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This seminar will consists of 13 meetings. Here is a list of proposed topics.

(1) Introduction and planning 14.4.2021

(2) Cheeger’s finiteness theorem, 21.4.2021

Theorem 0.1 (Cheeger [Che70]). For every Λ > 0 and𝑚 ∈ N0 there are only �nitely many
homeomorphism types of connected, closed𝑚–manifolds admitting a Riemannian metric 𝑔
with

diam(𝑋,𝑔) 6 Λ, vol(𝑋,𝑔) 6 Λ, and |𝑅𝑔 | 6 Λ.

The work of Kirby–Siebenmann implies di�eomorphism �niteness in dim𝑋 ≠ 4.

The ideas in this work set the stage for Riemannian Convergence Theory.

(3) Lipschitz topology and Shikata’s theorem, 28.4.2021

The set 𝔐 of isometry classes of compact metric spaces carries a the Lipschitz metric 𝑑𝐿 .
This induces a Shikata’s metric 𝑑𝑆 on the set of di�eomorphism types of closed manifolds.

Theorem 0.2 (Shikata [Shi66]). For every𝑚 ∈ N0 there is an 𝜀 = 𝜀 (𝑚) > 0 such that if
𝑑𝑆 ( [𝑋 ], [𝑌 ]) 6 𝜀, then [𝑋 ] = [𝑌 ].

It is an interesting problem to investigate the optimal 𝜀 (𝑚). [Shi66] gives 𝜀 (𝑚) = 1/(𝑚!)𝑚 .
Karcher [Kar72] has an improved lower bound of roughly 1

3𝑚
−2.

[Shi75] discusses the behaviour of 𝑑𝑆 with respect to connected sums, etc.; e.g.; the
distance between two manifolds di�ering by connected sum with an exotic sphere.

[This might be suitable for someone with no or little prior knowledge of Riemannian
Geometry.]
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(4) Gromov–Hausdorff convergence, 5.5.2021

The Lipschitz topology is very �ne and consequently has very few compact subsets.

The set of compact subsets K(𝑋 ) of a metric space 𝑋 carries the Hausdor� metric. If 𝑋
is compact, then so isK(𝑋 ). The Hausdor� metric can be used to de�ne the Gromov–
Hausdor� topology on the set of isometry classes of compact metric spaces. (This theory
was invented by Edwards [Edw75] and then invented again by Gromov [Gro81b]). There
are numerous examples contrasting the Lipschitz and the Gromov–Hausdor� topologies.
The Gromov–Hausdor� topology enjoys excellent compactness properties.

Theorem 0.3 (Edwards [Edw75, Theorems III.3 and III.7]). (𝔐, 𝑑𝐺𝐻 ) is separable and
complete.

Theorem 0.4 (Gromov’s compactness criterion [Gro81b, p.64]). A subset 𝔛 ⊂ 𝔐 is
relatively compact if and only if it is uniformly bounded and uniformly totally bounded.

It turns out to be useful to also introduce the pointed Gromov–Hausdor� topology for
non-compact metric spaces (because they often appear as rescaling limits).

[This might be suitable for someone with no or little prior knowledge of Riemannian
Geometry.]

(5) Bishop–Gromov volume comparison andGromov’s precompactness theorem, 12.5.2021

The criterion for a subset 𝔛 ⊂ 𝔐 to relatively compact can be translated to a uniform
covering number bound. The Bishop–Gromov Volume Comparison Theorem [Bis63;
BC64, Section 11.10 Corollary 3 and 4; Gro81a, Section 2.1] yields upper bounds on volume
growth assuming lower Ricci bounds. This result combined with a straight-forward
covering argument yields Gromov’s precompactness theorem.

Theorem 0.5 ([Gro07, Theorem 5.3]). Let 𝜅 ∈ R, 𝐷 > 0, and𝑚 > 0. The subset of isometry
classes of complete Riemannian manifolds (𝑋,𝑔) of dimension 𝑋 with

diam(𝑀) 6 𝐷 and Ric𝑔 > (𝑛 − 1)𝜅𝑔

is relatively compact in (𝔐, 𝑑𝐺𝐻 ).

This translates to a corresponding result for the pointed Gromov–Hausdor� topology.
This is is signi�cant for the notion of tangent cone (at in�nity).
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(6) Examples arising from the Gibbons–Hawking ansatz/Hattori’s examples of non-
uniqe tangent cones, 19.5.2021

TheGibbons–Hawking ansatz [GH78] is a simple but very useful method for constructing
explicit hyperkähler metrics in dimension four. These metrics are Ricci �at. The notion
of pointed Gromov–Hausdor� convergence can be studied very concretely for sequences
of such metrics.

Hattori [Hat17] used the Gibbons–Hawking ansatz to construct an example of a hyper-
kähler 4–manifold with non-unique tangent cones at in�nity. This should be contrasted
with the uniqueness theorem due to Colding and Minicozzi [CM14].

(7) Cheeger–Gromov 𝐶𝑘,𝛼 topology, 26.5.2021

The Cheeger–Gromov 𝐶𝑘,𝛼 topology is much stronger than the Lipschitz topology but
gives more useful geometric information. The Fundamental Lemma of Riemannian
Convergence Theory gives a compactness criterion for families of Riemannian manifolds
with “uniformly controlled atlases”.

The hypotheses of Cheeger’s �niteness theorem yield uniform control on atlases con-
structed from the exponential map/normal coordinates. This observation together with
Shikata’s theorem gives another proof of di�eomorphism �niteness.

(8) Harmonic coordinates and uniformly controlled atlases, 9.6.2021

To control normal coordinates requires information on the Riemann curvature, which is
often not available. To control harmonic coordinates on the other hand it su�ces to have
information on Ricci curvature. This is particularly useful for (almost) Einstein metrics.
[JK82; DK81; GL91] This discussion yields a compactness theorem under Ricci curvature
bounds [And90, Theorem 1.1], lower bounds on the injectivity radius, and upper bounds
on the diameter.

3



(9) Anderson’s volume pinching theorem, 16.6.2021

The lower bounds on the injectivity radius and upper bounds on the diameter in [And90,
Theorem 1.1] can often be traded for other geometric hypothesis. One application of this
circle of ideas is the following volume pinching theorem/almost rigidity theorem.

Theorem 0.6 (Anderson [And90, Theorem 1.2]). Given𝑚 ∈ N and Λ > 0, there exists
an 𝜀 = 𝜀 (𝑚,Λ) > 0 such that if (𝑋,𝑔) is a closed Riemannian manifold of dimension𝑚

satisfying

(0.7) (𝑚 − 1)𝑔 6 Ric𝑔 6 Λ𝑔 and
vol(𝑀,𝑔)
vol(𝑆𝑚, 𝑔1)

> 1 − 𝜀,

then 𝑋 is di�eomorphic to 𝑆𝑚 .

There are numerous related results which could be discussed as well.

(10) 𝜀–regularity theoremand convergence under integral curvature bounds, 23.6.2021

[And90, Theorem 1.1] together with an 𝜀–regularity result yields the following.

Theorem 0.8 (Anderson [And90, Theorem 2.6]). Given𝑚 ∈ N, 𝑅, 𝑐, 𝑣 > 0, and 𝛼 ∈ (0, 1),
If (𝑋𝜈 , 𝑔𝜈 ) is a sequence of Riemannian manifolds of dimension 𝑛 satisfying

|Ric𝑔𝜈 | 6 𝑐, vol(𝑋𝜈 , 𝑔𝜈 ) > 𝑣, and
ˆ
𝑋𝜈

|𝑅𝑔𝜈 |𝑛/2 6 𝑐,

then, after passing to a subsequence, (𝑋𝜈 , 𝑔𝜈 ) converges in the Gromov–Hausdor� topology
to a Riemannian orbifold (𝑀,𝑔) with a �nite number of singular points, each of which so
modeled on a cone over 𝑆𝑚−1/Γ; 𝑔 is a continuous Riemannian metric and𝐶1,𝛼 on the regular
part of 𝑋 .

A re�nement of this result has been proved (independently) by Bando, Kasue, and Naka-
jima [BKN89, Theorem 5.5]. This result is particularly interesting in dimension four.

[This might require two talks.]

(11) Singularities of Ricci flow: tangent flows, 30.6.2021

Unless he vehemently objects, Shubham will explain some applications of Riemannian
Convergence Theory to Ricci �ow and the study of singularities thereof.
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(12) Sketch of of Cheeger–Colding theory and the almost splitting theorem

The theory developed so far requires upper and lower bounds on the Ricci curvature. From
Gromov’s pre-compactness theorem Gromov–Hausdor� limits can be obtained assuming
lower Ricci bounds only but the limiting spaces are a priori extremely irregular. It turns
out that under a no-collapsing hypothesis some regularity for the limit can be established.
The rough idea is to stratify the limit by tangent cone type and exploit the almost splitting
theorem. This talk should give an overview of this approach to Riemannian Convergence
Theory, possibly without any proofs at all. [CC96; CC97; CC00b; CC00a].

[This might require numerous talks—even on a sketch level. This will require a fair
amount of work to prepare.]

(13) Collapsing, 7.7.2021

The no-collapsing hypothesis does not always hold. Roughly speaking this means that
the Gromov–Hausdor� limit is of lower dimension. There are numerous situations where
collapsing is unavoidable and even desirable (e.g., SYZ, adiabatic limits of 𝐺2–manifolds).
This talk could discuss a number of examples of collapsing, some structural results on
collapsing limits, etc.
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