefer the notation p because
this is the distinguished moment map for the linear action of U(1) on W)
Define y: SpinY(Y(4) — U(1) by x[g.e®] = e*®. The representations Spin(4) —
Sp(S*) = Sp(1) descend to representations p, : Spin’" (4) — U(W¥) = U(2) and
detc o p: = y.

Situation 99.2. Let X be a connected closed oriented 4-manifold X
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Pick a Riemannian metric g and a spin”(!) structure w (for short) on X. Denote the positive

and negative spinor bundles by W*. Denote by L the characteristic line bundle, that is, the
Hermitian line bundle associate with w and y. A spin connection on w is a Spin¥!) —principal
connection which induces the Levi-Civita connection on Frso(TX). Denote the set of these
connections by & (w). o (w) is an affine space modelled on Q! (X, iR). Every A € &/ (w) induces
a unitary covariant derivative Ay on L. The space of unitary covariant derivatives & (L) also
is an affine space modelled on Q!(X, iR); a moment’s thought shows that (A + a); = A + 2a.
The twisting curvature F‘Elw can be identified as an element of Q?(X, iR). Another moment’s
thought shows that FY¥ = 1F,, .
The Seiberg-Witten equation is the following equation for (A, @) € o/ (w) x T'(X, W™).

(99.3) Di®=0 and
99.3
P = p(®).

The above discussion shows that this can also be understood as an equation on (A, ®) €
o (L) X T (X, W*). A solution of this equation is a Seiberg—Witten monopole.

What is the natural symmetry group of this equation? The gauge group of w as a SpinV(!) (4)-
principal bundle are sections of

w X Spin’ MV (4) — X

with C denoting the conjugation action. Such a gauge transformation preserves the Clifford
multiplication if and only if it acts trivially on Frso(TX). These gauge transformations are all
induced by maps elements of € (w) := C*(X, U(1)) acting via U(1) — Spin"" (4)(— SO(4)).
This is the natural symmetry group of (99.3).

Letn € Q*(X, iR) The n—perturbed Seiberg-Witten moduli space for the spin
w is

UM _structure

M(w,1) = {(A®) € A (w) XT(W*) : D@ = 0,F,"" = u(®)g +n}/% (w).
The Seiberg-Witten invariant is constructed out of .# (w, n). This involves the following steps:
(1) Prove that . (w, ny) is compact.

(2) Prove that, for generic 1, # (w, ) is a smooth manifold of dimension d(w) predicted by
the Atiyah—Singer Index Theorem (provided b*(X) > 1).

(3) Orient 4 (w,n).

(4) Prove that [/ (w)] := [ (w,n)] € Hy(%B(w)) with B(w) = ((w) x T(W™*))/Z(w)
is independent of 7 (and g).

(5) Ifd = 0, then the Seiberg—Witten invariant is simply [.# (w)] € Ho(AB(w)) = Z.1fd # 0,
then needs to figure out how to get a number by finding some cohomology classes on
B(w).

120



100 Compactness of ./Z (w, n)

A key feature of (99.3) is that . (w, ) is compact. Very much unlike the situation for ASD
instantons or pseudo-holomorphic maps, there is no need to invent a compactification.

Theorem 100.1. Suppose that X is closed. Let n € Q* (X, iR) and (1,) € Q¥ (X, iR)N withn, — 7
with respect to the C* topology. Let (An, ®p) € (o (w) x T(WH))N with

D} ®, =0 and F;Wn* = 1(p) + 7.
After passing to a subsequence and up to the action of € (w), there is a (A, ®) € o/ (w) X (W)

satisfying
Di®=0 and F"*=pu(®)+n.

and (Ap, ©,) — (A, @) with respect to the C* topology.
Proposition 100.2. Letn € Q*(X,iR) and (A, ®) € o (w) x T(W*). If
Di®=0 and F;W’Jr = u(®) +n,

then
1 1 1
5A|c1>|2 —|VAD|* + Zscalg|d)|2 + 5|oI>|4 +{y(n)®, @) = 0.

Proof of Theorem 100.1. By Proposition 58.2,

1
ViVa® + Zscalg +y(Fi® =0.

Moreover,
1 1
y(ER)® - y(n@ = 00°® — Z[0'® = ~|0[*®.
Therefore,
1 1
ViVa® + ZscangD + 5|CI>|2<I) +y(n)® = 0.

Since

A|®|? = 2(V V4D, @) — 2|V 5P|,
the assertion follows. [ ]

Proposition 100.3. Suppose that X is closed. Let n € Q*(X,iR) and (A, ®) € o (w) x T(W™). If
Di®=0 and F"*=pu(®) +n,
then

1@1I7 < c(g.m) = sup (=gzscaly(xo) +2[7](xo)).

xoeX

Proof. Let xo € X with |®(x,)|* = ||<I>||ioo By the above and the maximum principle,

1
|®|(x0)% < Escalg(xo) + 2|1|(x). ]
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Remark 100.4. The sign of u is crucial for the above! *

Proof of Theorem 100.1. Choose Ay € & (w). Set a,, = A, — Ay € Q(X, iR). The n,-perturbed
Seiberg-Witten equation becomes

D:xoq)n = _Y(an)(bn
d+an = ,U((Dn) +n — FX:’_‘—.

The left-hand side is not elliptic, and this should be expected in light of the infinite-dimensional
symmetry group & (w). If u € £(w) = C*(X,U(1)), then

u (Ap) — Ao =ap+u'piy) = an + uldu.

Therefore (more or less by Hodge theory), up replacing (A,, ®,) by u; (A, ®,) for suitable
u, € €(w), there is no loss in assuming that

D:;Oq)n = _}/(an)q)n
d+an = y(q)n) +1, — FE:’-F
d*a, = 0.

This is elliptic.
The kernel of § = (d¥,d*): Q(X) — Q*(X) & Q°(X) is the space of harmonic 1-forms
H' = H1(X,g). If 11 denotes the projection onto #'!, then because § is Fredholm

lanllwrz < ¢+ [[Hap||L2.

To obtain a bound on ||ay,||y1.2, it remains to control ||IIa,||;2. This can be done using the work
of Uhlenbeck, but in the present case there is an elementary argument. Let « € H!(U(1),Z)
be a generator. The map & (w) = C*(X,U(1)) — HY(X,Z) given by u +— u*a is surjective.
Indeed, [X,U(1)] = H}(X,Z). Up to sign, the image of « in H(llR(U(l)) is [py(1)]. Therefore,
the action by gauge transformations can be used to change I1a, by the image of H' (X, Z) in
HéR(X) = . Since the quotient H'(X,R)/H' (X, Z) = T"X) is compact, ||[Ila,||;> can be
assumed to be uniformly bounded.

At this point ||ay||y1.2 is uniformly bounded. Therefore, Dj[‘O(I)n is uniformly bounded in
L% Together with the L™ bound this yields a uniform bound of ||®||y12. Since ||V ,u(®)|| <
c|Va®||®|, [|8an||wz is uniformly bounded. Therefore, again, ||a, ||y is uniformly bounded.
Unfortunately, W22 does not embed into L*®. Otherwise, thb would be uniformly bounded in
W2, To overcome this one has can either work with W*? or W2, In any case, soon one arrives
at uniform bounds in W*? which is a Banach algebra. This in turn allows one to uniformly
obtain W*? bounds for arbitrary k.

Compactness then follows by Banach—Alaogolou and Morrey embedding (or Morrey em-
bedding and Arzela-Ascoli). ]
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Lecture 20

101 Construction of .#(w, 1) as a manifold
Let s € 2+ Ny. By Theorem 85.1,
WSt (w) = WSTEA(X, U(1)) = {u € W(X, C) : u(x) € U(1) for every x € X}.
is a Banach Lie group and smoothly acts the right of
WS2E (w) == WS/ (w) & WS T (W)
via
u (A @) = (A+u du, ud).

The n-perturbed Seiberg-Witten equation can be encoded as the W*12% (w)—-equivariant map
sw: W& (w) —» WS MT (W) @ WS 12Q*(X, iR) defined by

sw(A, @) = (DD, Fy"™* — p(d)).
With this notation in place
A (w, 1) =sw 1(0,7)/ W ().

(This is not completely accurate because . (w,n) was initially constructed using C* con-
figurations; but the map canonical map . (w,n) — sw~1(0,7)/W>2€(w) turns out to be a
homeomorphism because of elliptic regularity. Let us not bother with this.) The task at hand is
to make this into a manifold.

Proposition 101.1. The action WS2€ (w) O WtL2€ (w) is proper.

Proof. Let (Ap, @) € (W2 (w) X WS+1’2I‘(W+))N and (u,) € W2€(w)N. Suppose that
(An, ;) — (A @) and u, (A, ®,) — (B, Y¥). In particular, ||u,A, — A,|lys2 is uniformly
bounded. Therefore and because

du, = up(upAn — An),

lunllwe is uniformly bounded. A bootstrapping argument shows that ||du,||yys2 is uniformly
bounded. By Banach-Alaogolou, a subsequence of (u,) converges in Ws*2€ (w). [ ]

Definition 101.2. A configuration (A, ®) is irreducible if ® # 0. Denote the open subset of
irreducible configurations by

" (w)

and denote by
A (w,1) C M (w, )

the subset of irreducible Seiberg-Witten monopoles. °
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Proposition 101.3.

tw,+

(1) If 4 (w;n) contains a configuration [A, ®] which is not irreducible, thenn = F,;™".
(2) The image of the map W*d/ (w) — W™ 2Q*(X,iR), A — F,*" has codimension b*(X).

Proof. The first assertion is trivial.

Choose a base-point Ay. Since FX:;; = FX:’J’ +d*a, the image of A — F," is an affine space
modelled on imd*: Q'(X,iR) — Q*(X,iR). By Hodge theory, the latter has codimension
b*(X). [ |

Remark 101.4. As a consequence of the above, if b*(X) > 1, then a generic choice of n ensures that
A (w, n) contains only irreducible monopoles: /#*(w, n) = /4 (w, ). Moreover, if b*(X) > 2,
then a this is even true for a generic path (7;);c[0,1]- )

The action of WS2&*(w) O W*12Z (w) is free and proper; hence:
B (w) = WHE* (w) /W2 € ()

carries the structure of a Banach manifold. The Seiberg-Witten map descends to a smooth
section
sweT(V)

of
V= (W6 (0) Xyysneg ) WHT(WT)) @ W Q¥ (X, iR).

Remark 101.5. Because Seiberg—Witten theory is an abelian gauge theory, one does not just
have local slices but, in fact, “global slices”. We will come back to this later. )

Proposition 101.6. sw, € I'(V) is a Fredholm section of index
1
index sw, = d(w) = Z(cl(L)2 - 2x(X) = 30(X)).

Proof. Choose a base-point Ay. A local slice for the action WS?&*(w) O W**12€(w) is given
by imposing the gauge fixing condition d*(A — Ag) = 0. The Seiberg-Witten map with this
gauge fixing condition becomes

(Ao +a,®) = (D @ +y(a)®,d*a— p(®) - n,d"a).

Therefore, its derivative is D} & §*: T(W*) ® Q'(X,iR) » T(W™) ® Q*(X,iR) & Q% X, iR).
By the Atiyah-Singer Index Theorem and by Hodge theory, the index of this operator is

2indexc D +index 8 = 2A(TX)ez1 @ [X]) + (b1(X) = b°(X) — b* (X))

- _zlw(X) + icl(L)Z - %(X(X) +0(X)). -
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Proposition 101.7. The map
sw: WS (w) x WY (X, iR) —» WM TI(W™) @ W 2Q% (X, iR)

defined by
SW(A, @) = sw(A ®) - (0,n)

has 0 as a regular value.

Proof. Evidently, dim coker T(4¢;,)5®™ < co. Suppose that (¥, f) L imT(4qy)5W (in L?). Of
course, = 0 and for every (a, ¢)

(D}¢,¥) + (y(a)®,¥) = 0.

Therefore, D; ¥ = 0. Since ® # 0 and W$2 < (9, there is an open subset U on which ® des not
vanish. On this set the y(-)®: T*X ® iR — W~ is surjective. Consequently, ¥ vanishes on U.
By unique continuation this implies that ¥ = 0. |

Proposition 101.8. The subset of those n for which (0,n) is a regular value of sw € I'(V) is
comeager.

Proof. The map
pr,: sw 1(0)/WS*%(w) — WS Q* (X, iR)

is Fredholm and 7 is a regular value of pr, if and only if it is a regular value of sw. |
Corollary 101.9.

(1) Ifb*(X) > 1, then, for a genericn, M (w;n) is a compact submanifold of %*(w) of dimension
d(w)

(2) Ifb*(X) > 2 and no, n1 are generic, then for a generic path (n;) from ny to n;

|| #w:n) c % (w)x[0,1]

te[0,1]

is a submanifold of dimension d(w) + 1. [ ]

125



Lecture 21

102 Orientations
The above shows that
[ (w)] = [ (w;n)] € Qﬁ(m)@*(m))

is a well-defined unoriented bordism class in %*(w). This produces at most Z/2Z-valued
invariants. To lift to Z it is necessary to orient .# (w; ). By construction,

T[A’q)]ﬂ(m; I]) = ker T[A’q)]sm.
To orient a vector bundle V is to choose a section of the {+1}-principal bundle
or(V) :=PdetV := (A™VV\{0})/R".

This requires a discussion of “the” determinant line bundle det D of a family of Fredholm
operators D. Consider a family D: P — & of Fredholm operators. If coker D(p) = 0 for every
p € P, then ker D — P is a vector bundle and so is

det D = detker D ® (det coker D)* = detker D ® R* = detker D.

What we need to do is to find a section of
P detker T[A,q)]SID - ./%(m, ?])

(preferably in some “consistent” way.) The advantage of det ker D ® (det coker D)* over ker D is
that it has constant dimension and therefore has a chance to become a vector bundle. Actually
topologising the the “set-theoretic” vector bundle

detD = U detker D(p) ® (det coker D(p))*

peDy

in a way consistent is not as trivial as it might seem. The exposition in [Boho7, Appendix B] is
quite understandable (but possibly not as explicit as one might wish). The definitive reference
is Zinger [Zin16].

Instead of det D it is often better to consider the Z/2Z-principal bundle.

or(D) := P(det D).

If such a construction indeed exists and (D,) is a homotopy of families of Fredholm operators,
then it induces an isomorphism

P det(Dy) — Pdet(Dy).

Let us pretend that we have all looked up a concrete construction of det D and checked that it

is well-defined.
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We apply this to

D3¢ +y(a)®
T[A,q)]sm(a, gb) =|dta+ Tq),u(¢) .
d*a
The family Tsw is linearly homotopic to
D:\qﬁ
(a,¢) — | d'a
d*a

Observe that:

(1) ker Da+, coker D}, are complex linear and, therefore, have a orientation: if V is a complex
vector space, then we declare (ey, fi = iey, -, ey, fn = ie,) to be positive. In particular,
P det D* is trivialised by this convention.

(2) & = (d*,d*) is independent of (A, ®) and and det § = det H!(X) ® (det H*(X) & H’(X))*.

From the above discussion it is clear that (once we decided what det D means) P det Tsw is
a trivial Z/2Z-principal bundle and a section of it is determined by choosing a homology
orientation; that is: an element of the Z/2Z—torsor

P(detH'(X) ® (det H*(X) @ H°(X))").

This ultimately orients ./ (w; 1) as well as the bordisms between different choices of y—although
it is not necessarily easy to compute the orientation concretely.
The upshot of this discussion is that the oriented bordism class

[l (w)] = [ (w:n)] € Q0 (B (w))
is well-defined—provided b* (X) > 2. In fact, in practice, we only make use of
[ (w)] := [ (w;n)] € Haw) (B (w), Z).
From this numbers are obtained by pairing with element of H4(™) (%*(w), Z).
Proposition 102.1. There are only finitely many spin’ ") structures w for which [/ (w)] # 0.

Proof. If [ (w)] # 0, then there is a n with ||5||z~ < 1 such that (0,7) is a regular value of
sw € I'(V). Therefore, d(w) > 0 and by the index formula

c1(L)? > 30(X) + 2y (X).

Since
rer(L) = [iF]and / GFY) A GEY) = [F 2, — [ F |1,
X

the above implies
IES" 12 = IEL 1172 < 72 (30(X) +2x(X)).
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Together with the a priori bound on ® this implies that

IEa, 7> < c.
Therefore,
[ msam <.
This restriction is only satisfied by finitely many L. [ ]

103 The topology of %*(w)
To understand the topology of 98*(w) the crucial insight is to use the map
deg: W*Hg(w) — [X,U(1)] = H'(X,Z) - Hiz(X)

defined by
deg(u) = [u™du] = [u" ).

Remark 103.1. For every [«] € im(H'(X,Z) — H(liR(X)) there is a unique harmonic u: X —
U(1) with [a] = [u"py)]- L)

Fix a base-point Ay € &/ (w). The action of W2 (w) is given by
u(Ag+a) =a+u'du=a+upyq.
The stabiliser of the action of W**2% (w) is U(1) < Ws*2€(w). The inclusion
U(1) — W% (w)
is split by the evaluation map ev,,: Ws*?&(w) — U(1) for every x; € X. The kernel
W2 (w; x,) = ker evy,
is the based gauge group. We have
W22 () = W22 (m; x0) x U(1).
Therefore, WS2of (w) /W28 (w) = W2/ (w)/WSH2€ (w; x,) is homotopy equivalent

to the torus
H'(X,R)

H (X, Z)
WS2T(W*)\{0} is homotopy equivalent to the unit sphere in the separable Hilbert space £2.

Therefore, by Kuiper’s theorem it is contractible. Consequently, (W**T(W*)\{0})/U(1) is
homotopy equivalent to

= Thi(X)

BU(1) = CP™.

Putting everything together, %* (w) is a fibre bundle over a space homotopy equivalent to T?(X)
with fibres homotopy equivalent to CP*. Therefore, H*(%* (w)) is generated by A®Z” ) (from
the torus) and Z[x] with x of degree 2 from the CP™.
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In Seiberg-Witten theory commonly only the cohomology from CP* is used. The corre-
sponding “generator” has the explicit description as

p = (P) € H (%' (w))
with
P = o (w) x (T(WH\{0}) /% (. x0).
104 The Seiberg-Witten invariant

Let X be a closed oriented 4-manifold. Suppose that an orientation of H(llR X)) e (HRp(X) &
HgR (X))[1] has been chosen. The Seiberg-Witten invariant is the map

SW: {w spin’!)—structure on X} — Z
defined by
SW(w) := {é[ﬂ(m)]’”d(m)/2> if d(w) = 0 mod 2

otherwise.
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Lecture 22

The purpose of this lecture is to explain how to define the determinant line bundle (hopefully,
without messing up the signs).
105 The determinant of a cochain complex

Definition 105.1. A graded line is a pair L = (L, deg; ) consisting of a 1-dimensional R vector
space L and an integer deg; € Z, the degree of L. Denote by Z the category whose objects are
graded lines and morphisms are

hom(L, M) =
( ) otherwise.

{Iso(L, M) if deg; = degy,

The purpose of this category is to be the recipient of determinant functors. Denote by 7> the
category whose objects are finite dimensional vector spaces and morphisms are hom(Vy, V1) :=
Iso(Vp, V7).

Definition 105.2. The determinant is the functor det: 7" — & defined by
detV = (AYMVV, dim V)

and '
det f := ATV f, .

7" is a symmetric monoidal category with the product given by the direct sum &, unit
0, and the obvious associator, braiding, and unitors. £ also can be given the structure of a
symmetric monoidal category.

Definition 105.3. Equip & with the structure of a a symmetric monoidal category as follows:

(1) The tensor product ®: & X & — £ defined by

L®M = (L®M,deg; +deg,,).

(2) The associator axpm: (K®L)® M — K ® (L ® M) is defined by

alk®@t)®@m) =k (t®m).

(3) The braiding f: L ® M — M ® L is defined by

Bt ®@m) = (—1)%edemm @ ¢,

(4) The unit is
1:=(R,0).
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(5) The left unitor Az : 1 ® L — L and the right unitor p: L ® 1 — L are defined by
AM1®¢)=¢ and p(f®1):=¢. °

The proof of the following is straight-forward but somewhat time-consuming.

Proposition 105.4. The functor det: 7" — & together withid: 1 = det0 and ¢y, : det(V) ®
det(W) — det(V & W) defined by

braw (V@ p) = v A p
is a symmetric monoidal functor. ]

Remark 105.5. The sign in the braiding f is crucial for the above. In particular, the category of
(ungraded) lines is not a suitable recipient of det—whenever the symmetric monoidal structure
of 7" plays any role. )

Remark 105.6. In the following—to keep a modicum of sanity—the maps using the associator «
are swept under the rug. By Mac Lane’s coherence theorem this does not cause any trouble. &

The determinant interacts well with exact sequences.
Proposition 105.7. For every short exact sequence
0V SvLvr oo
of finite dimensional vector spaces there is an unique isomorphism
Yip: detV' @detV” — detV
such that:
(1) For the split exact sequence
0V SV eV S5V -0

with 1(v') := (¢/,0) and n(v',0"”) = 0"

lpl,ﬂ = ¢V’,V”'
() If
0 v Ly Ly 0
l 7 l ¥ l I
0 w—L s w L, wr 0.

is a commutative diagram of finite dimensional vector spaces with exact rows and f, f’, f”
isomorphisms, then

det V' @ det VvV’ —2 s detV
det f@det f”l ldet f
det W’ ® det W”’ 1//—) detW

J:q

commutes.
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Moreover:

(3 If
0 0 0
0 vty —L,uyr 0
f f £
0 vy Ly 0
f f £
0 w 2w L, wr 0
0 0 0

is a commutative diagram with exact rows and columns, then the diagram

commutes.

Proof. Let0 — V' L v 2 v” 5 0be an exact sequence. If p¥ is a right inverse of p, then
(ip®): V'@ V” — V is an isomorphism and

0 Vi S Vvev —Zsv” 0
H Jurr |
0 v’ LI /AN SR v 0

is as in (2). Define ¢/; ,: detV’ ® detV"" — detV by

Vip = det(i pR) o Py yn.

This does not depend on the choice of pR because if p}f, pg are right inverses of p, then

det((i pR)~'(i pR)) = det ((1) 1‘) - 1.

Evidenlty, (1) holds A moment’s thought shows that this construction satisfies (2). Obviously,
this construction is unique. [

The construction of the determinant of Z/2Z-graded vector space requires the following
additional structure.

Definition 105.8. Define the functor-¥: & — & and the natural isomorphismev,: LYQL — 1

by
LY = (L', deg;y) = (L",—deg;) and f':=(f)"

and ;
evi(e* ®0) = (=1) (e (e). .
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Remark 105.9.

(1) If for every graded line L a choice of a graded line LY together with an isomorphism
evy: LY ® L — 1 has been made, then this induces a functor -V by requiring that the

diagram
VoL — 1

reer| |
Mv ®M TL> 1

commutes. Any of those could be used alternatively in the upcoming constructing.

(2) Since evy induces an isomorphism LY = L*, Definition 105.8 appears natural—except
possibly for the sign in evy.

(3) -V and ev determine a unique natural isomorphism i : L — LYV such that the diagram

LoLl’ P [ver o, 4
lL®idLvl H
LYWWeLY

evyv

commutes. A brief computation shows that that 1 is the canonical isomorphism L = L**,
t— (" — t*(£)), with the choices made in Definition 105.8.

(4) -V and ev determine a unique natural isomorphism kr 5: LY ® MY — (L ® M)" such
that the diagram

18fpv
(LYo MY) @ (Lo M) 221 o L) @ (MY @ M)
levL®evM
KL,m®1 1®1
(LeM)' @ (L®M) STy 1

commutes. A computation shows that
kim(E*@m*) (£ @ m) = £*(¢) - m*(m)

with the choices made in Definition 105.8; that is: kr s is the canonical isomorphism
LM = (LeM)". )

Definition 105.10. Denote by ‘72722 the category of Z/2Z-graded vector spaces with isomor-

phism only. Define the determinant functor det: %2722 — Z by

detV :=detV’® (detV')Y and det f = det f* ® (det f1)". °
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The shift functor [1] on ‘72722 is compatible with det in the sense that the braiding f, ¢, and

k induce a natural isomorphism
5=0®1)oBok": det(-[1]) = (det-)".

Proposition 105.11. det: 7, — & together withe: f o evi': 1 > 1®1" = det0 and
dv.w: detV @detW — det(V @ W) defined by as the compositon

detVe@detW =detV°® (det V1) @ det W° ® (det W)V
18411

det V' @ det W0 ® (det V!)Y ® (det W)V

19k

det V' @ det W° ® (det V! ® det Wl)v

$®p
det(V' @ W% ® (det(V!® W)Y = det(V & W).

is a symmetric monoidal functor. ]

Proposition 105.12. Proposition 105.7 holds for det: ‘72722 - Z. [

Remark 105.13. If f: V — W is an isomorphism, then
detf:lﬁf’oo(1®€)op_l. &

Denote by € 127

vector space (A,d: A — A[1]) and whose morphisms are quasi-isomorphisms. 7.5, includes

Z/2Z
into <‘g£< 122 via A — (A, 0).* The following extends det to ‘5; 127

the category whose objects are finite dimensional Z/2Z-graded differential

Definition 105.14.

(1) Let (A, d) be a Z/2Z-graded complex. Set
det(A, d) := det A = det A° ® (det A1)".
(2) Let (A, d) be a Z/2Z-graded complex. The short exact sequences
0 — imd -5 kerd 5 H(A,d) >0 and 0— kerdi> Ai) imd[1] = 0

induce the isomorphisms

Vip: detimd ® det H(A,d) — detkerd

*Forgetting the differential is not a functor! This is because quasi-isomorphisms are not isomorphism.
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and
Vjaq: detkerd ® detimd[1] — det A.

Define naq): detH(A,d) — det A as the composition

detH(A, d)

(evi®1)oA™!
(detimd)" ® [detimd ® det H(A, d)]
57 '®Yip
detimd[1] ® detkerd

Yjaop

det A.

(3) Let (A,da), (B,dp) be Z/2Z—-graded complexes. Let f: (A ,da) — (B,dp) be a quasi-
isomorphism. Set

det f := n(Bdy) 0 detH(f) o U(_;,dA) : det(A,dy) — det(B,dp). °

— & is a functor and nj: det o H = det is a natural transfor-

Proposition 105.15. det: %2/22
|

mation.
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9¢1

Proposition 105.16. If f: (A ,da) — (B,dp) is an isomorphism, then det f: det A — detB and det f: det(A,ds) — det(B, dg) agree.
Proof. The assertion holds if the diagram

det H(f)

detH(A, dy) det H(B, d)
(ev7l®1)oA~! (evi®1)onr™!
(detimdy)" ® (detimdy) ® det H(A, dy) S 2 At HYD) 4 tim )Y @ (detim d) ® det H(B, dp)
O ®Yigpa 5 '®Yip pp
detimds[1] ® detkerdyu det /118 detf detimdpg[1] ® detkerdp
Vindnob Vs
det A detf det B

commutes. The top square evidently commutes. The middle and bottom square commute by Proposition 105.12 applied to

0 —— imdy _fa, kerda _Pa, H(A, dy) —— 0

| =|s <[

0 imdg ker dp AN H(B,dg) —— 0

and

0 —— kerdy LN imdy[1]] —— 0

R

0 —> kerdy —2> B —2» imdg[1] —— 0.



LET1

Proposition 105.17. If0 — (A,da) N (B,dp) 5 (I, dr) — 0 is a short exact sequence of Z/2Z—graded differential vector spaces and
H(I, d;) = 0, then

° -1
detA(M det A ® detH(I, d;)

det nl ll®f7(1,d1)

det B T det A ® det]

i,

commultes.
Proof. Sadly, I have not been able to typeset this proof reasonably. Proposition 105.12 applied to

0 0 0 0 0 0

0 —— kerdy L>A&>imdA[l] — 0 0—>imdAi>kerdA ——> H(A, dy) —— 0

v . an N v =|H()

0 —— kerdp ELENY 9, imdg[1] —— 0 and o imdp _B, kerdg —— H(B,dg) —— 0

71" T 77,'” [ 1] 77.'” 71"

d,
0—>kerd1L>I—I>ide[1] — 0 0 —— imd;

implies that

Vjada®Vip.dy
_—

detkerdy ® detimd,[1] ® detkerd; ® detimd;[1]
1(1@//’“[1],”"[1])0[3
(105.18) detkerds ® detkerd; ® detimdg[1] Vi

llﬁl/,n’@l
detker dp ® detim dg|[1] Vi d det B

detA ® det]




ge1

and

; . Vigpa®1
(detimdy @ detH(A,d4)) ® detimd; —— detkerd ® detkerd;
(105.19) l(mu,,,u@dem(i))oﬂ lw,n/
det im dg ® det H(B, dp) Vinrs det ker dp

commute.
The diagram

Vigpa

1
(detimds ® detH(A,d4)) ® (detimd; ® detimda[1] ® detimd;[1]) Liara®, detkerdy ® (detimd; ® detimd4[1] ® detimd;[1])

(105.20) l1®¢,,,[1]),,~[1] ll@//w[l],n"[l]
iapa®1
(detimd, ® detH(A,dy)) ® detimd; ® detim dp[1] Viara detker ds ® detkerd; ® detimdp[1]
obviously commutes. The diagram
(105.21)
1®¢iA’PA

detimda[1] ® detimdy ® det H(A, da) detimdy[1] ® detkerdy

lev_I lev_1

i apa ®1
(detimdy ® detH(A,dy)) ® detimd; ® (detimda[1] ® detimd;[1]) wLA@; detkerd, ® detkerd; ® (detimd[1] ® detimd;[1])

obviously commutes (because ker d; = im dj).
The diagram

detH(A, da) detimdy[1] ® detimdy ® detH(A, d4y)
(105.22) H(1) (detimdy ® detH(A, dy)) ® detimd; ® (detimda[1] ® detimd;[1])

l

det H(B, dg) detimdp ® detH(B,dg) ® imdg[1]




6¢1

commutes too an so does

detimdu[1] ® detkerdy Vinin det A
det A ® kerd; ® imd[1]
ll//ijPI
detkerds ® detkerd; ® (detimda[1] ® detimd;[1]) 222217 4t A @ det I,

These assemble into:

NAdy

(ev l@1)or"! 7oy, pu Yjads°P
detH(A,dg) — > (detimd)" ® (detimd) ® detH(A,d4) detimd4[1] ® detkerdy ————————> detA
ev lel detA®H(I,dy)
Viada®¥jr.d
detH(1) [(detimda)Y ® (detimdy)V] ® [(detimdy ® detH(A,d)) ® detimdy] — > (kerdy ® imd4[1]) ® (kerd; ® imdy[1]) A g JetA@ det]

0y et) l(ml//,uﬂ,,)o.,,
(detimdg)Y ® [(detimdy ® detH(A,dy)) ® detimdf] — > detimdpg[1] ® (kerds ® kerdy) (7%

18y, 17 ®detH(1) - 18y,
(ev-le1)or—1 l‘ Lt S 1®¢iB’PB l' v Vigdg®h
detH(B,dg) — > (detimdp)" ® (detimdp) ® detH(B,dg) detimdpg[1] ® detkerdg — > detB

B,dg

Since this diagram commutes the assertion follows.



106 The determinant line of a family of Fredholm operators

Let X, Y be Banach spaces.

det == ]_[ detker L ® (det coker L)"
LeF (X.Y)

This wants to be a vector bundle but it has to be given a topology first. Here is how to construct
this topology. Let 0: S — Y be a linear map with dim S < co. The operator

(Lo): X®S—>Y

is Fredholm. The Snake Lemma implies that the sequence

0 — kerL X, ker(L o) P, 5 % coker L — coker(L o) — 0

is exact. Therefore, if coker(L o) = 0 and
Cro = (ker(L o) s, S),

then iy defines anisomorphismiy : ker L — H°(Cy ) and o induces an isomorphism o : H'(Cr,) —
coker L. Therefore

detir®(deto™ 1)V
5

detker L ® (det coker L) detH(CL ) 2 det ker(L o) ® (detS)"

The subset
Uy, ={LeF(X,Y):imL+imo = Y}.

is open and

u ker(L o) — Us,.

LeU,

“is” a vector bundle. Therefore,

U detker(L o) ® (detS)" — U,
LeU,

e 2

is” too. Demanding that the above maps assemble into a vector bundle isomorphim defines the
vector bundle structure on det |y, .

It remains to prove thatif 0: S — Y and 7: T — Y are given, then the trivialisations
overlap continuously on U, N U;. That is one needs to show that the map x in the commutative
diagram

detker L ® (detcoker L)Y —— detH(CL ) — detker(L o) ® (detS)¥

|
I %
H ¢
detker L ® (detcoker L)Y —— detH(Cp ;) —7 5 det ker(L 7) ® (detT)".
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varies continuously in U, N U;. It suffices to prove this assuming that there is a surjective map
p: S — T such that

p
—_—

o

—
N~
=

~

commutes. In this case 1 ® p and p define a surjective quasi-isomorphism
P: CL,U’ - CL,T

with "
kerp = (kerp N ker p).

By definition x is det p. By Proposition 105.17 can be written in terms of detker p — 1 and thus
varies continuously in U, N U;.
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Lecture 23

107 Witten’s vanishing theorem

Theorem 107.1. Let be X is a closed manifold with b*(X) > 2. If X carries a metric with positive
scalar curvature, then SW = 0.

Proof. This is immediate from the Weitzenbock formula which forces # (w, n) = 0 for suffi-
ciently small 5. ]

108 The simple type conjecture

Conjecture 108.1. Let be X is a closed manifold with b*(X) > 2. Let w be a spin”V) —structure on
X. Ifd(w) > 0, then SW(w) = 0. O

Remark 108.2.
(1) There is no known counter-example.

(2) SW(w) = 0 does not mean that ./# (w, n) = @. In fact, it is possible to produce non-empty
moduli spaces by gluing constructions even if d > 0. *

109 Charge conjugation symmetry
The map c¢: Spin’™ (n) — SpinY’" (n) defined by
clg.z] = lg.2]
is a group homomorphism. If w is a spin”(!) —structure, then so is the charge conjugate
® = w %, Spin’ ¥ (n).

This construction defines an involution on the set of isomorphism classes of spin”(!) —structures.
It is clear that the characteristic line bundle L of w and L of 1 are related by L = L Moreover,
the complex spinor bundles $* and §* associated with w and , and the Dirac operators, are
(also) related by a complex anti-linear isomorphism. This sets up a bijection of Seiberg-Witten
moduli spaces
M (w,n) = M (0, —n).

It is a good exercise in orientations to prove the following:

Proposition 109.1.
X(X)+o(X)

SW(w) = (=) 1 SW().
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110 b" =1 and wall-crossing

Let X be a closed oriented 4-manifold »*(X) = 1. Fix a Riemannian metric g on X. Suppose
that H}, (X) @ (H}, (X) ® H}, (X))[1] has been oriented and, indeed, HY, (X) has been oriented
as well.
Let w be a spinV(!) —structure on X and 5 € Q*(X, iR). The map Hip(X) =#%(X) - R
defined by
a > (in, ayre — w{c1(L) U [ia], [X]).

If the map vanishes, then ¢ = ¢(, w) := 0 (this is the case when reducibles exists). Otherwise,
if it is orientation preserving (reversing), set ¢ := +1 (¢ := —1). The function ¢ decomposes
Q*(X,iR) into two chambers {+¢ > 0} and a wall {¢ = 0}. The arguments used to define the
bordism class [.Z (w)] if b*(X) can be used to define

[M(w)*] = [M(w,n)] with +e(n) > 0.
This gives the Seiberg-Witten invariants
SW*(w) € Z.
Theorem 110.1 (Wall-crossing formula for the Seiberg-Witten invariant). Ifb;(X) = 0, then
SW*(w) - SW™(w) = 1.

Remark 110.2. The above is true regardless of the orientation of H*(X) because flipping it
exchanges + and — but also flips the sign of the invariant. &

Remark 110.3. There also is a wall-crossing formula if by (X) # 0 *

U(1)_

Example 110.4. Consider CP?. Since CP? is Kihler, it carries a distinguished spin structure

wy and every other spinV(!) —structure wy. is obtained by twisting with Opp2 (k) for some k € Z.
Since Kcp2 = O¢ps(—3), the characteristic line bundle L; associated with wy is

Therefore,
1
d(wy) = Z((Zk +3)2 - 9) =k(k +3).

For k € {—1, —2} this is negative and, therefore,
SW*(wg) =0 for ke {-1,-2}.

The Fubini-Study metric on CP? has positive scalar curvature and, therefore, ./# (wy,n) = @
for sufficiently small 7. Since

(0, wg) = sign(—(2k + 3)),
it follows that
SW*(wg) =0 for k<-2 and SW'(wg)=0 for k3> -1
The wall-crossing formula determines the remaining values of SW* (wy) to be +1. o

Remark 110.5. As similar discussion applies to CP! x CP. *
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Lecture 23

111 The Seiberg-Witten energy identity

Proposition 111.1. Let (X, w) be a closed spin”V) 4—manifold. For every (A, ®) € o (w) x T(W™)
2, 1 2, 1 2, 1wy
E(A ®) == [ |VAQ|" + —scaly|®|" + = |u(®) + n|* + —|F,"|
" 4 2 4
satisfies
1 1
BA.0) = [ IDA0F + JIF} = (@) = 1 + () = (L)
X

Proof. By the Weitzenbock formula,

1
/|DA<1>|2=/|VAc1>|2+Zscalg|q>|2+<F;W’+,p(q>)>.
X X

Therefore,

E(A®) = / |DA®* + 5|F; T (@) -yl + ;'Fi ” - 5|F; PP+ (P )
X

The assertion follows because

_ w T 2
[ == [y = (Zat) = o)’
X X

112 Seiberg—Witten invariants of Kihler surfaces

Let X be a connected closed Kéhler surface. X carries a canonical spinV!) —structure wc whose
characteristic line bundle is K .. Every other spin(!) —structure wy is obtained by twisting by a
Hermitian line bundle L. For wy:

ST=AYT*X ®c Ld A*’T*XcL and S~ = A% T*XcL
and
y(@a = V2[(0")*' A a - ipia]

and
Dy = \/5(5A + éj‘;)

with A € o/ (L).
To understand the Seiberg-Witten equation in this context we also need to compute p. Recall
that on a Kéhler surface A*T*X ® C = (w) ® A*°T*X & A*?T*X. In particular, u € Q*(X, iR) is
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determined by Ay (with A denoting the dual Lefschetz operator) and %2, A computation shows
that for (a, ) € I'(L) ® Q*?(X, L)

iNi(a ) = S (B~ 1af) and  p(a,p)°? = Sap.

Therefore, the n—perturbed Seiberg-Witten equation becomes the following equation for A €
(L) and (a, f) € T(L) ® Q%*(X,L):
5Aa + é;ﬁ =0
. 1 .
(112.1) iA(=Fgy +Fa) = Z(|/3|2 — |al?) +iAn

1
Fg’z = Ed’ﬁ + 7’]0’2

One often restricts to perturbations with 7%? = 0.

Proposition 112.2. Suppose that n%? = 0. Set

i
ti=—— N .
Zﬂ/x']

If (A, a, ) be a solution of (112.1), then:
(1) Fg’z = 0; that is: & = (L, da) is a holomorphic line bundle.
(2) IfdegL > L degKx +1t, thena =0, 3 = 0.
(3) IfdegL < 1 degKx +1, then =0, daa = 0.
Proof. Applying d,4 to the first equation in (112.1) yields
Ff"za + éAéZﬁ =0.
Using the last equation in (112.1) this becomes
1 - =
5|a|2ﬁ + 94048 = 0.
Taking the L? inner product with f yields
1 3k
5 [ 1aFIBe +13,81 =
p's

By unique continuation it follows that either o vanishes (and %8 = 0) or f vanishes. In
particular, Fg’z.

Since ”%A represents the first Chern class of the characteristic line bundle and the latter is
L* ® K},

i F, 1 1
deg(L* ® Ky) = YA pw= —/ iAFavol = — / IBI* = |a|*vol — 2t.
x T T Jx 4 X
This determine whether « or § vanishes. [ ]
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Remark 112.3. Here is another argument for based on the energy identity; that is:
— 2 1 2 1 2 1 itw2
E(A, @) = [ |VAD| +Zscalg|<I>| +5|/J((D)+}7| +Z|FA |
X

satisfies . .
E(A, @) = / IDABLE + 2IFS = (@) = nf* + (B, ) + e (L)
X

The map (A, a, f) — (A, &, —f) does not affect E(A, @) (because % = 0. Therefore, it maps
solutions to solutions. Hence:

1 _ 0,2 1 _
—Eaﬁ=FA = Eaﬂ=0.
*
Remark 112.4. (1) By the charge conjugation symmetry/Serre duality it is enough to consider

the case degL > % deg Kx with t = 0.

(2) If degL = ; degKx and t = 0, then the above exhibits .#(wy) as the moduli space of
ASD instantons on L.

(3) In any case, by passing to ¢t > 1 one can always reduce to the case = 0.
*

Proposition 112.5. If & = (L, ) is a holomorphic line bundle with deg L < % degKx +t anda €
H°(X, £)\{0}, then L admits a Hermitian metric H such that the Chern connection A = A(9, H)
satisfies

. 1 02
iAFy = —Z|a| — 7t

Proof. Choose a Hermitian metric Hy on L. Denote the corresponding Chern connection by Ay.
Any other Hermitian metric is of the form H = Hye?. A computation shows that

iNFy = iAFAO + Af

Therefore, the task at hand is to find f such that
1
Af+aezf+ b=0 with a:= ZH()(O{, a) and b :=iA(Fa, — 7).

This is a Kazdan-Warner equation. It can be solved because [, b < 0 and a # 0. (The
solution theory of this equation also appears in an analytic proof of the metric uniformisation
theorem.) [

The above (together with some thinking about gauge equivalence) exhibits a bijection
between . (wy) and pairs [Z, a| consisting of a holomorphic line bundle (with underlying
complex line bundle L) and a non-zero holomorphic section & € PH’(X, &) up to scaling. This
is essentially the same data the effective divisor D = Z(«a).

Finally, we discuss the actual invariants. We employ the following orientation convention.
H!(X) is oriented so that the projection onto H*!(X, C) is orientation preserving if the latter is
given the complex orientation. H"(X) = (w) ® H*?(X, C) is oriented so that w is positive and
H%%(X, C) is given the complex orientation.
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Proposition 112.6 (Witten [Witg4, §4]). Ifb*(X) > 2 and if SW(wr) # 0, then 0 < degL <
deg Kx.

Proof. If SW(wp) # 0, then the Seiberg-Witten moduli space must be non-empty for t > 1.
Therefore, H’(X, L) # 0; hence, deg L > 0. Similarly, the Seiberg—Witten moduli space must
be non empty for t > 1. Therefore, H'(X,L) # 0. By Serre duality, H*(X, Kx ® L*); hence
deg L < degKx. [

Theorem 112.7. Ifb*(X) > 2, then

o(X)+x(X)
1

SW(we) =1 and SW(wg,)=(-1)" + .

Proof. By the charge conjugation symmetry it suffices to prove that SW(w¢) = 1. Indeed, the
following argument proves that .# (wc, n) consists of precisely one point, which is unobstructed,
and positively oriented.

Take the perturbation to be

1, it
= _EFKX + Ea)
with t > 0. If [A, a, f] € M (wc, 1), then § = 0 (by the above proposition). Moreover, A induces
a holomorphic structure d4 on the trivial bundle C. Therefore, the section & must be nowhere
vanishing. That is « is an isomorphism of (C, d4) with the trivial holomorphic bundle (C, 9).

Finally,

n

1
Z|a|2 —t=0.

Therefore, [A, @, ] is gauge equivalent to [A,, V2t, 0] with Ay denoting the trivial connection
on C.
Observe that

d(we) = 7 (61 (K)* = 2¢(X) ~30(X).

Therefore, one expects ./ (wc, 1) to be zero-dimensional. The linearisation of the Seiberg—
Witten map at (Ao, Vet 0) is

V2(da+ ')\ [ Vata™

R iAda l<\/§ a)
. A 3 2 ’
Tsw: (a, & p) — a1 — \/t/_Zﬁ " 0
& a i(Vat,&).

The constants are almost certainly messed up.
Suppose that Tsw(a, &, f) = 0. Applying 0 to the first equation and using the fourth equation
gives

09" B +t/N2p = 0.

Since t > 0, this implies that ﬁ = 0. Applying 9" to the first equation and using the third and
fifth equation yields
d"9a + 4ta = 0.
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Therefore, @ = 0. Considering the first equation again proves that a = 0. Since d(w¢) = 0, it
follows that Tsw is invertible.

I'm not proving that the orientation is indeed positive. (It suspect that the Tsw, with the
correct constants, is complex linear and the homotopy to the model operator is through complex
linear operators.) ]
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Lecture 24

113 The simple type conjecture for Kihler surfaces

Theorem 113.1 (Witten). The simple type conjecture holds for Kdhler surfaces.

Proof. We need to prove that if SW(wy) # 0, then
1 %
d(wy) = - (ex(Kx ® L?)? = 2x(X) = 30(X)) = (c1(L) ~ e1(Kx))ei (L) < 0.

The above discussion already proves that L admits a holomorphic structure 9. Therefore, ¢;(L)
is of type (1, 1).

Since b*(X) > 2, K, admits a non-zero section. Let 7 € H*(X, Kx) = #*°(X) and take 7 to
be our perturbation. The energy identity becomes that

1 1 1
E(A ®) = / [VA®|? + —scaly|®|* + = |u(®) + n|* + = |FY|?
. 4 2 4
satisfies . .
B(A.®) = [ IDABF + 31F} - @) - 1l + {7y (Ln)®.
X
This is invariant under (A, @, f, 1) — (A, &, —f, —n). Therefore,
_ 0,2 _
—(@p-n) =F"=ap-n=0.
Moreover, daa = 0 and 9%, = 0.
Therefore, & = (L, d) is holomorphic, & € H*(X, Z), p € H*(X,Kx ® &£*) and
n=ap.
Decompose Kx into irreducible effective divisors as follows
c1(Kx) = Z ri[Ci].
i

The above shows that

ai(L) = ) slCil.

i
with 0 <'s; < ;.
Therefore, to show that

d(w) = —(c1(Kx) —c1(L))er (L) <0

it suffices to prove that
(c1(Kx) —cr(L)[Ci] > 0.
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By positivity of intersections,
(c1(Kx) —c1(D)[Ci] > (ri = si) [Gi][Ci-

If [C;][Ci] > 0, then this is sufficient.
By the adjunction formula,

2py(Ci) — 2 = [Gi][Ci] + c1(Kx)[Ci].

Therefore,
=[G]ICi] =2 < c1(Kx)[Ci].

If [C;][C;i] < 0ands; > 1, then

a(D)[Ci] < s:[Gi]?

N

—[G]ICi] =2 < 1 (Kx)[Ci].

This also proves the required statement. ]

114 Enriques-Kodaira classification

Definition 114.1. Let X be a complex surface. The Kodaira dimension is

log dim H°(X, K™
k(X) = lim sup & ( X).

n—>00 logn
X is minimal if it contains no holomorphic sphere E with E - E = —1. X is ruled ruled if it is
as CP'-bundle over a Riemann surface. X is elliptic it it has a holomorphic map f: X — CP!
with generic fibre a torus and finitely many singular fibres. .

Remark 114.2. By Castelnuovo’s contraction theorem, every X can be blow-down until it is
minimal; that is: every sphere E with E-E = —1 can be removed by an inverse blow-up procedure
and finitely many such steps suffice to achieve minimality. *

Theorem 114.3 (Enriques—Kodaira classification). Let X be a minimal Kdhler surface. k(X) €
{=0,0, 1,2} and:

(1) k(X) = —0 if and only if X is CP? or ruled.

(2) k(X) =0 if and only if X is finitely covered by T* or K3. (c1(Kx) is torsion)
(3) k(X) =1 ifand only if X is elliptic; c;(Kx) is not torsion and c;(Kx)? = 0.
(4) x(X) =2 thenc;(Kx)? > 0. (general type)

If X is a minimal surface wit x(X) = 2, then K is nef; that is: Kx - D > 0 for every effective
divisor D.
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115 Diffeomorphism invariance of +Kx for minimal surfaces of gen-
eral type

Here is a neat application of Seiberg—Witten theory to complex algebraic geometry. It requires
a tiny bit of preparation.

Theorem 115.1 (Hodge index theorem). Let X be a Kdhler surface. The intersection form on
HY!(X,R) has signature (1,b"' — 1).

Theorem 115.2. IfX is a minimal Kdhler surface of general type, then SW(wy) # 0 if and only if
L=CorL=Kx.

Proof. If SW(wy) # 0, then there is a holomorphic structure 0 on L such that & = (L, 9) has a
section and, therefore, determines an effective divisor.
By the simple type conjecture of Kihler surfaces, c;(L)? = ¢;(L) - ¢;(Kx). By hypothesis,

c1(L)? = c1(L) - &1 (Kx) > 0.
By charge conjugation symmetry/Serre duality, deg Kx > degL > 0:
c1(Kx)? + c1(L)* = 2¢1(Ky)er (L) = e1(Kx)? = e1(L) - e1(Kx) = ¢1(Kx)® = c1(L)* > 0.

Without loss of generality, deg L > 0—otherwise pass to Kx ® L*. Therefore, thereisa t € (0,1]
such that deg Kx = tdeg L
By the Hodge index theorem,

0> (c1(Ky) — ter(L))?
= ¢1(Kx)® = 2te; (Kx)cr (L) + t2ci (L)?
=C (KX)Z + (—2t + tz)Cl (L)2

The minimum of —2¢+t? is achieved at t = 1 and takes the value —1. Therefore, ¢;(L)? > ¢;(Kx)?.
Comparing with the above, it follows that ¢, (L)? = ¢;(Kx)?. Therefore, deg K, = deg c;(L) and
also (c¢;(Kx) — c1(L))? = 0. Therefore, c;(Kx ® L*) is is torsion. Since Kx ® &* is effective, it
must be trivial. Therefore, L = K. ]

Corollary 115.3. +c;(Kx) for minimal surfaces of general type is a diffeomorphism invariant. m

116 More facts about the Seiberg—Witten invariant

Here are some further important facts about Seiberg-Witten theory which one should have
heard about.

Theorem 116.1 (Vanishing on connected sums). If Xy, X, are oriented closed smooth 4—manifolds
with b* (X;) > 1, then the Seiberg—Witten invariant of X;#X, vanishes.
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Theorem 116.2 (Blow-up formula for the Seiberg-Witten invariant). Let X, E be oriented closed
smooth 4—manifolds with b*(X) > 2, b*(E) = b*(X) = 0 (e.g.: E = @2) Ifw is a spin’M) -

structure on X and ¢ is a spin’V) —structure on E such that

w-w=2y(X)=30(X)+e-e+b*(E) >0 with w:=c;(Ly) and e:=ci(L),

then
SW(w#e) = SW(w)

Theorem 116.3 (Kronheimer-Mrowka’s adjunction formula). If X is an oriented closed smooth
4—manifold with b*(X) > 2, and 3 C X is an oriented closed connected embedded surface with
[X] € Hy(X, Z) non-torsion and 3. - X > 0, then

29(2) =22 32+ [(c1(Lw), [ZD)]

whenever
SW(w) # 0.

One should also be aware of Taubes’ work on SW = Gr [Taugg].

117 Donaldson’s diagonalisation theorem via Seiberg—Witten theory

Donaldson’s diagonalisation theorem admits a technically rather simple proof using Seiberg—
Witten theory. This requires a bit of algebra.

Definition 117.1. Let g: Z" — Z be an integral quadratic form. A characteristic element with
respect to g is a ¢ € Z" with
g(e, %) = q(x, %) mod 2

for every x € Z™. .

Theorem 117.2 (van der Blij [MH73, (5.2) Lemmal). Letq: Z" — Z be an integral quadratic form.
If ¢ is characteristic, then
q(c,c) = o(g) mod 8.

Theorem 117.3 (Elkies). Ifg: Z" — Z is negative definite unimodular form which is not diago-
nalisable, then there is a characteristic element ¢ € Z™ with

q(c,c) > 8 —n.
In light of this, the following evidently implies Donaldson’s diagonalisation theorem.

Proposition 117.4 (Kronheimer). Let X be a oriented closed smooth 4—manifold with negative
definite intersection form Q. Every characteristicy € Hy(X, Z) satisfies

ly vl > b*(X).

Remark 117.5. The condition on b; is easy to remove. )
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Sketch proof. (To simplify the argument we assume that b; = 0.) Suppose not; that is: there is a
characteristic y € Hy(X, Z) with |y - y| < by(X). Since Q is negative definite and |y - y| — b2(X)
is divisible by 8,

y-y=8k—0(X) with k> 1.

Choose a spin¥!) —structure w with ¢;(Ly) = y (up to torsion). By construction,
indexD} =2k >2 and d(w) =2k +b;(X)+1.

For a generic choice of 7,

M (w,1)

is cut-out transversely and thus smooth of dimension d(w).
A+ (w,n) is not compact, but  (w, ). If [A, @] € 4 (w,n)\M*(w,7n), then F} = n and
® = 0. In fact, there is a unique such point [A,, 0]. It can be arranged that coker DZ” =0.

The truncation
MO (w, ) = {[A @] € M (w,n) : |D]| 2 > 5}

is. The boundary
o.0° (w,n) = {[A,®] € M*(w,n) : |2 = &}

is cobordant to
R ={(A®): Ff =1n,Da® =0,[|®]|;2 = 6}/&(w) = [A,] X PkerDj\”.

The class p used to define the Seiberg-Witten invariants satisfies

/ A1)
R

This contradicts Stokes’s theorem since & is a boundary. [ ]
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