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Abstract

We prove an existence theorem for Spin(7)–instantons, which are highly concentrated near

a Cayley submanifold; thus giving a partial converse to Tian’s foundational compactness

theorem [Tia00]. As an application, we show how to construct Spin(7)–instantons on Spin(7)–
manifolds with suitable local 𝐾3 Cayley fibrations. This recovers an example constructed by

Lewis [Lew98].

1 Introduction

In this article we study some aspects of gauge theory on Spin(7)–manifolds, i.e., compact Rie-

mannian 8–manifolds with holonomy contained in the exceptional Lie group Spin(7) ⊂ SO(8).
Every Spin(7)–manifold 𝑋 comes equipped with a 4–form Φ, which is a calibration in the sense

of Harvey and Lawson [HL82]. Submanifolds 𝑄 ⊂ 𝑋 which are calibrated by Φ are called Cay-
ley submanifolds. The linear operator ∗(· ∧ Φ) : Λ2 → Λ2

has eigenvalues −1 and 3 and with

eigenspaces of dimension 21 and 7 respectively; and, in analogy with gauge theory on 4–manifolds,

we consider connections 𝐴 whose curvature satisfies the “anti-self-duality” condition

(1.1) ∗(𝐹𝐴 ∧ Φ) = −𝐹𝐴 .

After gauge fixing, (1.1) becomes elliptic. Solutions to (1.1), commonly called Spin(7)–instantons,
are absolute minimisers of the Yang–Mills functional. These equations play an important rôle in

the Donaldson–Thomas programme [DT98] to develop gauge theory in higher dimensions and,

by dimensional reduction, give rise to a plethora of interesting gauge theoretical equations in

dimensions less than eight.

Tian [Tia00] discovered that there is an interesting relation between gauge theory in higher

dimension and calibrated geometry. In particular, his foundational compactness result—extending

work of Price [Pri83], Uhlenbeck [Uhl82a], and Nakajima [Nak88]—predicts that a sequence (𝐴𝑖)
of Spin(7)–instantons could degenerate by “bubbling off ASD instantons transversely to a Cayley

submanifold 𝑄”. More precisely, outside 𝑄 the sequence (𝐴𝑖) converges smoothly (possibly after

passing to a subsequence and changing gauge) and for each 𝑥 ∈ 𝑄 there exists a non-trivial

ASD instanton ℑ(𝑥) on 𝑁𝑥𝑄 ≔ 𝑇𝑥𝑄
⊥
whose pullback to 𝑇𝑥𝑋 is the limit of a blowing up of the
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sequence (𝐴𝑖) around the point 𝑥 . The main result of this article gives sufficient conditions under

which this phenomenon will appear.

Theorem 1.2. Let (𝑋,Φ) be a compact Spin(7)–manifold. Suppose we are given:

• an (irreducible and) unobstructed Spin(7)–instanton 𝐴0 on a 𝐺–bundle 𝐸0 over 𝑋 ,

• an unobstructed Cayley submanifold 𝑄 and

• an unobstructed Fueter section ℑ of an instanton moduli bundle 𝔐 → 𝑄 associated with 𝑄
and 𝐸0 |𝑄 .

Then there exists a constant Λ > 0 and a 𝐺–bundle 𝐸 together with a family of (irreducible and)
unobstructed Spin(7)–instantons (𝐴𝜆)𝜆∈ (0,Λ] on 𝐸. Moreover, as 𝜆 tends to zero 𝐴𝜆 converges to 𝐴0

on the complement of 𝑄 and at each point 𝑥 ∈ 𝑄 an ASD instanton in the equivalence class given by
ℑ(𝑥) bubbles off transversely.

Remark 1.3. We define the concepts of instanton moduli bundles and Fueter sections thereof in

Section 4. For now, it shall suffice to say that 𝔐 is a bundle of moduli spaces and a Fueter section

of𝔐 is a section which satisfies a non-linear p.d.e. similar to a Dirac equation.

Unobstructedness is best understood as a notion of being in general position; see Definition 2.27,

Definition 2.39 and Definition 4.11.

The proof of Theorem 1.2 is based on combining a gluing construction with adiabatic limit

techniques. The analysis involved is similar to unpublished work by Brendle on the Yang–Mills

equation in higher dimension [Bre03b; Bre03a] and Pacard–Ritoré’s work on the Allen–Cahn

equation [PR03]. The basic ideas, which are discussed briefly at the beginning of Section 5 and

Section 6, are quite simple; however, the reader should be warned that some of the precise technical

details are quite delicate.

Theorem 1.2 can be used as a tool to construct examples of Spin(7)–instantons. A particularly

interesting situation, where our result can be applied, is if𝑋 has a suitable local𝐾3 Cayley fibration.

Theorem 1.4. Let 𝑋 be a compact Spin(7)–manifold with holonomy equal to Spin(7). Suppose that
𝑄 is a Cayley submanifold in 𝑋 which has self-intersection number zero, is diffeomorphic to a 𝐾3

surface whose induced metric is sufficiently close to a hyperkähler metric and suppose that the induced
connection on 𝑁𝑄 is almost flat. Then there exists a 5–dimensional family of Spin(7)–instantons on
a SU(2)–bundle 𝐸 over 𝑋 with 𝑐2(𝐸) = PD[𝑄].

Moreover, if 𝑄1, . . . , 𝑄𝑘 is a collection of 𝑘 disjoint Cayley submanifolds as above, then there
exists a (8𝑘 − 3)–dimensional family of Spin(7)–instantons on a SU(2)–bundle 𝐸 over 𝑋 with
𝑐2(𝐸) =

∑𝑘
𝑖=1

PD[𝑄𝑖].

Here is a concrete example.

Example 1.5. Joyce [Joy00, Example 14.3.3] gives an example of a Spin(7)–manifold which contains

two disjoint Cayley submanifolds𝑄1 and𝑄2 of the kind required by above. Applying Theorem 1.4 in
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this situation recovers the example of a Spin(7)–instanton described in Lewis’ DPhil thesis [Lew98].
In fact, it produces examples with 𝑐2(𝐸) = 𝑛 PD[𝑄1] +𝑚 PD[𝑄2] for arbitrary 𝑛,𝑚 ∈ N by taking

the 𝑄3, . . . to be slight perturbations of 𝑄1 and 𝑄2 (which exist because 𝑋 is locally fibred near 𝑄1

and 𝑄2).

Every Cayley submanifold as above gives rise to a local fibration of 𝑋 by Cayley submanifolds,

see Proposition 2.43; hence, we can use Theorem 1.4 to produce large families of Spin(7)–instantons.
This can be compared with the situation on negative definite four-manifolds [Tau82], in which

one can construct ASD instantons concentrated around any finite number of points.

Let us end the introduction on a speculative remark. Suppose that 𝑋 is a compact Spin(7)–
manifold together with a fibration 𝜋 : 𝑋 → 𝐵 to a compact base whose generic fibre is a 𝐾3 Cayley

submanifold. In view of the above one could hope (very optimistically) that one can show that the

moduli space M of Spin(7)–instantons on the SU(2)–bundle 𝐸 obtained by applying Theorem 1.4

to a generic fibre of 𝜋 is smooth (or only mildly singular), 5–dimensional and can be compactified

by adding 𝐵 to the boundary. Then we can use M to construct a cobordism between 𝐵 and the

link of the singular set of M much as in the original proof of Donaldson’s theorem [Don83].

In particular, if M ∪ 𝐵 is smooth and compact, then 𝐵 is null-cobordant and, hence, 𝜎 (𝐵) = 0.

Although there are currently no known examples of Spin(7)–manifolds with (singular) 𝐾3 Cayley

fibrations, the above might serve as an indication of what could be achieved using gauge theory

on Spin(7)–manifolds.

Acknowledgements This article is the outcome of work undertaken by the author for his PhD

thesis at Imperial College London [Wal13b], supported by European Research Council Grant 247331.

I am grateful to my supervisor Simon Donaldson for his encouragement.

2 Review of Spin(7)–geometry

We begin with a crash course in Spin(7)–geometry, touching upon the basic concepts and facts

relevant for this article. For a more thorough and comprehensive discussion we refer the reader to

Joyce’s book [Joy00], specifically Chapter 10.

2.1 Spin(7)–manifolds

In this section we approach Spin(7)–geometry by thinking of the 4–form Φ, and not the metric, as

the defining structure. However, both points of view are essentially equivalent.

Definition 2.1. A 4–form Φ on an 8–dimensional vector space𝑊 is called admissible if there exists
a basis of𝑊 in which it is identified with the 4–form Φ0 on R8

defined by

Φ0 ≔ 𝑒0123 − 𝑒0145 − 𝑒0167 − 𝑒0246 + 𝑒0257 − 𝑒0347

+ 𝑒4567 − 𝑒2367 − 𝑒2345 − 𝑒1357 + 𝑒1346 − 𝑒1256.
(2.2)
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Here we denote the standard basis of (R8)∗ by (𝑒0, . . . , 𝑒7). The space of admissible forms on𝑊 is

denoted byA(𝑊 ).

Remark 2.3. An intrinsic characterisation of admissible forms can be found in [SW17, Theorem 7.4

and Definition 7.5].

We use the following slightly unconventional definition, see Remark 2.13 for the relation with

the usual definition.

Definition 2.4. Spin(7) is the subgroup of GL(R8) preserving the 4–form Φ0 defined in (2.2).

Definition 2.5. A Spin(7)–structure on an 8–dimensional manifold 𝑋 is an admissible 4–form

Φ ∈ Γ(A(𝑇𝑋 )) ⊂ Ω4(𝑋 ). An 8–manifold together with a Spin(7)–structure is called an almost
Spin(7)–manifold.

Proposition 2.6 ([SW17, Theorem 9.1 and Theorem 7.4]). Spin(7) is a simple, compact, connected
and simply connected Lie group of dimension 21. Spin(7) is a subgroup of SO(8).

It follows that each almost Spin(7)–manifold is canonically equipped with a metric 𝑔Φ and an

orientation.

Definition 2.7. Let (𝑋,Φ) be an almost Spin(7)–manifold. The torsion of the Spin(7)–structure Φ
is defined to be

∇𝑔ΦΦ.

If ∇𝑔ΦΦ = 0, then Φ is called torsion-free and (𝑋,Φ) is called a Spin(7)–manifold.

Compact Spin(7)–manifolds with Hol(𝑔Φ) = Spin(7) are difficult to come by. Joyce has

developed two construction techniques, which yield a good number of examples, see [Joy96; Joy99;

Joy00].

A very simple example of a Spin(7)–manifold is (R8,Φ0). We will use this as a local model and

it will be useful to realise it as a special case of the following examples.

Example 2.8. If (𝑆, 𝜔1, 𝜔2, 𝜔3) and (𝑇, 𝜇1, 𝜇2, 𝜇3) are a pair of hyperkähler surfaces, then (𝑆 ×𝑇,Φ)
with

(2.9) Φ ≔ vol𝑆 + vol𝑇 −
3∑︁

𝑖=1

𝜔𝑖 ∧ 𝜇𝑖

is a Spin(7)–manifold.

Example 2.10. If (𝑌, 𝜙) is a G2–manifold, then (R × 𝑌,Φ) with

(2.11) Φ ≔ d𝑡 ∧ 𝜙 +𝜓

and𝜓 ≔ Θ(𝜙) = ∗𝜙𝜙 is a Spin(7)–manifold.
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Taking 𝑆 = 𝑇 = R4
with (𝜔1, 𝜔2, 𝜔3) = (𝜇1, 𝜇2, 𝜇3) a positive orthonormal basis of Λ+ ≔

Λ+(R4)∗ in Example 2.8 and 𝑌 = R7
with 𝜙 = 𝑒123 − 𝑒145 − 𝑒167 − 𝑒246 + 𝑒257 − 𝑒347

in Example 2.10

both recover (R8,Φ0).
The following linear algebra fact can be seen as the Spin(7)–analogue of Λ2 = Λ+ ⊕ Λ−

, the

splitting into (anti)-self-dual two-forms on R4
.

Proposition 2.12 ([SW17, Theorem 9.5]). Let Φ be an admissible 4–form on an 8–dimensional vector
space𝑊 . Then Λ2𝑊 ∗ splits as follows

Λ2𝑊 ∗ = Λ2

7
⊕ Λ2

21

with

Λ2

7
≔ {𝛼 : ∗(𝛼 ∧ Φ) = 3𝛼} and

Λ2

21
≔ {𝛼 : ∗(𝛼 ∧ Φ) = −𝛼} � 𝔰𝔭𝔦𝔫(7) .

Remark 2.13. The action of Spin(7) on Λ2

7
gives rise to a double cover Spin(7) → SO(7); hence,

the above definition of Spin(7) agrees with the usual definition as the universal cover of SO(7).
Proposition 2.12 induces an analogous splitting of Λ2𝑇 ∗𝑋 for every almost Spin(7)–manifold.

By slight abuse of notation we will denote the corresponding summands by Λ2

𝑑
as well. We denote

the projection onto Λ2

𝑑
by

𝜋𝑑 : Λ2𝑇 ∗𝑋 → Λ2

𝑑
.

The following propositions are easy to check via straight-forward computation.

Proposition 2.14. If Φ is the admissible 4–form on a product of two quaternionic lines 𝑆 and𝑇 defined
as in (2.9), then Λ2

7
splits as

Λ2

7
= Λ2

3
⊕ Λ2

4
,

where

Λ2

3
=

3⊕
𝑖=1

⟨𝜔𝑖 − 𝜇𝑖⟩ and

Λ2

4
=

{
⟨𝐿·, ·⟩ ∈ 𝑆∗ ⊗ 𝑇 ∗

: 𝐿 ∈ Hom(𝑆,𝑇 ) satisfying
∑︁
𝑖

𝐽𝑖𝐿𝐼𝑖 = −3𝐿

}
.

Here 𝐼𝑖 and 𝐽𝑖 denote the complex structures on 𝑆 and 𝑇 corresponding to 𝜔𝑖 and 𝜇𝑖 respectively.

Proposition 2.15. If Φ is the admissible 4–form on a product of R with a 7–dimensional vector space
𝑉 equipped with a non-degenerate 3–form 𝜙 defined as in (2.11), then Λ2

7
can be written as

Λ2

7
= {d𝑡 ∧ 𝑣∗ + 𝑖 (𝑣)𝜙 : 𝑣 ∈ 𝑉 }
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and Λ2

21
can be written as

Λ2

21
= {d𝑡 ∧ ∗𝑉 (𝛼 ∧𝜓 ) − 𝛼 : 𝛼 ∈ Λ2𝑉 ∗}

where𝜓 := Θ(𝜙).

Proposition 2.16 ([Joy00, Proposition 10.5.6]). If Φ is a Spin(7)–structure on 𝑋 , then 𝑋 is spin and
has a canonical spin structure with

/𝑆+ = Λ0 ⊕ Λ2

7
and /𝑆− = Λ1

8
.

Moreover, if Φ is torsion-free, then 𝑋 admits a non-trivial parallel spinor.

2.2 Spin(7)–instantons
Throughout the remainder of this section we fix a Spin(7)–manifold (𝑋,Φ). Also, let 𝐺 be a

(compact semi-simple) Lie group and 𝐸 a 𝐺–bundle over a Spin(7)–manifold.

Definition 2.17. A connection 𝐴 ∈ A(𝐸) on 𝐸 is called a Spin(7)–instanton if it satisfies

∗(𝐹𝐴 ∧ Φ) = −𝐹𝐴

or equivalently

(2.18) 𝜋7(𝐹𝐴) = 0.

This equation originated in the physics literature [CDFN83] and was introduced to a wider

mathematical audience by Donaldson–Thomas [DT98, Section 3]. Spin(7)–instantons were the
topic of Lewis’ DPhil thesis [Lew98]; in particular, he proposed the construction of one non-trivial

example on a SU(2)–bundle over a Spin(7)–manifold with full holonomy Spin(7), cf. Section 8.

Recently, a construction for Spin(7)–instantons on Spin(7)–manifolds arising from [Joy99] was

given by Tanaka [Tan12].

For us the following “trivial” examples will play an important role.

Example 2.19. In the situation of Example 2.8 if 𝐼 is an ASD instanton over 𝑇 , then its pullback to

𝑆 ×𝑇 is a Spin(7)–instanton.

Example 2.20. In the situation of Example 2.10 if 𝐴 is a G2–instanton over 𝑌 , then its pullback to

R × 𝑌 is a Spin(7)–instanton.

If 𝐴 ∈ A(𝐸) is a connection on 𝐸, we define 𝐿𝐴 : Ω1(𝑋, 𝔤𝐸) → Ω0(𝑋, 𝔤𝐸) ⊕ Ω2

7
(𝑋, 𝔤𝐸) by

(2.21) 𝐿𝐴 (𝑎) ≔
(
d
∗
𝐴𝑎, 𝜋7(d𝐴𝑎)

)
.

This is the linearisation of (2.18) supplemented with the Coulomb gauge condition; it also agrees

with the negative Dirac operator on 𝑋 twisted by 𝔤𝐸 .

6



Remark 2.22. In the situation of Example 2.20 denote the pullback of𝐴 by A. Identifying Ω1(𝑋, 𝔤𝐸)
with Ω0(R × 𝑌,R ⊕ 𝑝∗

2
𝑇 ∗𝑌 ) and Ω0(𝑋, 𝔤𝐸) ⊕ Ω2

7
(𝑋, 𝔤𝐸) with Ω0(R × 𝑌,R ⊕ 𝑝∗

2
𝑇 ∗𝑌 ) using Proposi-

tion 2.15, we can write

𝐿A = 𝜕𝑡 −
(

0 d
∗
𝐴

d𝐴 ∗𝑌 (𝜓 ∧ d𝐴)

)
.

Note that the second term is nothing but the linearisation of the G2–instanton equation at 𝐴,

see [Wal13a, Section 3].

Proposition 2.23. If 𝐴 is a Spin(7)–instanton, then there is an open subset𝑈 ⊂ ker𝐿𝐴 and a smooth
map 𝜅 : 𝑈 → coker𝐿𝐴 such that the moduli space of Spin(7)–instantons near 𝐴 is homeomorphic to
𝜅−1(0)/Γ𝐴. Here Γ𝐴 ⊂ G(𝐸) is the group of gauge transformations fixing 𝐴. The index of 𝐿𝐴 is given
by

index𝐿𝐴 = dim𝔤 · (𝑏1 − 𝑏0 − 𝑏2

7
)

+ 1

24

ˆ
𝑋

𝑝1(𝑋 )𝑝1(𝔤𝐸) −
1

12

ˆ
𝑋

𝑝1(𝔤𝐸)2 − 2𝑝2(𝔤𝐸).
(2.24)

If 𝐸 is a SU(𝑟 )–bundle, then

index𝐿𝐴 = (𝑟 2 − 1) (𝑏1 − 𝑏0 − 𝑏2

7
)

− 𝑟

12

ˆ
𝑋

𝑝1(𝑋 )𝑐2(𝐸) −
ˆ
𝑋

(
1 + 𝑟

6

)
𝑐2(𝐸)2 − 𝑟

3

𝑐4(𝐸).
(2.25)

Here𝑏2

7
is the refined second Betti number corresponding toΛ2

7
in Proposition 2.12, see [Joy00, Definition

10.6.3].

Remark 2.26. The index formula given by Lewis [Lew98, Theorem 3.2] is incorrect. He mistakenly

couples the Dirac operator to 𝐸 instead of 𝔤𝐸 .

Proof of the index formula. The existence of the Kuranishi map 𝜅 is standard (see, e.g., [DK90,

Section 4.2]); we only prove the index formula. Using

ch2(𝔤𝐸 ⊗ C) = −𝑐2(𝔤𝐸 ⊗ C) and

ch4(𝔤𝐸 ⊗ C) = 1

12

(𝑐2(𝔤𝐸 ⊗ C)2 − 2𝑐4(𝔤𝐸 ⊗ C))
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the index theorem yields

index𝐿𝐴 = −
ˆ
𝑋

ˆ𝐴(𝑋 )ch(𝔤𝐸 ⊗ C)

= −
ˆ
𝑋

(
1 − 𝑝1(𝑋 )

24

+ 7𝑝1(𝑋 )2 − 4𝑝2(𝑋 )
5670

)
·
(
dim𝔤 + 𝑝1(𝔤𝐸) +

𝑝1(𝔤𝐸)2 − 2𝑝2(𝔤𝐸)
12

)
= dim𝔤 · (𝑏1 − 𝑏0 − 𝑏2

7
)

+ 1

24

ˆ
𝑋

𝑝1(𝑋 )𝑝1(𝔤𝐸) −
1

12

ˆ
𝑋

𝑝1(𝔤𝐸)2 − 2𝑝2(𝔤𝐸) .

In the last step, we applied the identity derived up to this point with 𝐸 the trivial line bundle to

obtain

𝑏0 − 𝑏1 + 𝑏2

7
=

ˆ
𝑋

7𝑝1(𝑋 )2 − 4𝑝2(𝑋 )
5670

.

If 𝐸 is a SU(𝑟 )–bundle, then we can use

ch(𝔤𝐸 ⊗ C) = ch(𝐸 ⊗ 𝐸∗) − 1 = 𝑟 2 − 1 − 2𝑟𝑐2(𝐸) +
6 + 𝑟

6

𝑐2(𝐸)2 − 𝑟

3

𝑐4(𝐸) . □

Definition 2.27. If 𝐴 is a Spin(7)–instanton, then we denote by

H0

𝐴 ≔ ker𝐿∗𝐴 ∩ Ω0(𝑋, 𝔤𝐸),
H1

𝐴 ≔ ker𝐿𝐴 ∩ Ω1(𝑋, 𝔤𝐸) and

H2

7;𝐴 ≔ ker𝐿∗𝐴 ∩ Ω2

7
(𝑋, 𝔤𝐸)

the space of infinitesimal automorphisms, the space of infinitesimal deformations and the space
of infinitesimal obstructions respectively. 𝐴 is called irreducible ifH0

𝐴
= 0 and unobstructed if

H2

7;𝐴
= 0.

Remark 2.28. The above spaces can also be seen as the cohomology groups of the deformation

complex

0 → Ω0(𝑋, 𝔤𝐸)
d𝐴−−→ Ω1(𝑋, 𝔤𝐸)

𝜋7◦d𝐴−−−−→ Ω2

7
(𝑋, 𝔤𝐸) → 0.

2.3 Cayley submanifolds

Theorem 2.29 (Harvey and Lawson [HL82, Chapter IV Theorem 1.24]). If (𝑋,Φ) is a Spin(7)–
manifold, then Φ is a calibration. Moreover, 𝑄 ⊂ 𝑋 is calibrated by Φ if and only of at each point
𝑥 ∈ 𝑄 there exists a basis (𝑒0, . . . , 𝑒7) of𝑇𝑥𝑋 with respect to which Φ is given by (2.2) and (𝑒0, . . . , 𝑒3)
is a positive basis of 𝑇𝑥𝑄 .
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Remark 2.30. Recall that a differential 𝑘–form 𝛼 on a Riemannian manifold (𝑀,𝑔) is called a

calibration if it is closed and has comass at most 1, that is, d𝛼 = 0 and for all orthogonal subset

{𝑒1, . . . , 𝑒𝑘 } ⊂ 𝑇𝑥𝑀 we have 𝛼 (𝑒1, . . . , 𝑒𝑘 ) ⩽ 1.

Definition 2.31. Let (𝑋,Φ) be a Spin(7)–manifold. Then Φ is called the Cayley calibration. An
oriented 4–dimensional submanifold𝑄 ⊂ 𝑋 that is calibrated by Φ is called a Cayley submanifold.

If𝑄 ⊂ (𝑋,Φ) is a Cayley submanifold, then it follows from Theorem 2.29 that there is a natural

identification

(2.32) Λ+𝑇 ∗𝑄 � Λ+𝑁 ∗𝑄.

We define a subbundle HomΦ(𝑇𝑄, 𝑁𝑄) ⊂ Hom(𝑇𝑄, 𝑁𝑄) by decreeing that 𝐿 ∈ HomΦ(𝑇𝑄, 𝑁𝑄)
if and only if ∑︁

𝑖

𝐼𝑖𝐿𝐼𝑖 = −3𝐿,

cf. Proposition 2.14. Here 𝐼𝑖 runs through a local orthonormal basis of Λ+𝑇 ∗𝑄 � Λ+𝑁 ∗𝑄 , which
we can identify with subsets of 𝔰𝔬(𝑇𝑄) and 𝔰𝔬(𝑁𝑄). Up to multiplication by

1

4

𝛾𝐿 ≔ 𝐿 −
∑︁
𝑖

𝐼𝑖𝐿𝐼𝑖

defines a projection of Hom(𝑇𝑄, 𝑁𝑄) onto HomΦ(𝑇𝑄, 𝑁𝑄).

Definition 2.33. The Fueter operator 𝐹𝑄 : Γ(𝑄, 𝑁𝑄) → Γ(𝑄,HomΦ(𝑇𝑄, 𝑁𝑄)) associated with 𝑄

is defined by

𝐹𝑄 (𝑛) ≔ 𝛾 ( ¯∇𝑛) .

Remark 2.34. If 𝑒0 is a vector in 𝑇𝑄 , then one can compose 𝐹𝑄 with evaluation on 𝑒0 to obtain the

operator

ev𝑒0
◦ 𝐹𝑄 (𝑛) = ¯∇𝑒0

𝑛 −
∑︁
𝑖

𝐼𝑖 ¯∇𝑒𝑖𝑛

where 𝑒𝑖 ≔ 𝐼𝑖𝑒0. It is therefore appropriate to think of 𝐹 as a Dirac-type operator.

Remark 2.35. Suppose that 𝑄 is spin and 𝔰 is a spin structure on 𝑄 . Then the normal bundle 𝑁𝑄 is

also spin, since 𝑋 is; moreover, there is a spin structure 𝔲 on 𝑁𝑄 such that /𝑆+𝑄 = /𝑆+𝑁𝑄 because of

(2.32). If we set𝑈 ≔ /𝑆−𝑁𝑄 , then it can be seen that Re(/𝑆+𝑄⊗𝑈 ) = 𝑁𝑄 , Re(/𝑆−𝑄⊗𝑈 ) = HomΦ(𝑇𝑄, 𝑁𝑄)
and that 𝐹𝑄 agrees with the twisted Dirac operator /𝐷 : Γ(Re(/𝑆+𝑄 ⊗ 𝑈 )) → Γ(Re(/𝑆−𝑄 ⊗ 𝑈 )). For
more details we refer the reader to [McL98, Section 6] and [Hay12, Section 3.2].

Theorem 2.36 (McLean [McL98, Section 6]). Let (𝑋,Φ) be a compact Spin(7)–manifold and let
𝑄 ⊂ 𝑋 be a compact Cayley submanifold. Then there is an open subset O ⊂ ker 𝐹𝑄 and a smooth
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map 𝜅 : O → coker 𝐹𝑄 such that the moduli space of Cayley submanifolds near 𝑄 is homeomorphic
to 𝜅−1(0). The index of 𝐹𝑄 is given by

(2.37) index 𝐹𝑄 =
𝜎 (𝑄) + 𝜒 (𝑄)

2

− [𝑄] · [𝑄] .

Here 𝜎 (𝑄) := 𝑏+(𝑄) − 𝑏− (𝑄) denotes the signature of 𝑄 .

Remark 2.38. The index formula given by Joyce [Joy00, Equation (10.32)] is incorrect and likely a

misprint as it also contradicts his remarks at the bottom of p. 267.

Definition 2.39. A Cayley submanifold 𝑄 is called unobstructed if 𝐹𝑄 is surjective.

Proof of the index formula. We can assume that 𝑄 is spin. Then the index of 𝐹𝑄 agrees with the

index of the twisted Dirac operator /𝐷𝑈 . By the Atiyah–Singer index theorem

index /𝐷𝑈 =

ˆ
𝑄

ˆ𝐴(𝑄)ch2(𝑈 ) = −1

4

𝜎 (𝑄) −
ˆ
𝑄

𝑐2(𝑈 ) .

This is the formula given by McLean. In order to obtain a more useful expression, we make use of

the fact that if 𝐸 and 𝐹 are a pair of SU(2)–bundles over a 4–manifold and 𝑉 = Re(𝐸 ⊗ 𝐹 ), then

𝑒 (𝑉 ) = 𝑐2(𝐹 ) − 𝑐2(𝐸) and

𝑝1(𝑉 ) = −2(𝑐2(𝐸) + 𝑐2(𝐹 )) .
(2.40)

To see this, note that there must be universal formulas of the form 𝑒 (𝑉 ) = 𝛼 (𝑐2(𝐸) − 𝑐2(𝐹 )) and
𝑝1(𝑉 ) = 𝛽 (𝑐2(𝐸) + 𝑐2(𝐹 )), because 𝑒 (𝑉 ) changes sign when 𝐸 and 𝐹 are interchanged since this

changes the orientation on𝑉 , and 𝑝1(𝑉 ) is independent of the order of 𝐸 and 𝐹 . The constants can

be determined by a simple explicit computation for the spin bundles over 𝐾3. From these formulae

it follows that

𝑐2(𝑈 ) = −1

4

(𝑝1(𝑁𝑄) − 2𝑒 (𝑁𝑄)) .

To compute 𝑝1(𝑁𝑄), we combine /𝑆+𝑄 = /𝑆+𝑁𝑄 and (2.40) to obtain

(2.41) 𝑝1(𝑁𝑄) + 2𝑒 (𝑁𝑄) = −4𝑐2(/𝑆+𝑁𝑄 ) = −4𝑐2(/𝑆+𝑄 ) = 𝑝1(𝑄) + 2𝑒 (𝑄);

hence,

(2.42)

ˆ
𝑄

𝑝1(𝑁𝑄) = 3𝜎 (𝑄) + 2𝜒 (𝑄) − 2[𝑄] · [𝑄] .

Therefore, ˆ
𝑄

𝑐2(𝑈 ) = −3

4

𝜎 (𝑄) − 1

2

𝜒 (𝑄) + [𝑄] · [𝑄],

which implies the claimed index formula. □
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Proposition 2.43. Let 𝑋 be a compact Spin(7)–manifold. Suppose that 𝑄 is a compact Cayley
submanifold in 𝑋 which has self-intersection number zero, is diffeomorphic to a 𝐾3 surface whose
induced metric is sufficiently close to a hyperkähler metric and suppose that the induced connection
on 𝑁𝑄 is almost flat. Then 𝑋 is locally fibred by Cayley 𝐾3 surfaces near 𝑄 .

Proof. Using the fact that𝑄 and hence 𝑁𝑄 is spin as well as (2.40) one can show that 𝑁𝑄 is trivial.

The Fueter operator 𝐹𝑄 thus agrees with the Dirac operator /𝐷𝑈 : Γ(Re(/𝑆+⊗𝑈 )) → Γ(Re(/𝑆− ⊗𝑈 )).
On a hyperkähler 𝐾3 surface the untwisted Dirac operator /𝐷 is surjective, has a four-dimensional

kernel, and every non-zero element of ker /𝐷 is nowhere vanishing; hence, the same is true for /𝐷𝑈

because the metric on 𝑄 is sufficiently close to a hyperkähler metric and the connection on 𝑈 is

almost flat. The existence of the local fibration now follows from (the proof of) Theorem 2.36. □

3 Moduli spaces of ASD instantons over R4

This section is intended to remind the reader of some basic facts about ASD instantons over R4
,

all of which are completely classical and most of which can be found in Donaldson–Segal [DS11,

Section 6.1].

Fix a 𝐺–bundle 𝐸 over 𝑆4 = R4 ∪ {∞}. Denote by𝑀 the moduli space of ASD instantons on 𝐸

framed over the point at infinity, i.e.,

𝑀 (𝐸) ≔ {𝐴 ∈ A(𝐸) : 𝐹+𝐴 = 0}/G0.

HereA(𝐸) denotes the space of connections on 𝐸 and

G0(𝐸) ≔ {𝑔 ∈ G(𝐸) : 𝑔|𝐸∞ = id}

denotes the based gauge group. Thesemoduli spaces are smoothmanifolds, because ASD instantons

over 𝑆4
are always unobstructed as a consequence of the Weitzenböck formula, see, e.g., [Tau82,

Proposition 2.2]. By Uhlenbeck’s removable singularities theorem [Uhl82b, Theorem 4.1] we

can think of 𝑀 as a moduli space of framed finite energy ASD instantons on R4
. In a suitable

functional analytic setup incorporating decay conditions at infinity, see, e.g., [Tau83] or [Nak90],

the infinitesimal deformation theory of a framed ASD instanton 𝐼 over R4
is governed by the linear

operator 𝛿𝐼 : Ω1(R4, 𝔤𝐸) → Ω0(R4, 𝔤𝐸) ⊕ Ω+(R4, 𝔤𝐸) defined by

𝛿𝐼𝑎 ≔ (d∗𝐼𝑎, d+𝐼 𝑎) .(3.1)

From the work of Taubes [Tau83] it is known that 𝛿𝐼 is always surjective and that its kernel lies

in 𝐿2
. More precisely, we have the following result whose proof can be found, e.g., in [Wal13a,

Proposition 5.10].

Proposition 3.2. Let 𝐸 be a 𝐺–bundle over R4 and let 𝐼 ∈ A(𝐸) be a finite energy ASD instanton on
𝐸. Then the following holds.
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1. If 𝑎 ∈ ker𝛿𝐼 decays to zero at infinity, that is to say lim𝑟→∞ sup𝜕𝐵𝑟 (0) |𝑎 | = 0, then |∇𝑘𝑎 | =
𝑂 (𝑟−3−𝑘 ) for 𝑘 ⩾ 0. Here 𝑟 : R4 → [0,∞) denotes the radius function 𝑟 (𝑥) ≔ |𝑥 |.

2. If (𝜉, 𝜔) ∈ ker𝛿∗
𝐼
decays to zero at infinity, then (𝜉, 𝜔) = 0.

In particular, this implies 𝑀 can be equipped with the 𝐿2
–metric arising from the standard

metric on R4
. Any self-dual 2–form 𝜔 ∈ 𝑆 (Λ+) of unit length, determines a complex structure 𝐽𝜔

on R4
via Λ2(R4)∗ � 𝔰𝔬(4). This makes R ⊕ Λ+

into an algebra, which is abstractly isomorphic to

the quaternions H. A key fact is that 𝛿𝐼 commutes with the action of this algebra [Tau83, Proof of

Theorem 3.2]; hence, 𝑇[𝐼 ]𝑀 = ker𝛿𝐼 ⊂ Ω1(R4, 𝔤𝐸) is preserved.

Proposition 3.3. The 𝐿2–metric and the complex structures {𝐽𝜔 : 𝜔 ∈ 𝑆 (Λ+)} define a hyperkähler
structure on𝑀 .

This structure is SO(4)–equivariant. 𝑀 carries an action of R4⋊R+
where R4

acts by translation

and R+
acts by dilation, i.e., by pullback via 𝑠𝜆 where

𝑠𝜆 (𝑥) ≔ 𝜆𝑥

for 𝜆 ∈ R+
. Since the centre of mass of the measure |𝐹𝐼 |2vol is equivariant with respect to the

R4
–action, we can write

𝑀 = 𝑀◦ × R4

where𝑀◦
is the space of instantons centred at zero. The action of Λ+ ⊂ Λ2 � 𝔰𝔬(4) preserves this

product structure and Λ+
acts on the factor R4

in the usual way.

Example 3.4. If 𝐸 is the unique SU(2)–bundle over 𝑆4
with 𝑐2(𝐸) = 1, then 𝐸 carries a single ASD

instanton 𝐼 , commonly called “the one-instanton”, unique up to scaling, translation and changing

the framing at infinity. We can naturally write the corresponding moduli space as

𝑀 = 𝑀◦ × R4 = (Re(Hom(C2, /𝑆+))\{0})/Z2 × R4.

Here /𝑆+ is the positive spin representation associated with R4
and C2

has to be thought of as a

SU(2) representation. In this situation both C2
and /𝑆+ have canonical quaternionic structures

and thus Hom(C2, /𝑆+) inherits a real structure. The real part are simply the quaternionic-linear

homomorphisms. The reader can consult [DK90, Section 3.1] for a more extensive discussion.

Example 3.5. In general, if 𝐸 is an SU(2)–bundle over 𝑆4
, then𝑀 can be understood rather explicitly

in terms of the ADHM construction [DK90, Section 3.3].

Proposition 3.6. There exists a𝐺–bundle E over𝑀 × 𝑆4 together with a framing E|𝑀×{∞} → 𝐺 and
a tautological connection A ∈ A(E) on E such that:

• E|{ [𝐼 ] }×𝑆4 � 𝐸 and

• A restricted to {[𝐼 ]} × R4 is equivalent to [𝐼 ] viaG0(𝐸).
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If we decompose the curvature of the tautological connectionA over𝑀×R4 according to the bi-grading
on Λ∗𝑇 ∗(𝑀 ×R4) induced by𝑇 (𝑀 ×R4) = 𝜋∗

1
𝑇𝑀 ⊕ 𝜋∗

2
𝑇R4, then its components satisfy the following:

• 𝐹
2,0

A = −2Δ−1

𝐼
⟨[𝑎, 𝑏]⟩.

• 𝐹
1,1

A ∈ Γ(Hom(𝜋∗
1
𝑇𝑀, 𝜋∗

2
𝑇R4 ⊗ 𝔤E)) at ( [𝐼 ], 𝑥) is the evaluation of 𝑎 ∈ 𝑇[𝐼 ]𝑀 = ker𝛿𝐼 at 𝑥 ; in

particular, it is (R ⊕ Λ+)–linear.

• 𝐹
0,2

A ∈ Γ(𝜋∗
2
Λ− (R4)∗ ⊗ 𝔤E).

Proof sketch. There is a tautological connection on the pullback of 𝐸 to A(𝐸) × 𝑆4
. It is flat in

the A(𝐸)–direction. It isG0–equivariant, but not basic; hence, induces a connection on 𝑀 × 𝑆4

after choosing a connection on A(𝐸) → A(𝐸)/G0(𝐸). We chose the connection given whose

horizontal distribution is given by the Coulomb gauge with respect to the metric on R4
; that is,

the connection with connection 1–form 𝜃 (𝑎) = Δ−1

𝐼
d
∗
𝐼
𝑎 for 𝑎 ∈ 𝑇𝐼A = Ω1(R𝑛, 𝔤𝐸). The (2, 0)–

component of the curvature of A arises from the curvature of this connection. The second two

bullets are tautological. □

4 Fueter sections of instanton moduli bundles over Cayley submani-
folds

We now discuss models of Spin(7)–instantons which are highly concentrated near a Cayley

submanifold 𝑄 in a Spin(7)–manifold (𝑋,Φ).

4.1 The flat model

We begin with studying the situation on R8 = R4 × R4
. Fix a basis (𝜔1, 𝜔2, 𝜔3) of Λ+ ≔ Λ+(R4)∗

satisfying

𝜔𝑖 ∧ 𝜔 𝑗 = 2𝛿𝑖 𝑗vol

with vol denoting the standard volume form on R4
. Set 𝐽𝑖 ≔ 𝐽𝜔𝑖

. The standard Spin(7)–structure
Φ on R8 = R4 × R4

can be written as

Φ ≔ 𝜋∗
1
vol + 𝜋∗

2
vol −

3∑︁
𝑖=1

𝜋∗
1
𝜔𝑖 ∧ 𝜋∗

2
𝜔𝑖 .

It is a straight-forward computation, using Proposition 2.14, to check that:

Proposition 4.1. A connection 𝐴 on a 𝐺–bundle 𝜋∗
2
𝐸 is a Spin(7)–instanton if and only if:

•

(
𝐹

2,0

𝐴

)+
=

(
𝐹

0,2

𝐴

)+
and
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• 𝐹
1,1

𝐴
thought of as map 𝐿 : 𝑇R4 → Ω1(R4, 𝔤𝐸) satisfies

(4.2) 𝐿 −
∑︁

3

𝑖=1

𝐽𝑖 ◦ 𝐿 ◦ 𝐽𝑖 = 0.

Let 𝑈 be an open subset of R4
. Suppose 𝐴𝑖 is a sequence of Spin(7)–instantons on 𝑈 × R4

on 𝜋∗
2
𝐸 concentrating along𝑈 × {0} and (𝜆𝑖) is a null-sequence such that [(𝑥,𝑦) ↦→ (𝑥, 𝜆𝑖𝑦)]∗𝐴𝑖

converges to 𝐴. Then it follows from (4.1) that

•

(
𝐹

0,2

𝐴

)+
= 0 and

• 𝐹
1,1

𝐴
satisfies (4.2).

By the first bullet, such an 𝐴 determines a map ℑ : 𝑈 → 𝑀 and by the second bullet this map

satisfies the Fueter equation

∇ℑ −
3∑︁

𝑖=1

𝐽𝑖 ◦ ∇ℑ ◦ 𝐽𝑖 = 0.

Up to gauge equivalence,𝐴 can be reconstructed fromℑ by pulling back the tautological connection

on 𝑀 × R4
via ℑ × idR4 . Thus, Fueter maps into 𝑀 can serve as models for highly concentrated

Spin(7)–instantons on𝑈 × R4
.

4.2 The model on 𝑁𝑄

We now globalise the above discussion. Fix a moduli space𝑀 of framed ASD instantons on a 𝐺–

bundle 𝐸 over R4
, as in Section 3 and denote by 𝐸∞ a𝐺–bundle over 𝑄 together with a connection

𝐴∞.

Definition 4.3. The instanton moduli bundle 𝔐 → 𝑄 associated with 𝑄 , 𝐸∞ and𝑀 is defined by

𝔐 ≔ (Fr(𝑁𝑄) × 𝐸∞) ×SO(4)×𝐺 𝑀.

Example 4.4. If 𝑀 = (Re(Hom(C2, /𝑆+))\{0})/Z2 × R4
, as in Example 3.4, and we pick spin

structures 𝔰 and 𝔲 as in Remark 2.35, then

𝔐 = (𝔰 × 𝔲 × 𝐸∞) ×Spin(4)×𝐺 𝑀 = (Re(Hom(C2, /𝑆+))\{0})/Z2 × 𝑁𝑄.

Denote by 𝑁∞𝑄 ≔ Fr(𝑁𝑄) ×SO(4) 𝑆
4
the sphere-bundle obtained from 𝑁𝑄 by adjoining a

section at infinity.

Theorem 4.5 (Donaldson–Segal [DS11] and Haydys [Hay12]). To each section ℑ ∈ Γ(𝔐) we
can assign a 𝐺–bundle 𝐸 = 𝐸 (ℑ) over 𝑁∞𝑄 together with a connection 𝐼 = 𝐼 (ℑ) and a framing
𝑓 : 𝐸 |∞ → 𝐸∞ such that:

• For each 𝑥 ∈ 𝑄 the restriction of 𝐼 to 𝑁𝑥𝑄 represents ℑ(𝑥).
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• The framing 𝑓 identifies the restriction of 𝐼 to the section at infinity with 𝐴∞.

We set 𝐼𝜆 ≔ 𝐼 (𝑠∗
1/𝜆ℑ) and impose the condition that

(4.6) lim

𝜆→0

𝑠∗
𝜆
𝜋0

7
(𝐹𝐼𝜆 ) = 0

where 𝜋0

7
denotes the zeroth order Taylor expansion of 𝜋7 off 𝑄 . As before, this condition can be

phrased in terms of a p.d.e. on ℑ. Define the vertical tangent bundle 𝑉𝔐 to 𝔐 by

𝑉𝔐 ≔ (Fr(𝑁𝑄) × 𝐸∞) ×SO(4)×𝐺 𝑇𝑀.

If ℑ is a section of𝔐, then Φ selects a subbundle

HomΦ(𝑇𝑄,ℑ∗𝑉𝔐) ⊂ Hom(𝑇𝑄,ℑ∗𝑉𝔐)

and there is a “Clifford multiplication” map

𝛾 : Hom(𝑇𝑄,ℑ∗𝑉𝔐) → HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)

as discussed before. Moreover, the connections on 𝑁𝑄 and 𝐸∞ induce a connection on𝔐 assigning

to each section ℑ its covariant derivative ∇ℑ ∈ Ω1(ℑ∗𝑉𝔐).

Definition 4.7. The Fueter operator𝔉 = 𝔉Φ associated with𝔐 is defined by

ℑ ∈ Γ(𝔐) ↦→ 𝔉Φℑ ≔ 𝛾 (∇ℑ) ∈ Γ(HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)).

A section ℑ ∈ Γ(𝔐) is called a Fueter section if it satisfies

𝔉ℑ = 0.

Example 4.8. If 𝑀 is as in Example 3.4, then the Fueter operator 𝔉 lifts to the twisted Dirac

operator

/𝐷 : Γ(Re(Hom(𝐸∞, /𝑆+) ⊕ /𝑆+ ⊗ 𝑈 )) → Γ(Re(Hom(𝐸∞, /𝑆−) ⊕ /𝑆− ⊗ 𝑈 )) .

The Fueter operator𝔉 is compatible with the product structure on

𝔐 = ˚𝔐 × 𝑁𝑄

corresponding to 𝑀 = 𝑀◦ × R4
with 𝑀◦

denoting the space of instantons centred at zero. Its

restriction to the second factor is given by the Fueter operator 𝐹𝑄 associated with 𝑄 .

Theorem 4.9 (Donaldson–Segal [DS11] and Haydys [Hay12]). If ℑ ∈ Γ(𝔐), then we can identify
Γ(HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)) with a subspace of Ω2

(
𝑁𝑄, 𝔤𝐸 (ℑ)

)
. With respect to this identification we have

the identity
𝔉ℑ = 𝜋0

7

(
𝐹

1,1

𝐼 (ℑ)

)
.

In particular, 𝐼 (ℑ) satisfies equation (4.6) if and only if ℑ is a Fueter section.
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Definition 4.10. The linearised Fueter operator

𝐹ℑ = 𝐹ℑ,Φ : Γ(ℑ∗𝑉𝔐) → Γ(HomΦ(𝑇𝑄,ℑ∗𝑉𝔐))

for ℑ ∈ Γ(𝔐) is defined by

𝐹ℑ,Φ( ˆℑ) ≔ 𝛾 (∇ ˆℑ) ∈ Γ(HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)) .

Definition 4.11. A Fueter section ℑ is called unobstructed if the linearised Fueter operator 𝐹ℑ is

surjective.

Example 4.12. If𝑀 is as in Example 3.4, then the linearised Fueter operator 𝐹ℑ lifts to the twisted

Dirac operator /𝐷 : Γ(Re(Hom(𝐸∞, /𝑆+) ⊕ /𝑆+ ⊗𝑈 )) → Γ(Re(Hom(𝐸∞, /𝑆−) ⊕ /𝑆− ⊗𝑈 )). In particular,

it only depends on the spin structure 𝔰 and not on ℑ. Using the Atiyah–Singer index theorem we

can compute that in the current situation

(4.13) index 𝐹ℑ = −1

4

𝜎 (𝑄) −
ˆ
𝑄

𝑐2(𝐸∞)

where
˚𝐹ℑ is the restriction of 𝐹ℑ to 𝑉 ˚𝔐.

5 Approximate Spin(7)–instantons
Throughout the next three sections we assume the hypotheses of Theorem 1.2. For each sufficiently

small gluing parameter 𝜆 > 0 we first construct a connection 𝐴𝜆 by grafting 𝐼𝜆 = 𝐼 (ℑ𝜆) into
𝐴0 by hand. 𝐴𝜆 will not quite be a Spin(7)–instanton; however, 𝜋7(𝐹𝐴𝜆

), the failure of being a

Spin(7)–instanton, can be made very small. We are then left with solving the mildly non-linear

p.d.e.

(5.1)

(
d
∗
𝐴𝜆
𝑎, 𝜋7(𝐹𝐴𝜆+𝑎)

)
= 𝐿𝜆𝑎 +𝑄 (𝑎) + 𝜋7(𝐹𝐴𝜆

) = 0

with

𝐿𝜆 ≔ 𝐿𝐴𝜆
=

(
d
∗
𝐴𝜆

𝜋7d𝐴𝜆

)
,

see (2.21), and

𝑄 (𝑎) ≔ 1

2

𝜋7( [𝑎 ∧ 𝑎])

for 𝑎 = 𝑎(𝜆) ∈ Ω1(𝑋, 𝔤𝐸𝜆 ). Given suitable control on 𝐿𝜆 and 𝑄 , (5.1) can be solved by appealing to

Banach’s fixed-point theorem.
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Remark 5.2. If 𝐴0 is reducible, we might not be able to construct 𝑎 such that d
∗
𝐴𝜆
𝑎 = 0 on the

nose, but only “modulo 𝐻 0

𝐴0

”. For the purpose of proving Theorem 1.2 it is not important to

have d
∗
𝐴𝜆
𝑎 = 0. If 𝐴0 is reducible then, in order to achieve surjectivity, one has to work with

¯𝐿𝜆 : Ω1(𝑋, 𝔤𝐸𝜆 ) ⊕ 𝐻 0

𝐴0

→ Ω0(𝑋, 𝔤𝐸𝜆 ) ⊕ Ω2

7
(𝑋, 𝔤𝐸𝜆 ) defined by

¯𝐿𝜆 (𝑎, 𝑜) = 𝐿𝜆 (𝑎) + 𝜄𝜆 (𝑜)

where 𝜄𝜆 : 𝐻 0

𝐴0

→ Ω0(𝑋, 𝔤𝐸𝜆 ) is a inclusion map constructed by first cutting of 𝑜 to zero near 𝑄

and then thinking of it as a section of 𝔤𝐸𝜆 . In order to not clutter the exposition any further, we

assume in the following that 𝐴0 is irreducible.

Convention 5.3. We fix a constant Λ > 0 such that all of the statements of the kind “if 𝜆 ∈ (0,Λ],
then . . . ” appearing in the following are valid. This is possible since there are only a finite number

of these statements and each one of them is valid provided Λ is sufficiently small. By 𝑐 > 0 we will

denote a generic constant whose value does not depend on 𝜆 ∈ (0,Λ] but may change from one

occurrence to the next.

5.1 Pregluing construction

Construction 5.4. For each 𝜆 ∈ (0,Λ] we construct a 𝐺–bundle 𝐸𝜆 together with a connection
𝐴𝜆 = 𝐴#𝜆ℑ from 𝐸0, 𝐴0 ∈ A(𝐸0) and ℑ. The bundles 𝐸𝜆 are pairwise isomorphic.

Let us set up some notation. Fix a constant 𝜁 > 0 such that the exponential map identifies a

tubular neighbourhood of width 10𝜁 of 𝑄 in 𝑋 with a neighbourhood of the zero section in 𝑁𝑄 .

For 𝐼 ⊂ R we set

𝑈𝐼 ≔ {𝑣 ∈ 𝑁𝑄 : |𝑣 | ∈ 𝐼 } and 𝑉𝐼 ≔ {𝑥 ∈ 𝑋 : 𝑟 (𝑥) ∈ 𝐼 }.

Here

𝑟 ≔ 𝑑 (·, 𝑄) : 𝑋 → [0,∞)

denotes the distance from 𝑄 . Fix a smooth-cut off function 𝜒 : [0,∞) → [0, 1] which vanishes on

[0, 1] and is equal to one on [2,∞). For 𝜆 ∈ (0,Λ] we define 𝜒−
𝜆

: 𝑋 → [0, 1] and 𝜒+ : 𝑋 → [0, 1]
by

𝜒−
𝜆
(𝑥) ≔ 𝜒 (𝑟 (𝑥)/𝜆) and 𝜒+(𝑥) ≔ 1 − 𝜒 (𝑟 (𝑥)/2𝜁 ),

respectively.

Using radial parallel transport we can identify 𝐸 (ℑ) over 𝑈 (𝑅,∞) for some 𝑅 > 0 with the

pullback of 𝐸 (ℑ) |∞ to said region and similarly we can identify 𝐸0 over 𝑉[0,𝜁 ) with the pullback of

𝐸0 |𝑄 . Hence, via the framing Φwe can identify 𝑠∗
1/𝜆𝐸 (ℑ) with 𝐸0 on the overlap𝑉(𝜆,𝜎 ) for 𝜆 ∈ (0,Λ].

Patching both bundles via this identification yields 𝐸𝜆 .

To construct a connection on 𝐸𝜆 note that on the overlap 𝐼𝜆 ≔ 𝑠∗
1/𝜆𝐼 (ℑ) and 𝐴0 can be written

as

𝐼𝜆 = 𝐴0 |𝑄 + 𝑖𝜆 and 𝐴0 = 𝐴0 |𝑄 + 𝑎.
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Here and in the following, by a slight abuse of notation, we denote by 𝐴0 |𝑄 the pullback of 𝐴0 |𝑄
to the overlap. We define 𝐴𝜆 by interpolating between 𝐼𝜆 and 𝐴 on the overlap as follows

(5.5) 𝐴𝜆 ≔ 𝐴0 |𝑄 + 𝜒−
𝜆
𝑎 + 𝜒+𝑖𝜆 .

This completes the construction. □

5.2 Weighted Hölder spaces

In order to quantify to what extent 𝜋7(𝐴𝜆) is small, we introduce certain norms, which are especially

adapted to the geometric situation at hand.

Definition 5.6. For 𝜆 ∈ (0,Λ] we define a family of weight functions 𝑤ℓ,𝛿 ;𝜆 on 𝑋 depending on

two additional parameters ℓ ∈ R and 𝛿 ∈ R as follows

𝑤ℓ,𝛿 ;𝜆 (𝑥) ≔
{
𝜆𝛿 (𝜆 + 𝑟 (𝑥))−ℓ−𝛿 if 𝑟 (𝑥) ⩽

√
𝜆

𝑟 (𝑥)−ℓ+𝛿 if 𝑟 (𝑥) >
√
𝜆

and set𝑤ℓ,𝛿 ;𝜆 (𝑥,𝑦) ≔ min{𝑤ℓ,𝛿 ;𝜆 (𝑥),𝑤ℓ,𝛿 ;𝜆 (𝑦)}. For a Hölder exponent 𝛼 ∈ (0, 1) and ℓ, 𝛿 ∈ R we

define (semi-)norms

∥ 𝑓 ∥𝐿∞
ℓ,𝛿 ;𝜆

(𝑈 ) ≔ ∥𝑤ℓ,𝛿 ;𝜆 𝑓 ∥𝐿∞ (𝑈 ) ,

[𝑓 ]
𝐶

0,𝛼

ℓ,𝛿 ;𝜆
(𝑈 ) ≔ sup

𝑥≠𝑦∈𝑈 :

𝑑 (𝑥,𝑦)⩽𝜆+min{𝑟 (𝑥 ),𝑟 (𝑦) }

𝑤ℓ−𝛼,𝛿 ;𝜆 (𝑥,𝑦)
|𝑓 (𝑥) − 𝑓 (𝑦) |
𝑑 (𝑥,𝑦)𝛼 and

∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝜆
(𝑈 ) ≔

𝑘∑︁
𝑗=0

∥∇ 𝑗 𝑓 ∥𝐿∞
ℓ− 𝑗,𝛿 ;𝜆

(𝑈 ) + [∇ 𝑗 𝑓 ]
𝐶

0,𝛼

ℓ− 𝑗,𝛿 ;𝜆

.

Here 𝑓 is a section of a vector bundle over𝑈 ⊂ 𝑋 equipped with an inner product and a compatible

connection. We use parallel transport to compare the values of 𝑓 at different points. If 𝑈 is not

specified, then we take𝑈 = 𝑋 .

We will primarily use these norms for 𝔤𝐸𝜆–valued tensor fields.

Remark 5.7. The reader may find the following heuristic useful. Let 𝑓 be a 𝑘–form on 𝑋 . Fix a

small ball centred at a point 𝑥 ∈ 𝑄 , identify it with a small ball in 𝑇𝑥𝑋 = 𝑇𝑥𝑄 ⊕ 𝑁𝑥𝑄 and rescale

this ball by a factor 1/𝜆. Upon pulling everything back to this rescaled ball the weight function

𝑤−𝑘,𝛿 ;𝜆 becomes essentially 𝜆𝑘 (1 + |𝑦 |)𝑘−𝛿 , where 𝑦 denotes the 𝑁𝑥𝑄–coordinate. Thus as 𝜆 goes

to zero a uniform bound ∥ 𝑓𝜆 ∥𝐿∞−𝑘,𝛿 ;𝜆
on a family (𝑓𝜆) of 𝑘–forms ensures that the pullbacks of 𝑓𝜆

decay like |𝑦 |−𝑘+𝛿 in the direction of 𝑁𝑥𝑄 . At the same time it forces 𝑓𝜆 not to blowup at a rate

faster than 𝑟−𝑘−𝛿 along 𝑄 . The “discrepancy” in the exponents can be seen to be rather natural by

considering the action of the inversion 𝑦 ↦→ 𝜆𝑦/|𝑦 |2.
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Proposition 5.8. If (𝑓 , 𝑔) ↦→ 𝑓 · 𝑔 is a bilinear form satisfying |𝑓 · 𝑔| ⩽ |𝑓 | |𝑔|, then

∥ 𝑓 · 𝑔∥
𝐶
𝑘,𝛼

ℓ
1
+ℓ

2
,𝛿

1
+𝛿

2
;𝜆

⩽ ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ
1
,𝛿

1
;𝜆

∥𝑔∥
𝐶
𝑘,𝛼

ℓ
2
,𝛿

2
;𝜆

.

Proof. This follows immediately from the above definition. □

Corollary 5.9. If 𝛿 < 0, then there is a constant 𝑐 > 0 which is independent of 𝜆 ∈ (0,Λ] such that

∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝜆

⩽ 𝑐𝜆𝛿/2∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,0;𝜆

and ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,0;𝜆

⩽ 𝑐 ∥ 𝑓 ∥
𝐶
𝑘,𝛼

ℓ,𝛿 ;𝜆

Proof. Use ∥1∥
𝐶
𝑘,𝛼

0,𝛿 ;𝜆

⩽ 𝑐𝜆𝛿/2
and ∥1∥

𝐶
𝑘,𝛼

0,−𝛿 ;𝜆

⩽ 𝑐 for 𝛿 < 0. □

There are certain components of Ω1(𝑋, 𝔤𝐸𝜆 ) and Ω2

7
(𝑋, 𝔤𝐸𝜆 ), which need to be treated sepa-

rately. The following definition identifies these components.

Definition 5.10. Define 𝜇𝜆 : Γ(ℑ∗𝑉𝔐) → Ω1(𝑋, 𝔤𝐸𝜆 ) by

𝜇𝜆
ˆℑ ≔ 𝜒+𝑠∗

1/𝜆
ˆℑ

and 𝜈𝜆 : Γ (HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)) → Ω2

7
(𝑋, 𝔤𝐸𝜆 ) by

𝜈𝜆 ˆ𝔗 ≔ 𝜋7(𝜒+𝑠∗
1/𝜆

ˆ𝔗) .

Here we first identify
ˆℑ ∈ Γ(ℑ∗𝑉𝔐) with an element of Ω1 (𝑁𝑄, 𝐸 (ℑ)), then view the restriction

of its pullback via 𝑠1/𝜆 to 𝑈 [0,𝜎 ) as lying in Ω1(𝑉[0,𝜎 ) , 𝔤𝐸𝜆 ) and finally extended it to all of 𝑋 by

multiplication with 𝜒+; similarly we proceed with
ˆ𝔗.

Define 𝜋𝜆 : Ω1(𝑋, 𝔤𝐸𝜆 ) → Γ(ℑ∗𝑉𝔐) by

(𝜋𝜆𝑎) (𝑥) ≔
∑︁
𝜅

ˆ
𝑁𝑥𝑄

⟨𝑎, 𝜇𝜆𝜅⟩ 𝜅

and 𝜎𝜆 : Ω2

7
(𝑋, 𝔤𝐸𝜆 ) → Γ (HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)) by

(𝜎𝜆𝛼) (𝑥) ≔
∑︁
𝛽

ˆ
𝑁𝑥𝑄

⟨𝛼, 𝜈𝜆𝛽⟩ 𝛽,

Here 𝜅 runs through an orthonormal basis of 𝑉𝔐ℑ(𝑥 ) with respect to the inner product ⟨𝜇𝜆 ·, 𝜇𝜆 ·⟩
and 𝛽 runs through an orthonormal basis of HomΦ

(
𝑇𝑥𝑄,𝑉𝔐ℑ(𝑥 )

)
with respect to the inner product

⟨𝜈𝜆 ·, 𝜈𝜆 ·⟩.
Clearly, 𝜋𝜆𝜇𝜆 = id and 𝜎𝜆𝜈𝜆 = id; hence,

𝜋𝜆 ≔ 𝜇𝜆𝜋𝜆 and 𝜎𝜆 ≔ 𝜈𝜆𝜎𝜆

are projections. We denote the complementary projections by

𝜌𝜆 ≔ id − 𝜋𝜆 and 𝜏𝜆 ≔ id − 𝜎𝜆 .
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Proposition 5.11. For ℓ ⩽ −1 and 𝛿 ∈ R such that ℓ + 𝛿 ∈ (−3,−1) there is a constant 𝑐 > 0 such
that for all and 𝜆 ∈ (0,Λ] we have

∥𝜇𝜆 ˆℑ∥
𝐶

0,𝛼

ℓ,𝛿 ;𝜆

⩽ 𝑐𝜆−1−ℓ ∥ ˆℑ∥𝐶0,𝛼 and ∥𝜋𝜆𝑎∥𝐶0,𝛼 ⩽ 𝑐𝜆1+ℓ−𝛼 ∥𝑎∥
𝐶

0,𝛼

ℓ,𝛿 ;𝜆
(𝑉[0,𝜎 ) )

as well as

∥𝜈𝜆 ˆ𝔗∥
𝐶

0,𝛼

ℓ,𝛿 ;𝜆

⩽ 𝑐𝜆−1−ℓ ∥ ˆ𝔗∥𝐶𝑘,𝛼 and ∥𝜎𝜆𝛼 ∥𝐶0,𝛼 ⩽ 𝑐𝜆1+ℓ−𝛼 ∥𝛼 ∥
𝐶

0,𝛼

ℓ,𝛿 ;𝜆
(𝑉[0,𝜎 ) ) .

In particular, 𝜋𝜆 , 𝜌𝜆 , 𝜎𝜆 and 𝜏𝜆 are bounded by 𝑐𝜆−𝛼 with respect to the 𝐶0,𝛼

ℓ,𝛿 ;𝜆
–norms.

Proof. We only prove the first two estimates; the last two are identical up to a change in notation.

From Proposition 3.2 it follows at once that

∥𝑠∗
1/𝜆

ˆℑ∥
𝐶

0,𝛼

−3,0;𝜆 (𝑉[0,𝜎 ) ) ⩽ 𝑐𝜆
2∥ ˆℑ∥𝐶0,𝛼 .

The first inequality thus is a consequence of Proposition 5.8 since ∥𝜒+𝑡 ∥𝐶0,𝛼

3+ℓ,𝛿 ;𝜆

⩽ 𝑐𝜆−3−ℓ
for ℓ + 𝛿 >

−3.

To prove the second inequality, note that by Proposition 3.2 for 𝜅 ∈ (𝑉𝔐𝑡 )ℑ𝑡 (𝑥 ) we have

|𝑠∗
1/𝜆𝜅 | (𝑦) ⩽ 𝑐𝜆

2/(𝜆 + |𝑦 |)3∥𝜅∥𝐿2 and thus

ˆ
𝑁𝑥𝑄

〈
𝑎, 𝜒+𝑠∗

1/𝜆𝜅
〉
⩽ 𝑐

ˆ √
𝜆

0

𝜆2−𝛿 (𝜆 + 𝑟 )ℓ+𝛿−3𝑟 3
d𝑟 · ∥𝑎∥𝐿∞

ℓ,𝛿 ;𝜆
∥𝜅∥𝐿2

+ 𝑐
ˆ 𝜎

√
𝜆

𝜆2𝑟 ℓ−𝛿 (𝜆 + 𝑟 )−3𝑟 3
d𝑟 · ∥𝑎∥𝐿∞

ℓ,𝛿 ;𝜆
∥𝜅∥𝐿2

⩽ 𝑐𝜆3+ℓ ∥𝑎∥𝐿∞
ℓ,𝛿 ;𝜆

∥𝜅∥𝐿2

since ℓ ⩽ −1 and ℓ + 𝛿 < −1. If 𝜅 is an element of an orthonormal basis of (𝑉𝔐)ℑ(𝑥 ) with respect

to ⟨𝜇𝜆 ·, 𝜇𝜆 ·⟩, then ∥𝜅∥𝐿2 ⩽ 𝑐/𝜆 since for 𝜅1, 𝜅2 ∈ (𝑉𝔐)ℑ(𝑥 )

𝜆2 ⟨𝜅1, 𝜅2⟩𝐿2 ∼
〈
𝜒+𝑠∗

1/𝜆𝜅1, 𝜒
+𝑠∗

1/𝜆𝜅2

〉
𝐿2

where ∼ means comparable uniformly in 𝜆. Therefore,

∥𝜋𝜆𝑎∥𝐿∞ ⩽ 𝑐𝜆1+ℓ ∥𝑎∥𝐿∞
ℓ,𝛿 ;𝜆

.

The estimates on the Hölder norms follow by the same kind of argument. □

Ultimately, we will be working with the following function spaces.
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Definition 5.12. Denote by 𝔛𝜆 and 𝔜𝜆 the Banach spaces 𝐶1,𝛼Ω1(𝑋, 𝔤𝐸𝜆 ) and 𝐶0,𝛼Ω0(𝑋, 𝔤𝐸𝜆 ) ⊕
𝐶0,𝛼Ω2

7
(𝑋, 𝔤𝐸𝜆 ) equipped with the norms

∥𝑎∥𝔛𝜆
≔ 𝜆−𝛿/2∥𝜌𝜆𝑎∥𝐶1,𝛼

−1,𝛿 ;𝜆

+ 𝜆∥𝜋𝜆𝑎∥𝐶1,𝛼 and

∥(𝜉, 𝛼)∥𝔜𝜆
≔ 𝜆−𝛿/2∥𝜉 ∥

𝐶
0,𝛼

−2,𝛿 ;𝜆

+ 𝜆−𝛿/2∥𝜏𝜆𝛼 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

+ 𝜆∥𝜎𝜆𝛼 ∥𝐶0,𝛼 ,

respectively. Here we fix 𝛿 ∈ (−1, 0) and 0 < 𝛼 ≪ |𝛿 |; for concreteness, let us take 𝛿 = − 1

2
and

𝛼 = 1

256
.

Remark 5.13. We choose the factor 𝜆−𝛿/2
in view of Corollary 5.9.

5.3 Error estimate

Proposition 5.14. There exists a constant 𝑐 > 0 such that for all 𝜆 ∈ (0,Λ]

∥𝜋7(𝐹𝐴𝜆
)∥

𝐶
0,𝛼

−2,0;𝜆

⩽ 𝑐𝜆2
;

in particular,
∥𝜋7(𝐹𝐴𝜆

)∥𝔜𝜆
⩽ 𝑐𝜆2−𝛼 .

Remark 5.15. With more work the exponent can be improved from 2 − 𝛼 to 2.

The proof of this result requires some preparation.

Proposition 5.16. In the tubular neighbourhood 𝑉[0,𝜁 ) of 𝑄 we can write the Taylor expansion of 𝜋7

in the direction transverse to 𝑄 as
𝜋7 = 𝜋

0

7
+ 𝜋1

7
+ 𝜋⩾2

7

where 𝜋0

7
denotes the zeroth order term, 𝜋1

7
denotes the first order term and vanishes on Λ−𝑁 ∗𝑄 and

𝜋⩾2

7
denotes the remainder term; moreover, there is a constant 𝑐 > 0 which is independent of 𝜆 ∈ (0,Λ]

such that
∥𝜋0

7
∥
𝐶

0,𝛼

0,0;𝜆
(𝑉[0,𝜁 ) ) + ∥𝜋1

7
∥
𝐶

0,𝛼

1,0;𝜆
(𝑉[0,𝜁 ) ) + ∥𝜋⩾2

7
∥
𝐶

0,𝛼

2,0;𝜆
(𝑉[0,𝜁 ) ) ⩽ 𝑐.

Proof. If we pull the identity map of a tubular neighbourhood of𝑄 back to a tubular neighbourhood

of the zero section of 𝑁𝑄 via the exponential map, then the Taylor expansion of its derivative

around 𝑄 can be expressed in the splitting 𝑇𝑁𝑄 = 𝜋∗
1
𝑇𝑄 ⊕ 𝜋∗

2
𝑁𝑄 as

(𝑥,𝑦) ↦→ (𝑥,𝑦) +
(
II𝑦 (𝑥), 𝑦

)
+𝑂

(
|𝑦 |2

)
where II is the second fundamental form of 𝑄 in 𝑋 , which we think of as a map from 𝑁𝑄 to

End(𝑇𝑄). This immediately yields the desired expansion of 𝜋7 near 𝑄 with 𝜋1

7
vanishing on

Λ−𝑁 ∗𝑄 . □
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Proposition 5.17. There is a constant 𝑐 > 0 such that for all 𝑡 ∈ (−𝑇 ′,𝑇 ′) and 𝜆 ∈ (0,Λ] we have


𝐹 2,0

𝐼𝜆
− 𝐹𝐴0 |𝑄





𝐶

0,𝛼

−2,0;𝜆
(𝑉[0,𝜎 ) )

⩽ 𝑐𝜆2,


𝐹 1,1

𝐼𝜆





𝐶

0,𝛼

−3,0;𝜆
(𝑉[0,𝜎 ) )

⩽ 𝑐𝜆2 and


𝐹 0,2

𝐼𝑡,𝜆





𝐶

0,𝛼

−4,0;𝜆
(𝑉[0,𝜎 ) )

⩽ 𝑐𝜆2.

Proof. Theorem 4.5 asserts that the restriction of 𝐼 = 𝐼 (ℑ) to the section at infinity agrees with

𝐴0 |𝑄 . For a local coordinate system (𝑧1, . . . , 𝑧4,𝑤1, . . . ,𝑤4) based at a point on the section at infinity
and with 𝑧𝑖 denoting the coordinates along 𝑄 and𝑤𝑖 denote transverse coordinates we can write

𝐼 = 𝐴0 |𝑄 +
4∑︁

𝑖, 𝑗=1

𝑤𝑖 (𝜉𝑖 𝑗d𝑧 𝑗 + 𝜂𝑖 𝑗d𝑤 𝑗 ) +𝑂 ( |𝑤 |2)

for 𝜉𝑖 𝑗 , 𝜂𝑖 𝑗 ∈ 𝔤. It follows that 𝐹
1,1

𝐼
= −∑

4

𝑖, 𝑗=1
𝜉𝑖 𝑗d𝑧𝑖 ∧ d𝑤 𝑗 +𝑂 ( |𝑤 |). However, by Proposition 3.6

and Proposition 3.2, when viewed from the zero section the curvature component 𝐹
1,1

𝐼
decays like

𝑟−3
. This translates into 𝜉𝑖 𝑗 = 0, and we can write

(5.18) 𝐼 = 𝐴0 |𝑄 +
4∑︁

𝑖, 𝑗=1

𝜂𝑖 𝑗𝑤𝑖d𝑤 𝑗 +𝑂 ( |𝑤 |2).

This means that, 𝐹
2,0

𝐼
− 𝐹𝐴0 |𝑄 vanishes to first order along the section at infinity which when

viewed from the zero section in 𝑁𝑄 means that��𝐹 2,0

𝐼
− 𝐹𝐴0 |𝑄

�� ⩽ 𝑐

1 + |𝑤 |2 .

The first estimate now follows from a simple scaling consideration.

The last two estimates follow from simple scaling considerations using Proposition 3.2 and

Theorem 4.5 together with the fact that the curvature of a finite energy ASD instanton decays at

least like |𝑦 |−4
. □

Proposition 5.19. There is a constant 𝑐 > 0 such that for all 𝜆 ∈ (0,Λ] we have

∥𝑖𝜆 ∥𝐶0,𝛼

−3,0;𝜆
(𝑉(𝜆,𝜎 ) ) + ∥d𝐼𝜆𝑖𝜆 ∥𝐶0,𝛼

−4,0;𝜆
(𝑉(𝜆,𝜎 ) ) ⩽ 𝑐𝜆

2 and

∥𝑎∥
𝐶

0,𝛼

1,0;𝜆
(𝑉[0,𝜎 ) ) + ∥d𝐴0 |𝑄𝑎∥𝐶0,𝛼

0,0;𝜆
(𝑉[0,𝜎 ) ) ⩽ 𝑐.

Proof. The first estimate follows from (5.18) and a simple scaling consideration, while the last

follows from the fact that we put 𝐴0 into radial gauge from zero section in 𝑁𝑄 . □
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Proof of Proposition 5.14. We proceed in four steps. First we estimate an approximation 𝑒𝜆 of

𝑒𝜆 ≔ 𝜋7(𝐹𝐴𝜆
) .

Then we estimate the difference 𝑒𝜆 − 𝑒𝜆 separately in the three subsets 𝑉[0,𝜆) , 𝑉[𝜆,𝜎/2) and 𝑉[𝜎/2,𝜎 )
constituting 𝑉[0,𝜎 ) which contains the support of 𝑒𝜆 .

It will be convenient to use the following shorthand notation

∥ 𝑓 ∥ℓ,𝑈 ≔ ∥ 𝑓 ∥
𝐶

0,𝛼

ℓ,0;𝜆
(𝑈 ) .

Note that if (𝑓 , 𝑔) ↦→ 𝑓 · 𝑔 is a bilinear map satisfying |𝑓 · 𝑔| ⩽ |𝑓 | |𝑔|, then it follows from

Proposition 5.8 that ∥ 𝑓 · 𝑔∥ℓ1+ℓ2,𝑈 ⩽ ∥ 𝑓 ∥ℓ1,𝑈 · ∥𝑔∥ℓ2,𝑈 .

Step 1. The term
𝑒𝜆 ≔ 𝜋7

(
𝐹𝐼𝜆 − 𝐹𝐴0 |𝑄

)
satisfies ∥𝑒𝜆 ∥−2,𝑉[0,𝜎 ) ⩽ 𝑐𝜆

2.

Because of Theorem 4.9, the fact that 𝐹
0,2

𝐼𝜆
is anti-self-dual and Proposition 5.16 we can write 𝑒𝜆

on 𝑉[0,𝜎 ) as

𝜋7

(
𝐹

2,0

𝐼𝜆
− 𝐹𝐴 |𝑄

)
+ (𝜋1

7
+ 𝜋⩾2

7
)
(
𝐹

1,1

𝐼𝜆

)
+ 𝜋⩾2

7

(
𝐹

0,2

𝐼𝜆

)
.

Using Proposition 5.16 and Proposition 5.17 as well as ∥1∥−1,𝑉[0,𝜎 ) ⩽ 𝑐 we estimate ∥𝑒𝜆 ∥−2,𝑉[0,𝜎 ) by


𝐹 (2,0)
𝐼𝜆

− 𝐹𝐴0 |𝑄





−2,𝑉[0,𝜎 )

· ∥𝜋7∥0,𝑉[0,𝜎 )

+



𝐹 1,1

𝐼𝜆





−3,𝑉[0,𝜎 )

·
(

𝜋1

7




1,𝑉[0,𝜎 )

+ ∥1∥−1,𝑉[0,𝜎 ) ·


𝜋⩾2

7




2,𝑉[0,𝜎 )

)
+



𝐹 0,2

𝐼𝜆





−4,𝑉[0,𝜎 )

· ∥𝜋⩾2

7
∥2,𝑉[0,𝜎 ) ⩽ 𝑐𝜆

2.

Step 2. We prove that ∥𝑒𝜆 − 𝑒𝜆 ∥𝑉[0,2𝜆) ⩽ 𝑐𝜆
2.

Since 

𝜋7(𝐹𝐴0 |𝑄 )



−2,𝑉[0,2𝜆)

⩽ ∥1∥−2,𝑉[0,2𝜆) ·


𝜋7(𝐹𝐴0 |𝑄 )




0,𝑉[0,2𝜆)

⩽ 𝑐𝜆2,

it suffices to estimate 𝐹𝐴𝜆
− 𝐹𝐼𝜆 in 𝑉[0,2𝜆) . Now, in 𝑉[0,2𝜆) the curvature of 𝐴𝜆 is given by

𝐹𝐴𝜆
= 𝐹𝐼𝜆 + 𝜒−𝜆 d𝐼𝜆𝑎 +

1

2

(𝜒−
𝜆
)2 [𝑎 ∧ 𝑎] + d𝜒−

𝜆
∧ 𝑎.
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Using Proposition 5.19 and the fact that the cut-off functions 𝜒−
𝜆
where constructed so that

∥𝜒−
𝜆
∥0,𝑉[0,𝜎 ) + ∥d𝜒−

𝜆
∥−1,𝑉[0,𝜎 ) ⩽ 𝑐 we obtain

∥𝐹𝐴𝜆
− 𝐹𝐼𝜆 ∥−2,𝑉[0,2𝜆)

⩽ ∥1∥−2,𝑉[0,2𝜆) · ∥𝜒−𝜆 ∥0,𝑉[0,2𝜆) · ∥d𝐴 |𝑄𝑎∥0,𝑉[0,2𝜆)

+ ∥𝜒−
𝜆
∥0,𝑉[0,2𝜆) · ∥𝑖𝜆 ∥−3,𝑉[𝜆,𝜎 ) · ∥𝑎∥1,𝑉[0,2𝜆)

+ 1

2

∥1∥−4,𝑉[0,2𝜆) · ∥𝜒−𝜆 ∥
2

0,𝑉[0,2𝜆)
· ∥𝑎∥2

1,𝑉[0,2𝜆)

+ ∥1∥−2,𝑉[0,2𝜆) · ∥d𝜒−
𝜆
∥−1,𝑉[0,2𝜆) · ∥𝑎∥1,𝑉[0,2𝜆) ⩽ 𝑐𝜆

2.

Step 3. We prove that ∥𝑒𝜆 − 𝑒𝜆 ∥𝑉(2𝜆,𝜎/2) ⩽ 𝑐𝜆
2.

This is an immediate consequence of 𝜋7(𝐹𝐴0
) = 0 and Proposition 5.19 since in 𝑉[2𝜆,𝜎/2) the

curvature of 𝐴𝜆 is given by 𝐹𝐴𝜆
= 𝐹𝐴0

+ [𝑖𝜆 ∧ 𝑎] + 𝐹𝐼𝜆 − 𝐹𝐴0 |𝑄 .

Step 4. We prove that ∥𝑒𝜆 − 𝑒𝜆 ∥𝑉[𝜎/2,𝜎 ) ⩽ 𝑐𝜆
2.

In 𝑉[𝜎/2,𝜎 ) the curvature of 𝐴𝜆 is given by

𝐹𝐴𝜆
= 𝐹𝐴0

+ 𝜒+d𝐴0
𝑖𝜆 +

1

2

(𝜒+)2 [𝑖𝜆 ∧ 𝑖𝜆] + d𝜒+ ∧ 𝑖𝜆 .

Since ∥𝜒+∥ℓ,𝑉[𝜎/2,𝜎 ) + ∥d𝜒+∥ℓ,𝑉[𝜎/2,𝜎 ) ⩽ 𝑐 , it follows that

∥𝐹𝐴𝜆
− 𝐹𝐴0

∥−2,𝑉[𝜎/2,𝜎 )

⩽ ∥𝜒+∥2,𝑉[𝜎/2,𝜎 ) · ∥d𝐼𝜆𝑖𝜆 ∥−4,𝑉[𝜎/2,𝜎 )

+ ∥𝜒+∥0,𝑉[𝜎/2,𝜎 ) · ∥𝑎∥1,𝑉[𝜎/2,𝜎 ) · ∥𝑖𝜆 ∥−3,𝑉[𝜎/2,𝜎 )

+ 1

2

∥𝜒+∥2

2,𝑉[𝜎/2,𝜎 )
· ∥𝑖𝜆 ∥2

−3,𝑉[𝜎/2,𝜎 )

+ ∥d𝜒+∥1,𝑉[𝜎/2,𝜎 ) · ∥𝑖𝜆 ∥−3,𝑉[𝜎/2,𝜎 ) ⩽ 𝑐𝜆
2.

This completes the estimate. □

6 Linear analysis

Proposition 6.1. For 𝜆 ∈ (0,Λ] the linear operator 𝐿𝜆 : 𝔛𝜆 → 𝔜𝜆 has a right inverse 𝑅𝜆 : 𝔜𝜆 → 𝔛𝜆

and there exists a constant 𝑐 > 0 which is independent of 𝜆 ∈ (0,Λ] such that

∥𝑅𝜆 (𝜉, 𝛼)∥𝔛𝜆
⩽ 𝑐 ∥(𝜉, 𝛼)∥𝔜𝜆

.

This is the key to proving Theorem 1.2. We produce 𝑅𝜆 by gluing various local right inverses

“by hand”. We decompose 𝐿𝜆 as

𝐿𝜆 =

(
𝔎𝜆 𝔭𝜆

𝔮𝜆 𝔏𝜆

)
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where

𝔎𝜆 ≔ 𝜎𝜆𝐿𝜆𝜋𝜆, 𝔏𝜆 ≔ 𝜏𝜆𝐿𝜆𝜌𝜆,

𝔭𝜆 ≔ 𝜎𝜆𝐿𝜆𝜌𝜆, and 𝔮𝜆 ≔ 𝜏𝜆𝐿𝜆𝜋𝜆 .

In the course of this section we will show that 𝔎𝜆 is essentially the linearised Fueter operator

𝐹ℑ, which has a right inverse by assumption, and that local right inverses for 𝔏𝜆 can be seen to

exist by considerations of model operators on R8
and on the complement of 𝑄 , while 𝔭𝜆 and 𝔮𝜆

are negligibly small terms. An approximate right inverse
˜𝑅𝜆 can then be constructed by carefully

patching together the local right inverses. Finally, a simple deformation argument will yield 𝑅𝜆 .

6.1 The model operator on R8

Let 𝐼 be a finite energy ASD instanton on a 𝐺–bundle 𝐸 over R4
. By a slight abuse of notation we

denote the pullbacks of 𝐼 and 𝐸 to R8 = R4 × R4
by 𝐼 and 𝐸 as well. We define L𝐼 : Ω0(R8, 𝔤𝐸) →

Ω0(R8, 𝔤𝐸) ⊕ Ω2

7
(R8, 𝔤𝐸) by

L𝐼 (𝑎) ≔ (d∗𝐴𝑎, 𝜋7d𝐴𝑎) .

Here 𝜋7 is taken with respect to the standard Spin(7)–structure Φ0 on R8
, see (2.2).

By Remark 2.22 we can, with the appropriate identifications being made, write

L𝐼 = 𝜕𝑡 − 𝐿𝐼

where we think of 𝐼 as a G2–instanton on {0} × R3 × R4
and 𝐿𝐼 is as in

𝐿𝐴,𝜙 ≔

(
0 d

∗
𝐴

d𝐴 ∗ (𝜓 ∧ d𝐴)

)
.

In particular, using [Wal13a, Proposition 7.1] we see that

L𝐼L∗𝐼 = L∗𝐼 L𝐼 = ΔR4 +
(
𝛿𝐼𝛿

∗
𝐼

𝛿∗
𝐼
𝛿𝐼

)
(6.2)

and, hence, we can argue as in [Wal13a, Section 7].

Remark 6.3. In the above situation thinking of R8
as R4 ×R4

as in Example 2.8 and at the same time

as R × (R3 × R4) as in Example 2.10, the summands Λ2

3
and Λ2

4
in Proposition 2.14 are identified,

via Proposition 2.15, with R3
and R4

respectively.

Definition 6.4. Define weight functions 𝑤 : R8 → [0,∞) and, by slight abuse of notation,

𝑤 : (R8)2 → [0,∞) by

𝑤 (𝑥) ≔ 1 + |𝜋2(𝑥) | and 𝑤 (𝑥,𝑦) ≔ min{𝑤 (𝑥),𝑤 (𝑦)}.
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Here 𝜋2 : R8 = R4 × R4 → R4
is the projection to the second factor. For a Hölder exponent

𝛼 ∈ (0, 1) and a weight parameter 𝛽 ∈ R we define

[𝑓 ]
𝐶

0,𝛼

𝛽
(𝑈 ) ≔ sup

𝑑 (𝑥,𝑦)⩽𝑤 (𝑥,𝑦)
𝑤 (𝑥,𝑦)𝛼−𝛽 |𝑓 (𝑥) − 𝑓 (𝑦) |

𝑑 (𝑥,𝑦)𝛼 ,

∥ 𝑓 ∥𝐿∞
𝛽
(𝑈 ) ≔



𝑤−𝛽 𝑓



𝐿∞ (𝑈 ) and

∥ 𝑓 ∥
𝐶
𝑘,𝛼

𝛽
(𝑈 ) ≔

𝑘∑︁
𝑗=0



∇ 𝑗 𝑓



𝐿∞
𝛽− 𝑗

(𝑈 ) +
[
∇ 𝑗 𝑓

]
𝐶

0,𝛼

𝛽− 𝑗
(𝑈 ) .

Here 𝑓 is a section of a vector bundle over𝑈 ⊂ R8
equipped with an inner product and a compatible

connection. We use parallel transport to compare the values of 𝑓 at different points. If 𝑈 is not

specified, then we take𝑈 = R8
. We denote by𝐶

𝑘,𝛼

𝛽
the subspace of elements 𝑓 of the Banach space

𝐶𝑘,𝛼
with ∥ 𝑓 ∥

𝐶
𝑘,𝛼

𝛽

< ∞ and equip it with the norm ∥ · ∥
𝐶
𝑘,𝛼

𝛽

.

The linear operator L𝐼 can serve as a model for 𝐿𝜆 in the following sense: Fix 𝑥 ∈ 𝑄 . Set

𝐼 ≔ 𝐼 (ℑ) |𝑁𝑥𝑄 and 𝐸 ≔ 𝐸 (ℑ) |𝑁𝑥𝑄 . Identify 𝑇𝑥𝑋 = 𝑇𝑥𝑄 × 𝑁𝑥𝑄 with R8 = R4 × R4
in such a way

that the summands are preserved and Φ|𝑇𝑥𝑋 is identified with Φ0. For 𝜀1, 𝜀2 > 0 we define

𝑉𝜀1,𝜀2
≔ 𝐵𝜀1

(𝑥) ∩𝑉[0,𝜀2 ) .

Using the exponential map we can identify 𝑉𝜀1,𝜀2
with a small neighbourhood

˜𝑈𝜀1,𝜀2
of the origin

in R8
. With respect to this identification a 𝔤𝐸𝜆–valued tensor field 𝑓 on 𝑉𝜀1,𝜀2

is identified with a

𝑠∗
1/𝜆𝔤𝐸–valued tensor field

˜𝑓 on ˜𝑈𝜀1,𝜀2;𝜆 , and if 𝑘 ∈ N is a scaling parameter, then with 𝑓 we can

associate a 𝔤𝐸–valued tensor field 𝑠𝑑,𝜆 𝑓 on

𝑈𝜀1,𝜀2;𝜆 ≔ 𝜆−1 ˜𝑈𝜀1,𝜀2
= 𝜆−1

exp
−1

𝑥 (𝑉𝜀1,𝜀2
)

defined by

(𝑠𝑑,𝜆 𝑓 ) (𝑥,𝑦) ≔ 𝜆𝑑 ˜𝑓 (𝜆𝑥, 𝜆𝑦) = 𝜆𝑑 𝑓 ◦ exp(𝜆(𝑥,𝑦)) .

Proposition 6.5. There are constants 𝑐, 𝜀0 > 0 such that for 𝜀 ∈ (0, 𝜀0] and 𝜆 ∈ (0,Λ] we have

1

𝑐
𝜆𝑑+ℓ ∥ 𝑓 ∥

𝐶
𝑘,𝛼

ℓ,𝛿 ;𝜆

(
𝑉
𝜀,𝑁

√
𝜆

) ⩽ ∥𝑠𝑑,𝜆 𝑓 ∥
𝐶
𝑘,𝛼

ℓ+𝛿

(
𝑈
𝜀,𝑁

√
𝜆;𝜆

)
⩽ 𝑐𝑁 −2𝛿𝜆𝑑+ℓ ∥ 𝑓 ∥

𝐶
𝑘,𝛼

ℓ,𝛿 ;𝜆

(
𝑉
𝜀,𝑁

√
𝜆

)
and 


𝐿𝜆𝑎 − 𝑠−1

2,𝜆
L𝐼𝑠1,𝜆𝑎





𝐶

0,𝛼

−2,𝛿 ;𝜆

(
𝑉
𝜀,𝑁

√
𝜆

) ⩽ 𝑐 (𝜀 + √
𝜆)∥𝑎∥

𝐶
1,𝛼

−1,𝛿 ;𝜆

(
𝑉
𝜀,𝑁

√
𝜆

) .
Here, in the first estimate, we also allow 𝑘 = 𝛼 = 0, thus making a statement about weighted
𝐿∞–norms.
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For 𝛽 < −1 we define 𝜋𝐼 : 𝐶
𝑘,𝛼

𝛽
→ 𝐶𝑘,𝛼 (R4, ker𝛿𝐼 ) by

𝜋𝐼 (𝑎) (𝑥) ≔
∑︁
𝜅

⟨𝑎(𝑥, ·), 𝜅⟩𝐿2 (R4 ) 𝜅

where 𝜅 runs through an 𝐿2
orthonormal basis of ker𝛿𝐼 and set

𝔄
𝑘,𝛼

𝛽
≔ ker𝜋𝐼 ∩𝐶𝑘,𝛼

𝛽
.

The projection operators 𝜋𝜆 and 𝜎𝜆 can be viewed as “global versions” of 𝜋𝐼 . It follows from the

discussion following Proposition 3.2 that L𝐼 defines a linear L𝐼 : 𝔄
1,𝛼

𝛽
→ 𝔄

0,𝛼

𝛽−1
.

The key result of this section is the following.

Proposition 6.6. For 𝛽 ∈ (−2,−1) the linear operator L𝐼 : 𝔄
1,𝛼

𝛽
→ 𝔄

0,𝛼

𝛽−1
is invertible.

The proof rests on the following estimate.

Proposition 6.7. For 𝛽 ∈ (−3,−1) there is a constant 𝑐 > 0 such that for all 𝑎 ∈ 𝔄
1,𝛼

𝛽
the following

holds
∥𝑎∥

𝐶
1,𝛼

𝛽

⩽ 𝑐 ∥L𝐼𝑎∥𝐶0,𝛼

𝛽−1

and ∥𝑎∥
𝐶

1,𝛼

𝛽

⩽ 𝑐 ∥L∗𝐼𝑎∥𝐶0,𝛼

𝛽−1

.

Proof of Proposition 6.6 assuming Proposition 6.7. From Proposition 6.7 it follows that L𝐼 : 𝔄
1,𝛼

𝛽
→

𝔄
0,𝛼

𝛽−1
is injective and its image is closed. Thus we can identify its cokernel with the kernel of

L∗
𝐼

:

(
𝔄

0,𝛼

𝛽−1

)∗ →
(
𝔄

1,𝛼

𝛽

)∗
. Since 𝛽 > −2, the image of 𝜋𝐼 is contained in 𝐶

0,𝛼

𝛽−1
and thus 𝐶

0,𝛼

𝛽−1
=

𝔄
0,𝛼

𝛽−1
⊕ im𝜋𝐼 . Via this splitting we can extend any 𝑏 ∈ ker L∗

𝐼
to an element of

(
𝐶

0,𝛼

𝛽−1

)∗
which

still satisfies L∗
𝐼
𝑏 = 0. By elliptic regularity 𝑏 is smooth and it follows from Lemma 6.8 that 𝑏

is invariant under translations in the R4
–direction. Now, 𝑏 must be contained in 𝐶

1,𝛼

−3−𝛽 . Since

−3 − 𝛽 ∈ (−3,−1), it follows that 𝑏 = 0 by Proposition 6.7. Therefore L𝐼 is also surjective; hence,

invertible. □

Lemma 6.8 ([Wal13a, Lemma A.1]). Let 𝐸 be a vector bundle of bounded geometry over a Rieman-
nian manifold 𝑋 of bounded geometry and with subexponential volume growth, and suppose that
𝐷 : 𝐶∞(𝑋, 𝐸) → 𝐶∞(𝑋, 𝐸) is a uniformly elliptic operator of second order whose coefficients and
their first derivatives are uniformly bounded, that is non-negative, such that ⟨𝐷𝑎, 𝑎⟩ ⩾ 0 for all
𝑎 ∈𝑊 2,2(𝑋, 𝐸), and formally self-adjoint. If 𝑎 ∈ 𝐶∞(R𝑛 × 𝑋, 𝐸) satisfies

(ΔR𝑛 + 𝐷)𝑎 = 0

and ∥𝑎∥𝐿∞ is finite, then 𝑎 is constant in the R𝑛–direction, that is 𝑎(𝑥,𝑦) = 𝑎(𝑦). Here, by slight abuse
of notation, we denote the pullback of 𝐸 to R𝑛 × 𝑋 by 𝐸 as well.
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Proof of Proposition 6.7. We restrict to the case of L𝐼 as the case L∗𝐼 differs only by a slight change

in notation. First, it is easy to see that there are Schauder estimates, cf. [Wal13a, Proposition 7.6],

∥𝑎∥
𝐶

1,𝛼

𝛽

⩽ 𝑐
(
∥L𝐼𝑎∥𝐶0,𝛼

𝛽−1

+ ∥𝑎∥𝐿∞
𝛽

)
with 𝑐 = 𝑐 (𝛽) > 0. The crucial step is then to show that if 𝛽 ∈ (−3,−1) there is a constant 𝑐 > 0

such that for all 𝑎 ∈ 𝔄
1,𝛼

𝛽
we have

∥𝑎∥𝐿∞
𝛽
⩽ 𝑐 ∥L𝐼𝑎∥𝐶0,𝛼 .

This is proved by contradiction: Suppose the estimate does not hold. Then there exists a sequence

𝑎𝑖 ∈ 𝔄
1,𝛼

𝛽
such that

∥𝑎𝑖 ∥𝐿∞
𝛽
= 1 and ∥L𝐼𝑎𝑖 ∥𝐶0,𝛼

𝛽−1

⩽
1

𝑖
.

Hence, by the above Schauder estimate

∥𝑎𝑖 ∥𝐶1,𝛼

𝛽

⩽ 2𝑐.

Pick (𝑥𝑖 , 𝑦𝑖) ∈ R4 × R4
such that

𝑤 (𝑥𝑖 , 𝑦𝑖)−𝛽 |𝑎𝑖 (𝑥𝑖 , 𝑦𝑖) | = 1.

By translation we can assume that 𝑥𝑖 = 0. Without loss of generality one of the following two

cases must occur. We rule out both of them thus proving the estimate.

Case 1. The sequence |𝑦𝑖 | stays bounded.

Let 𝐾 be a compact subset of R8
. When restricted to 𝐾 , the elements 𝑎𝑖 are uniformly bounded

in 𝐶1,𝛼
. Thus, by Arzelà–Ascoli, we can assume (after passing to a subsequence) that 𝑎𝑖 converges

to a limit 𝑎 in 𝐶1,𝛼/2
. Since 𝐾 was arbitrary, this yields 𝑎 ∈ Ω1(R8, 𝔤𝐸) satisfying

|𝑎 | (𝑥,𝑦) < 𝑐 (1 + |𝑦 |)𝛽

as well as

L𝐼𝑎 = 0 and 𝜋𝐼𝑎 = 0.

It follows from Lemma 6.8 that 𝑎 = 0. On the other hand we can assume that 𝑦𝑖 converges to some

point 𝑦 ∈ R4
for which we would have |𝑎 | (0, 𝑦) = 𝑤 (0, 𝑦)𝛽 ≠ 0. This is a contradiction.

Case 2. The sequence |𝑦𝑖 | goes to infinity.

Define a rescaled sequence 𝑎𝑖 by

𝑎𝑖 (𝑥,𝑦) ≔ |𝑦𝑖 |−𝛽 (𝜉𝑖 , 𝑎𝑖) ( |𝑦𝑖 |𝑥, |𝑦𝑖 |𝑦)
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and set 𝑦𝑖 = 𝑦𝑖/|𝑦𝑖 |. The rescaled sequence then satisfies

∥𝑎𝑖 ∥𝐶̃1,𝛼

𝛽

⩽ 2𝑐, ∥L𝑎𝑖 ∥𝐶̃0,𝛼

𝛽−1

⩽ 2/𝑖 and 𝑤̃ (0, 𝑦𝑖)−𝛽 |𝑎𝑖 (0, 𝑦𝑖) | ⩾ 1/2

where the norms ∥ · ∥
𝐶̃
𝑘,𝛼

𝛽

are defined as those in Definition 6.4, but with weight function𝑤 (𝑥) =
|𝜋2(𝑥) | instead of𝑤 (𝑥) = 1 + |𝜋2(𝑥) |, and where 𝐿 is defined by

L ≔ 𝜕𝑡 − 𝐿

with

𝐿(𝜉, 𝑎) ≔ (d∗𝑎, d𝜉 + ∗(𝜓 ∧ d𝑎)) .

We can now pass to a limit using Arzelà–Ascoli as before to obtain 𝑎 defined over R4×
(
R4\{0}

)
satisfying

|𝑎 | (𝑥,𝑦) < 𝑐 |𝑦 |𝛽 and 𝐿𝑎 = 0.

Since 𝛽 > −3, 𝐿𝑎 = 0 holds on all of R8
in the sense of distributions. Hence, by standard elliptic

theory, 𝑎 extends to a bounded smooth solution of 𝐿𝑎 = 0 on R8
. Since 𝐿∗𝐿 = ΔR4 + ΔR4 , it follows

from Lemma 6.8 that 𝑎 is invariant in the R4
–direction. Therefore, we can think of the components

of 𝑎 as harmonic functions on R4
. These decay to zero at infinity as 𝛽 < 0 and, hence, must

vanish identically. On the other hand we know that |𝑦𝑖 | = 1 and thus without loss of generality 𝑦𝑖
converges to some point 𝑦 in the unit sphere for which |𝑎 | (0, 𝑦) | ⩾ 1

2
, contradicting 𝑎 = 0. □

6.2 The model away from 𝑄

Definition 6.9. Define weighted Hölder norms ∥ · ∥
𝐶
𝑘,𝛼

𝛽

for tensor fields (with values in 𝔤𝐸) on

𝑋\𝑄 by

[𝑓 ]
𝐶

0,𝛼

𝛽

≔ sup

𝑑 (𝑥,𝑦)⩽𝑤 (𝑥,𝑦)
𝑤 (𝑥,𝑦)𝛼−𝛽 |𝑓 (𝑥) − 𝑓 (𝑦) |

𝑑 (𝑥,𝑦)𝛼 .

∥ 𝑓 ∥𝐿∞
𝛽
≔ ∥𝑤−𝛽 𝑓 ∥𝐿∞ and

∥ 𝑓 ∥
𝐶
𝑘,𝛼

𝛽

≔

𝑘∑︁
𝑗=0

∥∇ 𝑗 𝑓 ∥𝐿∞
𝛽− 𝑗

+ [∇ 𝑗 𝑓 ]
𝐶

0,𝛼

𝛽− 𝑗

.

with weight functions given by

𝑤 (𝑥) ≔ 𝑟 (𝑥) and 𝑤 (𝑥,𝑦) ≔ min{𝑤 (𝑥),𝑤 (𝑦)}.

(Recall, that 𝑟 : 𝑋 → [0,∞) is defined by 𝑟 (𝑥) = 𝑑 (·, 𝑄).

If we fix a constant 𝑁 > 0, then over𝑉[
√
𝜆/𝑁,∞) we can view a tensor field 𝑓 with values in 𝔤𝐸𝜆

as one which takes values in 𝔤𝐸 and vice versa.
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Proposition 6.10. There is a constant 𝑐 > 0 such that for 𝜆 ∈ (0,Λ] with respect to the above
identification we have

1

𝑐
∥𝑎∥

𝐶
𝑘,𝛼

−ℓ+𝛿

(
𝑉[

√
𝜆/𝑁,∞)

) ⩽ ∥𝑎∥
𝐶
𝑘,𝛼

ℓ,𝛿,𝜆

(
𝑉[

√
𝜆/𝑁,∞)

) ⩽ 𝑐𝑁 −2𝛿 ∥𝑎∥
𝐶
𝑘,𝛼

−ℓ+𝛿

(
𝑉[

√
𝜆/𝑁,∞)

)
and

∥𝐿𝜆𝑎 − 𝐿𝐴0
𝑎∥

𝐶
0,𝛼

−2,𝛿,𝜆

(
𝑉[

√
𝜆/𝑁,∞)

) ⩽ 𝑐√𝜆/𝑁 |𝑎∥
𝐶

1,𝛼

−1,𝛿,𝜆

(
𝑉[

√
𝜆/𝑁,∞)

) .
Proposition 6.11. For 𝛽 ∈ (−3, 0) the operator 𝐿𝐴0

: 𝐶
1,𝛼

𝛽
→ 𝐶

0,𝛼

𝛽−1
has a right inverse 𝑅𝐴0

.

Proof. Denote by 𝜋 : 𝐶
1,𝛼

𝛽
→ ker𝐿𝐴 the 𝐿2

–projection to the (smooth) kernel of 𝐿𝐴. This is well

defined, because 𝛽 > −3. We will shortly prove the estimates

∥𝑎∥
𝐶

1,𝛼

𝛽

⩽ 𝑐
(
∥𝐿𝐴𝑎∥𝐶0,𝛼

𝛽−1

+ ∥𝜋𝑎∥𝐿∞
𝛽

)
and ∥𝑎∥

𝐶
1,𝛼

𝛽

⩽ 𝑐 ∥𝐿∗𝐴𝑎∥𝐶0,𝛼

𝛽−1

.

From the first estimate it follows immediately that the image of 𝐿𝐴 : 𝐶
1,𝛼

𝛽
→ 𝐶

0,𝛼

𝛽−1
is closed and its

kernel is finite-dimensional (in fact, it can be seen to agree with the smooth kernel of 𝐿𝐴). To show

that 𝐿𝐴 has a right inverse it suffices to prove that coker𝐿𝐴 = 0. Let 𝑏 ∈ ker𝐿∗
𝐴
� coker𝐿𝐴. Then

using elliptic regularity it can be seen that 𝑏 represents an element in the kernel of 𝐿∗
𝐴

: 𝐶
1,𝛼

−3−𝛽 →
𝐶

0,𝛼

−4−𝛽 . But then 𝑏 = 0 by the second estimate.

Now we are left with proving the above estimates. We will only prove the first estimate, since

the proof of the second estimate is similar, but slightly easier. First of all we have the following

Schauder estimate

∥𝑎∥
𝐶

1,𝛼

𝛽,𝑡

⩽ 𝑐 (∥𝐿𝐴𝑎∥𝐶0,𝛼

𝛽−1,𝑡

+ ∥𝑎∥𝐿∞
𝛽,𝑡
) .

To prove that

∥𝑎∥𝐿∞
𝛽,𝑡
⩽ 𝑐

(
∥𝐿𝐴𝑎∥𝐶0,𝛼

𝛽−1,𝑡

+ ∥𝜋𝑎∥𝐿∞
𝛽,𝑡

)
one argues by contradiction. If 𝑎𝑖 is a sequence of counterexamples as before, then we can assume

that it either gives rise to a non-trivial element 𝑎 in the kernel of 𝐿𝐴 : 𝐶
1,𝛼

𝛽
→ 𝐶

0,𝛼

𝛽−1
which also

satisfies 𝜋𝑎 = 0 or localises in smaller and smaller neighbourhoods of 𝑄 . To see that the first

case cannot occur observe that if 𝑎 ∈ 𝐶1,𝛼

𝛽
solves 𝐿𝐴𝑎 = 0 on 𝑋\𝑄 , then it follows that 𝐿𝐴𝑎 = 0

on all of 𝑋 in the sense of distributions and thus 𝑎 extends smoothly to 𝑋 , since 𝛽 > −3. This

contradicts 𝜋𝑎 = 0. Thus we must be in the second case. Rescaling 𝑎𝑖 near 𝑄 as before yields a

non-trivial harmonic function on R4 × R4\{0} which is bounded by a constant multiple of |𝑦 |𝛽 .
Since 𝛽 > −3 the function extends to R8

and by Lemma 6.8 it is invariant in the R4
–direction.

Hence, it corresponds to a decaying harmonic function on R4
, since 𝛽 < 0, and must vanish

identically. So the second case does not occur either; thus proving that the claimed estimate must

hold. □
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6.3 Comparison of 𝔎𝜆 with 𝐹ℑ

Proposition 6.12. There is a constant 𝑐 > 0 such that for all 𝜆 ∈ (0,Λ] we have

∥(𝐿𝜆𝜇𝜆 − 𝜈𝜆𝐹ℑ) ˆℑ∥
𝐶

0,𝛼

−2,0;𝜆

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶1,𝛼 .

Corollary 6.13. There is a constant 𝑐 > 0 such that for all 𝜆 ∈ (0,Λ] we have

∥(𝜎𝜆𝐿𝜆𝜇𝜆 − 𝐹ℑ) ˆℑ∥𝐶0,𝛼 ⩽ 𝑐𝜆1−𝛼 ∥ ˆℑ∥𝐶1,𝛼 .

Proof of Proposition 6.12. We use the model operator
˜𝐿𝜆 defined by

˜𝐿𝜆𝑎 ≔

(
d
∗
𝐼𝜆
𝑎, 𝜋0

7
(d𝐼𝜆𝑎)

)
.

If we view Γ(ℑ∗𝑉𝔐) as a subspace of Ω1(𝑁𝑄, 𝔤𝐸), then on this subspace
˜𝐿𝜆 agrees with the

linearised Fueter operator 𝐹ℑ. We thus have to estimate the terms in the expression

𝐿𝜆𝜇𝜆
ˆℑ − 𝜈𝜆𝐹ℑ ˆℑ = 𝐿𝜆 (𝜇𝜆 ˆℑ − ˆℑ𝜆) + (𝐿𝜆 − 𝐿̃𝜆) ˆℑ + 𝑠∗

1/𝜆𝐹ℑ
ˆℑ − 𝜈𝜆𝐹ℑ ˆℑ

=: I + II + III

on 𝑉[0,𝜁 ) . It is easy to see that

∥I∥
𝐶

0,𝛼

−2,0;𝜆
(𝑉[0,𝜁 ) ) + ∥III∥

𝐶
0,𝛼

−2,0;𝜆
(𝑉[0,𝜁 ) ) ⩽ 𝑐𝜆

2∥ ˆℑ∥𝐶1,𝛼 .

by using that fact that I and III are supported in 𝑉[𝜎/2,𝜎 ) and the estimates

∥𝐿𝜆𝑎∥𝐶0,𝛼

−2,0;𝜆
(𝑉[0,𝜎 ) ) ⩽ 𝑐 ∥𝑎∥𝐶1,𝛼

−1,0;𝜆
(𝑉[0,𝜎 ) ) and ∥𝐹ℑ ˆℑ∥𝐶0,𝛼 ⩽ 𝑐 ∥ ˆℑ∥𝐶1,𝛼

as well as

∥𝜇𝜆 ˆℑ − ˆℑ𝜆 ∥𝐶𝑘,𝛼

−ℓ,0,𝜆 (𝑉[𝜎/2,𝜎 ) ) ⩽ ∥𝜒+ − 1∥
𝐶
𝑘,𝛼

ℓ+3,0;𝜆
(𝑉[𝜎/2,𝜎 ) ) · ∥

ˆℑ𝜆 ∥𝐶𝑘,𝛼

−3,0;𝜆
(𝑉[𝜎/2,𝜎 ) )

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶𝑘,𝛼

and a similar estimate for 𝜈𝜆 .

The key for the estimate of II is to notice that

𝜋0

7

(
(d𝐼𝜆 ˆℑ)0,2

)
= 𝜋1

7

(
(d𝐼𝜆 ˆℑ)0,2

)
= 0,

because 𝛿ℑ(𝑥 ) ( ˆℑ|𝑁𝑥𝑄 ) = 0 and 𝜋0

7
and 𝜋1

7
vanish on Λ−𝑁𝑄 . Therefore,

II = 𝜋7

(
(𝐴𝜆 − 𝐼𝜆) ∧ ˆℑ𝜆

)
+ 𝜋1

7

(
(d𝐼𝜆 ˆℑ𝜆)2,0 + (d𝐼𝜆 ˆℑ𝜆)1,1

)
+ 𝜋⩾2

7
(d𝐼𝜆 ˆℑ𝜆)

=: II1 + II2 + II3.
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It follows from Proposition 5.19 that

(6.14) ∥𝐴𝜆 − 𝐼𝜆 ∥𝐶0,𝛼

1,0;𝜆
(𝑉[0,𝜎 ) ) = ∥𝜒−

𝜆
𝑎 + (𝜒+ − 1)𝑖𝜆 ∥𝐶0,𝛼

1,0;𝜆
(𝑉[0,𝜎 ) ) ⩽ 𝑐

which in conjunction with

(6.15) ∥ ˆℑ𝜆 ∥𝐶𝑘,𝛼

−3,0;𝜆
(𝑉[0,𝜎 ) ) ⩽ 𝑐𝜆

2∥ ˆℑ∥𝐶𝑘,𝛼

yields

∥II1∥𝐶0,𝛼

−2,0;𝜆

⩽ 𝑐𝜆2∥ ˆℑ∥𝐶1,𝛼 .

II2 and II3 can be estimated using Proposition 5.16, Proposition 5.19 and (6.15). □

6.4 Estimate of 𝔭𝜆 and 𝔮𝜆

Proposition 6.16. For 𝛿 ∈ (−1, 0) there exists a constant 𝑐 > 0 such that for all 𝜆 ∈ (0,Λ] we have

∥𝜎𝜆𝔭𝜆𝑎∥𝐶0,𝛼 ⩽ 𝑐𝜆−𝛼 ∥𝜌𝜆𝑎∥𝐶1,𝛼

−1,𝛿 ;𝜆

and

∥𝔮𝜆𝑎∥𝐶0,𝛼

−2,𝛿 ;𝜆

⩽ 𝑐𝜆2+𝛿/2−𝛼 ∥𝜋𝜆𝑎∥𝐶1,𝛼 .

Proof. First note that the second estimate is an immediate consequence of Proposition 5.11 and

Proposition 6.12, because

𝔮𝜆𝑎 = 𝜏𝜆 (𝐿𝜆𝜇𝜆 − 𝜈𝜆𝐹ℑ)𝜇𝜆𝑎,
since 𝜏𝜆𝜈𝜆 = 0. Now, to estimate 𝔭𝜆 we define

𝜋̃𝜆 : Ω1(𝑁𝑄, 𝔤𝐸 (ℑ𝜆 ) ) → Γ(ℑ∗𝑉𝔐) ⊂ Ω1(𝑁𝑄, 𝔤𝐸 (ℑ𝜆 ) )

by

(𝜋̃𝜆𝑎) (𝑥) ≔
∑︁
𝜅

ˆ
𝑁𝑥𝑄

⟨𝑎, 𝜅⟩ 𝜅

and

𝜎̃𝜆 : Ω2(𝑁𝑄, 𝔤𝐸 (ℑ𝜆 ) ) → Γ(HomΦ(𝑇𝑄,ℑ∗𝑉𝔐)) ⊂ Ω2(𝑁𝑄, 𝔤𝐸 (ℑ𝜆 ) )
by

(𝜎̃𝜆𝛼) (𝑥) ≔
∑︁
𝛽

ˆ
𝑁𝑥𝑄

⟨𝛼, 𝛽⟩ 𝛽.

Here, at each point 𝑥 ∈ 𝑄 , 𝜅 runs through an orthonormal basis of𝑉𝔐ℑ(𝑥 ) and 𝛽 runs through an

orthonormal basis of HomΦ(𝑇𝑥𝑄,𝑉𝔐ℑ(𝑥 ) ). We set 𝜌𝜆 ≔ id − 𝜋̃𝜆 and 𝜏𝜆 ≔ id − 𝜎̃𝜆 . One can check

that 𝜎̃𝜆 ˜𝐿𝜆𝜌𝜆 = 0. For 𝑎 supported in 𝑉[0,𝜎 ) , which we can assume without loss of generality,

𝔭𝜆𝑎 = 𝜎𝜆 (𝐿𝜆 − ˜𝐿𝜆)𝜌𝜆𝑎 + (𝜎𝜆 − 𝜎̃𝜆) ˜𝐿𝜆𝜌𝜆𝑎 + 𝜎̃𝜆 ˜𝐿𝜆 (𝜌𝜆 − 𝜌𝜆)𝑎
= 𝜎𝜆I + II + 𝜎̃𝜆III.

The terms II and III (resp. I) can be estimated similar to I and III (resp. II) in the proof of Proposi-

tion 6.12. □
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6.5 Patching local inverses

Proof of Proposition 6.1. Fix 𝑦 ∈ 𝔜𝜆 and set

𝑢 ≔ 𝜎𝜆𝑦 and 𝑣 ≔ 𝜏𝜆𝑦.

Step 1. An approximate inverse for 𝑢.

Denote by 𝐺ℑ a fixed right inverse of 𝐹ℑ and set

𝑧 ≔ 𝜇𝜆𝐺ℑ𝜎𝜆𝑢.

We have

∥𝑧∥𝔛𝜆
⩽ 𝑐 ∥𝑦∥𝔜𝜆

and by Corollary 6.13 and Proposition 6.16 we have

(6.17) ∥𝐿𝜆𝑧 − 𝑢∥𝔜𝜆
⩽ 𝑐𝜆1−𝛼 ∥𝑦∥𝔜𝜆

.

Step 2. Choice of cut-off functions.

We construct an approximate inverse for 𝑣 by finding local approximate inverses and then

patching these together. This requires two kinds of cut-off functions. The first kind is constructed

as follows: Let 𝜒 : [0,∞) → [0, 1] denote the smooth-cut off function chosen in Section 5 which

vanishes on [0, 1] and is equal to one on [2,∞). We define 𝜒𝜆 : 𝑋 → [0, 1] by

𝜒𝜆 (𝑥) ≔ 𝜒 (𝑟 (𝑥)/
√
𝜆) .

Then

∥𝜒𝜆 ∥𝐶0,𝛼

0,0;𝜆

⩽ 𝑐.

Fix a small constant 𝜀 > 0, a large constant 𝑁 ≫ 1, and note that in the following we can choose

the constant 𝑐 > 0 independent of 𝜀 and 𝑁 . Throughout, we will make use of 𝜆 ≪ 𝜀 and 𝜆 ≪ 1/𝑁 .

We can pick a finite number of points {𝑥𝛾 : 𝛾 ∈ Γ} ⊂ 𝑄 such that the balls 𝐵𝜀 (𝑥𝛾 ) cover all of 𝑄
and a partition of unity 1 =

∑
𝛾 ∈Γ 𝜒𝛾 subordinate to this cover such that

∥𝜒𝛾 ∥𝐶0,𝛼

0,0;𝜆
(supp(1−𝜒𝜆 ) ) ⩽ 𝑐𝜀

−𝛼 .

We can now write

𝑣 =
∑︁
𝛾 ∈Γ

𝑣𝛾 + 𝑣0

with

𝑣𝛾 ≔ (1 − 𝜒𝜆)𝜒𝛾𝑣 and 𝑣0 ≔ 𝜒𝜆𝑣 .
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Although 𝑣0 and the 𝑣𝛾 depend on 𝜆 we choose not to make this dependence explicit in order not

to clutter the notation any more. By construction we have

(6.18)

∑︁
𝛾

∥𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

+ ∥𝑣0∥𝐶0,𝛼

−2,𝛿 ;𝜆

⩽ 𝑐𝜀−𝛼 ∥𝑣 ∥
𝐶

0,𝛼

−2,𝛿 ;𝜆

.

The second kind of cut-off functions is constructed as follows: We choose 𝛽±
𝜆,𝑁

: 𝑋 → [0, 1]
such that

𝛽+
𝜆,𝑁

(𝑥) =
{

1 𝑟 (𝑥) ⩽ 2

√
𝜆

0 𝑟 (𝑥) ⩾ 2𝑁
√
𝜆

and

𝛽−
𝜆,𝑁

(𝑥) =
{

0 𝑟 (𝑥) ⩽
√
𝜆/𝑁

1 𝑟 (𝑥) ⩾
√
𝜆

as well as

(6.19) ∥d𝛽±
𝜆,𝑁

∥
𝐶

0,𝛼

−1,0;𝜆

⩽ 𝑐/log(𝑁 ) and ∥𝛽±
𝜆,𝑁

∥
𝐶

0,𝛼

0,0;𝜆

⩽ 𝑐.

This can be arranged by interpolating between 0 and 1 logarithmically, i.e., by defining 𝛽+
𝜆,𝑁

as an

appropriate smoothing of log(2𝑁
√
𝜆/𝑟 )/log(𝑁 ) in the intermediate region and similarly 𝛽−

𝜆,𝑁
as a

smoothing of log(𝑁𝑟/
√
𝜆)/log(𝑁 ). Moreover, we choose 𝜒𝛾 : 𝑄 → [0, 1] such that 𝜒𝛾 equals one

on 𝐵𝜀 (𝑥𝛾 ), 𝜒𝛾 vanishes outside 𝐵2𝜀 (𝑥𝛾 ) and satisfies

(6.20) ∥d𝜒𝛾 ∥
𝐶

0,𝛼

−1,0;𝜆

(
supp 𝛽+

𝜆,𝑁

) ⩽ 𝑐𝑁√
𝜆/𝜀1+𝛼

and ∥𝜒𝛾 ∥
𝐶

0,𝛼

0,0;𝜆

(
supp 𝛽+

𝜆,𝑁

) ⩽ 𝑐.
Step 3. Construction of local approximate inverses.

Let 𝐼𝛾 be the ASD instanton obtained by restricting 𝐼 = 𝐼 (ℑ) to 𝑁𝑥𝛾𝑄 . Using the identifications

and the notation of Section 6.1 we define

𝑤̃𝛾 ≔ 𝑠−1

1,𝜆
L−1

𝐼𝛾
𝜌𝐼𝛾 𝑠2,𝜆𝑣𝛾 and 𝑤𝛾 ≔ 𝜌𝜆𝜒𝛾𝛽

+
𝜆,𝑁
𝑤̃𝛾 .

where 𝜌𝐼𝛾 ≔ id − 𝜋𝐼𝛾 . Under the identifications employed in Section 6.1 the projections 𝜋𝜆 and 𝜎𝜆
are identified. From 𝜎𝜆𝑣 = 0 one can deduce that

∥𝜋𝐼𝛾 𝑠2,𝜆𝑣𝛾 ∥𝐶0,𝛼

−2−𝛿
⩽ 𝑐𝜀∥𝑠2,𝜆𝑣𝛾 ∥𝐶0,𝛼

−2−𝛿
⩽ 𝑐𝜀∥𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

.

Using Proposition 6.5 we conclude that

(6.21) ∥𝑤̃𝛾 ∥𝐶1,𝛼

−1,𝛿 ;𝜆
(𝑉2𝜀,𝜁 ) ⩽ 𝑐 ∥𝑠1,𝜆𝑤̃𝛾 ∥𝐶1,𝛼

−1+𝛿 (𝑈2𝜀,∞;𝜆 ) ⩽ 𝑐 ∥𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆
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and

(6.22) ∥𝐿𝜆𝑤̃𝛾 − 𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆
(𝑉2𝜀,𝜁 ) ⩽ 𝑐𝜀∥𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

Since 𝜋𝐼𝛾 (𝑠1,𝜆𝑤̃𝛾 ) = 0, it follows that

∥𝜋̃𝐼𝛾 𝑠1,𝜆𝑤̃𝛾 ∥𝐶1,𝛼

−1+𝛿 (𝑈2𝜀,∞;𝜆 ) ⩽ 𝑐𝜀∥𝑠1,𝜆𝑤̃𝛾 ∥𝐶1,𝛼

−1+𝛿 (𝑈2𝜀,∞;𝜆 )

here 𝜋̃𝐼𝛾 is defined like 𝜋𝐼𝛾 but with ker𝛿𝐼 |𝑁
exp𝑥𝛾 (𝜆 ·−)𝑄

instead of ker𝛿𝐼 |𝑁𝑥𝛾 𝑄
. Therefore,

(6.23) ∥𝜋𝜆𝑤𝛾 ∥𝐶1,𝛼

−1,𝛿 ;𝜆

⩽ 𝑐𝜀∥𝑣𝛾 ∥𝐶1,𝛼

−1,𝛿 ;𝜆

and it follows that∑︁
𝛾

∥𝑤𝛾 ∥𝐶1,𝛼

−1,𝛿 ;𝜆

⩽ 𝑐 (1 + 𝑁
√
𝜆/𝜀1+𝛼 + 1/log(𝑁 ))

∑︁
𝛾

∥𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

⩽ 𝑐𝜀−𝛼 (1 + 𝑁
√
𝜆/𝜀1+𝛼 + 1/log(𝑁 ))∥𝑣 ∥

𝐶
1,𝛼

−1,𝛿 ;𝜆

.

By Proposition 6.10,𝑤0 ≔ 𝛽−
𝜆,𝑁
𝑅𝐴0

𝑣0, with 𝑅𝐴0
as in Proposition 6.11, satisfies

(6.24) ∥𝑤0∥𝔛𝜆
⩽ 𝑐 ∥𝑣0∥𝔜𝜆

.

Combining all of the above we see that the 𝑅̃𝜆 : 𝔜𝜆 → 𝔛𝜆 defined by

˜𝑅𝜆𝑦 ≔ 𝑧 +
∑︁
𝛾

𝑤𝛾 +𝑤0.

is bounded by 𝑐𝜀−𝛼 (1 + 𝑁
√
𝜆/𝜀1+𝛼 + 1/log(𝑁 )).

Step 4. ˜𝑅𝜆 is an approximate right inverse to 𝐿𝜆 .

We need to estimate the three types of terms

I ≔ ∥𝐿𝜆𝑧 − 𝑢∥𝔜𝜆
,

II𝛾 ≔ ∥𝐿𝜆𝑤𝛾 − 𝑣𝛾 ∥𝔜𝜆
and

III ≔ ∥𝐿𝜆𝑤0 − 𝑣0∥𝔜𝜆
.

We have already treated I with (6.17). Now,

II𝛾 = ∥𝐿𝜆𝑤𝛾 − 𝑣𝛾 ∥𝔜𝜆
⩽ 𝜆−𝛿/2∥𝐿𝜆𝜌𝜆𝜒𝛾𝛽+𝜆,𝑁 𝑤̃𝛾 − 𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

+ 𝜆∥𝜎𝜆𝐿𝜌𝜆𝜒𝛾𝛽+𝜆,𝑁 𝑤̃𝛾 − 𝜎𝜆𝑣𝛾 ∥𝐶0,𝛼
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Using (6.21), Proposition 6.16 and the fact that 𝜋𝜆𝑣 = 0 the last term can be seen to be bounded by

𝑐𝜆1−𝛼 ∥𝑣𝛾 ∥𝔜𝜆
. To control the first term use the fact that on the support of 𝑣𝛾 we have 𝜒𝛾𝛽

+
𝜆,𝑁

= 1,

(6.19), (6.20), (6.21), (6.22) and (6.23) to derive

∥𝐿𝜆𝜌𝜆𝜒𝛾𝛽+𝜆,𝑁 𝑤̃𝛾 − 𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

⩽ 𝑐 ∥𝐿𝜆𝑤̃𝛾 − 𝑣𝛾 ∥𝐶0,𝛼

−2,𝛿 ;𝜆
(𝑉2𝜀,𝜁 )

+ 𝑐 ∥d(𝜒𝜆𝛽+𝜆,𝑁 )∥𝐶0,𝛼

−1,0;𝜆
(supp 𝛽+

𝜆,𝑁
) ∥𝑤̃𝛾 ∥𝐶0,𝛼

−1,𝛿 ;𝜆
(𝑉2𝜀,𝜁 )

+ 𝑐 ∥𝜋𝜆𝜒𝛾𝛽+𝜆,𝑁 𝑤̃𝛾 ∥𝐶1,𝛼

−1,𝛿 ;𝜆

⩽ 𝑐 (𝜀 + 1/log(𝑁 ) + 𝑁
√
𝜆/𝜀)∥𝑣𝜆 ∥𝐶0,𝛼

−2,𝛿 ;𝜆

.

Similarly,

III ⩽ 𝑐 (
√
𝜆 + 1/log(𝑁 ))∥𝑦∥𝔜𝜆

Putting everything together we obtain

∥𝐿𝜆 ˜𝑅𝜆𝑦 − 𝑦∥𝔜𝜆
⩽ 𝑐𝜀−𝛼 (𝜀 + 1/log𝑁 + 𝑁

√
𝜆/𝜀)∥𝑦∥𝔜𝜆

.

By choosing 𝜀 small enough, 𝑁 large enough and 𝜆 small enough we can make the factor in front

of ∥𝑦∥𝔜𝜆
arbitrarily small.

Step 5. Construction of 𝑅𝜆 .

We can arrange that

∥𝐿𝜆 ˜𝑅𝜆𝑦 − 𝑦∥𝔜𝜆
⩽

1

2

∥𝑦∥𝔜𝜆
.

for all 𝜆 ∈ (0,Λ]; hence, the series

𝑅𝜆 ≔ ˜𝑅𝜆 (𝐿𝜆 ˜𝑅𝜆)−1 = ˜𝑅𝜆

∞∑︁
𝑘=0

(
id − 𝐿𝜆 ˜𝑅𝜆

)𝑘
converges and constitutes a right inverse for 𝐿𝜆 . Clearly, 𝑅𝜆 is bounded uniformly with respect to

𝜆 ∈ (0,Λ]. □

7 Conclusion of the proof of Theorem 1.2

The last ingredient we need for the proof of Theorem 1.2 is the following estimate on the polarisation

𝑄 (𝑎1, 𝑎2) ≔
1

2

𝜋7( [𝑎1 ∧ 𝑎2])

of the quadratic form 𝑄 appearing in (5.1).
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Proposition 7.1. There is a constant 𝑐 > 0 such that for all 𝜆 ∈ (0,Λ] we have

∥𝜏𝜆𝑄 (𝑎1, 𝑎2)∥𝐶0,𝛼

−2,𝛿 ;𝜆

⩽ 𝑐𝜆−𝛼
(
∥𝜌𝜆𝑎1∥𝐶0,𝛼

−1,𝛿 ;𝜆

· ∥𝜌𝜆𝑎2∥𝐶0,𝛼

−1,𝛿 :𝜆

+ ∥𝜌𝜆𝑎1∥𝐶0,𝛼

−1,𝛿 ;𝜆

· ∥𝜋𝜆𝑎2∥𝐶0,𝛼

+ ∥𝜋𝜆𝑎1∥𝐶0,𝛼 · ∥𝜌𝜆𝑎2∥𝐶0,𝛼

−1,𝛿 ;𝜆

+ ∥𝜋𝜆𝑎1∥𝐶0,𝛼 ∥𝜋𝜆𝑎2∥𝐶0,𝛼

)
and

𝜆∥𝜎𝜆𝑄 (𝑎1, 𝑎2)∥𝐶0,𝛼

⩽ 𝑐𝜆−𝛼
(
∥𝜌𝜆𝑎1∥𝐶0,𝛼

−1,𝛿 ;𝜆

· ∥𝜌𝜆𝑎2∥𝐶0,𝛼

−1,𝛿 ;𝜆

+ ∥𝜌𝜆𝑎1∥𝐶0,𝛼

−1,𝛿 ;𝜆

· ∥𝜋𝜆𝑎2∥𝐶0,𝛼

+ ∥𝜋𝜆𝑎1∥𝐶0,𝛼 · ∥𝜌𝜆𝑎2∥𝐶0,𝛼

−1,𝛿 ;𝜆

+ 𝜆∥𝜋𝜆𝑎1∥𝐶0,𝛼 · ∥𝜋𝜆𝑎2∥𝐶0,𝛼

)
.

In particular,
∥𝑄 (𝑎1, 𝑎2)∥𝔜𝜆

⩽ 𝑐𝜆−2−𝛿/2∥𝑎1∥𝔛𝜆
∥𝑎2∥𝔛𝜆

Proof. The first estimate is an immediate consequence of Proposition 5.8 and Proposition 5.11. For

the second estimate we only have to explain why we get a factor 𝜆 in front of ∥𝜋𝜆𝑎1∥𝐶0,𝛼 · ∥𝜋𝜆𝑎2∥𝐶0,𝛼 .

Note that

𝜎̃𝜆𝜋
0

7

(
𝜇𝜆

ˆℑ1 ∧ 𝜇𝜆 ˆℑ2

)
= 0

because of Proposition 2.14 (the Λ2

4
–component already vanishes). Arguing as in the proof of

Proposition 6.12 we see that we gain a factor of 𝜆. □

Setting
˜𝑄𝜆 = 𝑄 ◦ 𝑅𝜆 , (5.1) becomes

𝑥 + ˜𝑄𝜆 (𝑥) + 𝜋7(𝐹𝐴𝜆
) = 0.

In view of Proposition 5.14, Proposition 6.1 and Proposition 7.1, this equation can be solved by

appealing to the following consequence of Banach’s fixed-point theorem.

Lemma 7.2 ([DK90, Lemma 7.2.23]). Let 𝑋 be a Banach space and let 𝑇 : 𝑋 → 𝑋 be a smooth map
with 𝑇 (0) = 0. Suppose there is a constant 𝑐 > 0 such that

∥𝑇𝑥 −𝑇𝑦∥ ⩽ 𝑐 (∥𝑥 ∥ + ∥𝑦∥) ∥𝑥 − 𝑦∥.

Then if 𝑦 ∈ 𝑋 satisfies ∥𝑦∥ ⩽ 1

10𝑐
, there exists a unique 𝑥 ∈ 𝑋 with ∥𝑥 ∥ ⩽ 1

5𝑐
solving

𝑥 +𝑇𝑥 = 𝑦.

The unique solution satisfies ∥𝑥 ∥ ⩽ 2∥𝑦∥.

Elliptic regularity implies that 𝐴𝜆 + 𝑎 is smooth. Since 𝑎 is small, the existence of a right

inverse of 𝐿𝐴𝜆
guarantees the existence of a right inverse of 𝐿𝐴𝜆+𝑎 ; hence, 𝐴𝜆 + 𝑎 is irreducible and

unobstructed. □
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8 Proof of Theorem 1.4

Since Hol(𝑔Φ) = Spin(7), 𝑏1 = 𝑏2

7
= 0 [Joy00, Proposition 10.6.5] and thus the product connection 𝜃

on the trivial SU(2)–bundle is unobstructed. It is reducible; however, does not cause any problems,

see Remark 5.2. We have index𝐿𝜃 = −3. If we choose𝑀 as in Example 3.4, then

𝔐 =
(
Re(Hom(C2, /𝑆+))\{0}

)
/Z2 × Re(/𝑆+ ⊗ 𝑈 )

By Example 4.8, the Fueter operator lifts to the Dirac operator

/𝐷 : Γ(Re(Hom(C2, /𝑆+) ⊕ /𝑆+ ⊗ 𝑈 )) → Γ(Re(Hom(C2, /𝑆−) ⊕ /𝑆− ⊗ 𝑈 )) .

Arguing as in Proposition 2.43, we see that /𝐷 is surjective and has an 8–dimensional kernel and all

non-zero elements of the kernel are no-where vanishing, provided the metric on 𝑄 is sufficiently

close to a hyperkähler metric and the induced connection on 𝑁𝑄 is almost flat. We can thus apply

Theorem 1.2 and obtain a 5–dimensional family of Spin(7)–instantons over 𝑋 . A similar argument

also proves the last assertion of the theorem. □

9 Comparing index formulae

Proposition 9.1. Let (𝑋,Φ) be a compact Spin(7)–manifold, let𝑄 be a Cayley submanifold of 𝑋 and
let 𝐸0 and 𝐸 be SU(2)–bundles over 𝑋 which are related by

𝑐2(𝐸) = 𝑐2(𝐸0) + PD[𝑄] .

If 𝐴 is a connection on 𝐸 and 𝐴0 is a connection on 𝐸0, then

index𝐿𝐴 = index𝐿𝐴0
+ index 𝐹𝑄 + index 𝐹 + 5

3

ˆ
𝑄

𝑒 (Re(Hom(𝐸0, /𝑆+𝑄 )))(9.2)

where 𝐿𝐴 and 𝐿𝐴0
are as in (2.21) and

˚𝐹 = /𝐷 : Γ(Re(Hom(𝐸∞, /𝑆+))) → Γ(Re(Hom(𝐸∞, /𝑆−)))

as in Example 4.12.

In the situation of Proposition 9.1 whenever Theorem 1.2 can be applied 𝑒 (Re(/𝑆+𝑄⊗𝐸0)) vanishes.
This is because in those situation the Fueter section ℑ gives rise to a no-where vanishing section of

Re(/𝑆+𝑄 ⊗ 𝐸0). Hence, (9.2) can be taken as evidence that Theorem 1.2 gives a description of an open

subset of the moduli space of Spin(7)–instantons. (Note that the gluing parameter 𝜆 is already

contained in index
˚𝐹ℑ.)
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Proof of Proposition 9.1. By Proposition 2.23 and (2.42) we have

index𝐿𝐴𝜆
− index𝐿𝐴0

= −1

6

ˆ
𝑄

𝑝1(𝑋 ) −
4

3

[𝑄] · [𝑄] − 8

3

ˆ
𝑄

𝑐2(𝐸0)

= −𝜎 (𝑄) − 1

3

𝜒 (𝑄) − [𝑄] · [𝑄] − 8

3

ˆ
𝑄

𝑐2(𝐸0).

By (2.37) and (4.13) we have

index 𝐹𝑄 + index
˚𝐹ℑ =

1

4

𝜎 (𝑄) + 1

2

𝜒 (𝑄) − [𝑄] · [𝑄] −
ˆ
𝑄

𝑐2(𝐸0) .

Using (2.40) and (2.41)ˆ
𝑄

𝑒 (Re(Hom(𝐸0, /𝑆+𝑄 )) =
ˆ
𝑄

𝑒 (Re(𝐸∗
0
⊗ /𝑆+𝑄 ))

=

ˆ
𝑄

𝑒 (Re(𝐸0 ⊗ /𝑆+𝑄 ))

= −
ˆ
𝑄

𝑐2(𝐸0) −
3

4

𝜎 (𝑄) − 1

2

𝜒 (𝑄) .

Verifying (9.2) is now straight-forward. □
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