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Abstract

This is an expository paper. Its purpose is to explain the linear algebra that underlies
Donaldson-Thomas theory and the geometry of Riemannian manifolds with holonomy in G,
and Spin(7).

1 Introduction

In these notes we give an exposition of the structures in linear algebra that underlie Donaldson-
Thomas theory [DT98; DS11] and calibrated geometry [HL82; Joyoo]. No claim is made to originality.
All the results and ideas described here (except perhaps Theorem 7.8) can be found in the existing
literature, notably in the beautiful paper [HL82] by Harvey and Lawson. Perhaps these notes
might be a useful introduction for students who wish to enter the subject.

Our emphasis is on characterizing the relevant algebraic structures—such as cross products,
triple cross products, associator and coassociator brackets, associative, coassocitative, and Cayley
calibrations and subspaces—by their intrinsic properties rather than by the existence of isomor-
phisms to the standard structures on the octonions and the imaginary octonions, although both
descriptions are of course equivalent.

Section 2 deals with cross products and their associative calibrations. It contains a proof that
they exist only in dimensions 0, 1, 3, and 7. In Section 3 we discuss nondegenerate 3—forms on
7-dimensional vector spaces (associative calibrations) and explain how they give rise to unique
compatible inner products. Additional structures such as associative and coassociative subspaces
and the associator and coassociator brackets are discussed in Section 4. These structures are
relevant for understanding G,—structures on 7-manifolds and the Chern-Simons functional in
Donaldson-Thomas theory.

The corresponding Floer theory has as its counterpart in linear algebra the product with the
real line. This leads to the structure of a normed algebra which only exists in dimensions 1, 2,
4, and 8, corresponding to the reals, the complex numbers, the quaternions, and the octonions.
These structures are discussed in Section 5. Going from Floer theory to an intrinsic theory for
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Donaldson-type invariants of 8—dimensional Spin(7)-manifolds corresponds to dropping the space-
time splitting. The algebraic counterpart of this reduction is to eliminate the choice of the unit (as
well as the product). What is left of the algebraic structures is the triple cross product and its Cayley
calibration—a suitable 4-form on an 8—dimensional Hilbert space. These structures are discussed
in Section 6. Section 7 characterizes those 4-forms on 8-dimensional vector spaces (the Cayley-
forms) that give rise to (unique) compatible inner products and hence to triple cross products.
The relevant structure groups G, (in dimension 7) and Spin(7) (in dimension 8) are discussed in
Section 8 and Section ¢ with a particular emphasis on the splitting of the space of alternating
multi-linear forms into irreducible representations. In Section 10 we examine spin structures in
dimensions 7 and 8. Section 11 relates SU(3) and SU(4) structures to cross products and triple
cross products and Section 12 gives a brief introduction to the basic setting of Donaldson-Thomas
theory.

Here is a brief overview of some of the literature about the groups G, and Spin(7). The
concept of a calibration was introduced in the article of Harvey-Lawson [HL82] which also
contains definitions of G, and Spin(7) in terms of the octonions. Humphreys [Hum?78, Section 19.3]
constructs (the Lie algebra of) G, from the Dynkin diagram and proves that this coincides with
the definition in terms of the octonions. The characterization of G, and Spin(7) as the stabilisers
of certain 3— and 4-forms is due to Bonan [Bon66]. The connection between calibrations and
spinors is discussed in Harvey’s book [Hargo] as well as in the article of Dadok-Harvey [DHog3].

Harvey-Lawson also introduced the (multiple) cross products and the associator and coassoci-
ator brackets. The concept of a multiple cross product goes back to Eckmann [Eck43]. Building on
this work, Whitehead [Whi63] classified those completely; see also Brown-Gray [BG67]. To our
best knowledge, the splitting of the exterior algebra into irreducible G;-representations is due
to Fernandez—Gray [FG82, Section 3], who also emphasize the relation between G, and the cross
product in dimension seven. This as well as the analogous result for Spin(7) can also be found in
Bryant [Bry87, Section 2].

Among many others, the more recent articles by Bryant [Bryo6], Karigiannis [Karo8; Karoo;
Kario] and Mufioz [Murii4, Section 2] contain useful summaries of the linear algebra related to G
and Spin(7).

2 Cross products

We assume throughout that V is a finite dimensional real Hilbert space.
Definition 2.1. A skew-symmetric bilinear map

(2.2) VXV ->V: (u,v) > uxXv

is called a cross product if it satisfies

(2.3) (uxv,uy={uxov,v)=0, and

(2.4) uxvl® = [ul’lol* - (u,0)?



forallu,v e V.

A bilinear map (2.2) that satisfies (2.4) also satisfies u X u = 0 for all u € V and, hence, is
necessarily skew-symmetric.

Theorem 2.5. V admits a cross product if and only if its dimension is either 0, 1, 3, or 7. In dimensions
0 and 1 the cross product vanishes, in dimension 3 it is unique up to sign and determined by an
orientation of V, and in dimension 7 it is unique up to orthogonal isomorphism.

Proof. See page 7. O
The proof of Theorem 2.5 is based on the next five lemmas.

Lemma 2.6. Let (2.2) be a skew-symmetric bilinear map. Then the following are equivalent:
1. Equation (2.3) holds for allu,v € V.

2. Forallu,v,w € V we have

(2.7) (uxov,w) ={u,vxXw).

3. The map ¢: V* — R, defined by
(2.8) d(u,v,w) = (u X v, w),
is an alternating 3—form (called the associative calibration of (V, X)).

Proof. Let (2.2) be a skew-symmetric bilinear map. Assume that it satisfies (2.3). Then, for all
u,v,w € V, we have

0=(ox(u+w),u+w)
={(uXw,u)+{vXuw)
= (U, v X w) — (uXv,w).
This proves (2.7).
Now assume (2.7) and let ¢ be defined by (2.8). Then, by skew-symmetry, we have ¢(u, v, w) +
¢(v,u, w) = 0 for all u, v, w and, by (2.7), we have ¢(u, v, w) = ¢(v, w, u) for all u, v, w. Hence, ¢ is

an alternating 3—form. Thus we have proved that (1) implies (2) implies (3).
That (3) implies (1) is obvious. This proves Lemma 2.6. O

Lemma 2.9. Let (2.2) be a skew-symmetric bilinear map that satisfies (2.3). Then the following are
equivalent:

1. The bilinear map (2.2) satisfies (2.4).

2. Ifu and w are orthonormal, then |[u X w| = 1.



3. Iflu| = 1 and w is orthogonal to u, then u X (u X w) = —w.
4. Forallu,w € V we have

(2.10) u X (uxw) = (u,whu— |ul*w.
5. Forallu,v,w € V we have

(2.11) uX(Xw)+ouXUxXw)={uwov+ (v,whu—2{(u,v)w.

Proof. That (1) implies (2) is obvious.

We prove that (2) implies (3). Fix a vector u € V with |u| = 1 and define the linear map
A: V — V by Aw := u X w. Then, by skew-symmetry and (2.7), A is skew-adjoint and, by (2.3), it
preserves the subspace W := ut. Hence, the restriction of A* to W is self-adjoint and, by (2), it
satisfies (w, A2w) = —|u X w|? = —|w|? for w € W. Hence, the restriction of A? to W is equal to
minus the identity. This proves that (2) implies (3).

We prove that (3) implies (4). Fix a vector u € V and define A: V — V by Aw := u X w as
above. By (3) we have A?w = —|u|?*w whenever w is orthogonal to u. Since A%u = 0, this implies (4).

Assertion (5) follows from (4) by replacing u with u + v. To prove that (5) implies (1), set
w = v in (2.11) and take the inner product with u. Then |u X v|*> = (u,u X (v X V) + v X (u X v)) =
lu|?|v|? = (u, v)?. Here the first equality follows from (2.7) and the second from (2.11) with w = v.
This proves Lemma 2.9. O

Lemma 2.12. AssumedimV = 3.

1. A cross product on'V determines a unique orientation such that u,v,u X v form a positive basis
for every pair of linearly independent vectors u,v € V.

2. If (2.2) is a cross product on V, then the 3—form ¢ given by (2.8) is the volume form associated
to the inner product and the orientation in (1).

3. If (2.2) is a cross product on 'V, then
(2.13) (uxv)xw=(u,w)v—(v,w)u
forallu,v,weV.

4. Fix an orientation on V and denote by ¢ € A3V* the associated volume form. Then (2.8)
determines a cross product on'V.

Proof. Assertion (1) follows from the fact that the space of pairs of linearly independent vectors
in V is connected (whenever dimV # 2). Assertion (2) follows from the fact that, if u, v are
orthonormal, then u, v, u X v form a positive orthonormal basis and

p(u,v,u xv) = lux vl =1.



We prove (3). If u and v are linearly dependent, then both sides of (2.13) vanish. Hence we may
assume that u and v are linearly independent or, equivalently, that u X v # 0. Since (u X v) X w is
orthogonal to u X v, by equation (2.7), and V has dimension 3, it follows that (u X v) X w must be a
linear combination of u and v. The formula (2.13) follows by taking the inner products with u and
v, and using Lemma 2.9 (5).

We prove (4). Assume that the bilinear map (2.2) is defined by (2.8), where ¢ is the volume
form associated to an orientation of V. Then skew-symmetry and (2.3) follow from the fact that ¢
is a 3—form (see Lemma 2.6). If u, v are linearly independent, then by (2.8) we have

uxXov#0

and
P(u,v,u X v) = [ux v|* > 0.

If u, v are orthonormal, it follows that u, v, u X v is a positive orthogonal basis and so
d(u,v,u Xv) = |uxXu|.

Combining these two identities we obtain |u X v| = 1 when u, v are orthonormal. Hence, (2.4)
follows from Lemma 2.9. This proves Lemma 2.12. O

Example 2.14. On R3 the cross product associated to the standard inner product and the standard
orientation is given by the familiar formula

UU3 — U3y
UXv=1|U30; — U3
U102 — U2

Example 2.15. The standard structure on R” can be obtained from a basis of the form 1, j, k, e, ei, ej, ek,
where i, j, k, e are anti-commuting generators with square minus one and ij = k. Then the cross
product is given by

UV3 — U3V — UaUs5 + U504 — UgUV7 + U7V
U3V1 — U1V3 — UgVg + UgTVg — U705 + U5D7
U1V9 — UV — UgV7 + U704 — U5V6 + UgUs
(2.16) uXxXo:= U1V5 — U5D1 + UVg — UV + U3V7 — U703
—U1Vg + U4V — UpD7 + U702 + U3Vg — UgT3

U1V7 — U701 — UV4 + UgV9 — U3V5 + Us5D3

—U1Vg + UgV1 + UTV5 — U5V — U3TV4 + U4T3
With
ek .= dx; A dxj A dx
the associated 3—form (2.8) is given by

(2 17) QSO 123 145 167 246 275 347 356



The product (2.16) is skew-symmetric and (2.7) follows from the fact that the matrix A(u) defined

by
Aluyv:=uxv

is skew symmetric for all u, namely,

0 —Us U U —Uy U7 —Ug
Us 0 —U; U —U7 —Uy Us
—Uy U 0 Uy Ug —Us —Uy
A(u) =|—U; —Ug —Uy 0 Uq U us|.
Uy u; —ug —up 0 Us —up
—Uuy Uy Us —Ux —U3 0 U

Ug —Us Uy —us U, —up 0

We leave it to the reader to verify (2.4) (or equivalently |u X v| = 1 whenever u and v are
orthonormal).
See also Remark 3.6 below.

Lemma 2.18. LetV be a be a real Hilbert space and (2.2) be a cross product on' V. Let ¢ € A3V* be
given by (2.8). Then the following holds:

1. Letu € V be a unit vector and W,, := u*. Define w,: W, X W, — Rand J,: W, - W, by
wy(v, w) == (u,v X w), Juvi=uxXv

forv,w € W,,. Then w,, is a symplectic form on W,,, J,, is a complex structure compatible with
wy, and the associated inner product is the one inherited from V. In particular, the dimension
of V is odd.

2. Suppose dimV = 2n + 1 > 3. Then there is a unique orientation of V such that the associated
volume form vol € A*"*1V* satisfies

(2.19) (W) ' A ¢ = n'u|" 'vol
for everyu € V. In particular, n is odd.

Proof. We prove (1). By Lemma 2.6 the bilinear form «,, is skew symmetric and, by Lemma 2.9, we
have J, o J, = —1. Moreover,

wy (v, Jyw) = (u X v,u X w) = —(v,u X (u X w)) = (v, w)

for all v, w € V. Here the first equation follows from the definition of w, and J,, the second follows
from (2.7), and the last from Lemma 2.9. Thus the dimension of W;, is even and so the dimension
of V is odd.



We prove (2). The set of all bases (u, vy, . . ., v2,) € V2" where u hasnorm one and vy, . . ., vz,
is a symplectic basis of W,,, is connected. Hence, there is a unique orientation of V with respect to
which every such basis is positive. Let vol € A?"*1V* be the associated volume form. To prove
equation (2.19) assume first that |u| = 1 and choose an orthonormal symplectic basis vy, . .., v2p
of W,,. (For example pick an orthonormal basis vy, vs, . . ., 2,1 of a Lagrangian subspace of W,,
and define vy := J,vor—1 for k = 1,...,n.) Now evaluate both sides of the equation on the tuple
(4,01, ...,02). Then we obtain n! on both sides. This proves (2.19) whenever u has norm one.
The general case follows by scaling. It follows from (2.19) that n is odd since otherwise the left
hand side changes sign when we replace u by —u. This proves Lemma 2.18. O

Lemma 2.20. Letn > 1 be an odd integer and V' be an oriented real Hilbert space of dimension 2n + 1
with volume form vol € A*"*1V*, Let ¢ € A3V* be a 3—form and denote its isotropy group by

G:={gecAut(V):g"¢ = ¢}.
If ¢ satisfies (2.19), then G C SO(V).
Proof. Let g € Gand u € V. Then it follows from (2.19) that
1 1, ne
lgul"g"vol = —g" ((1lgu)$)" ™" A ¢)
1 : n— *
= — (6" A g'9)
n!
1 * n— *
= (w9 A g

= L (@) A
n:

[u|" vol.

Hence, there is a constant ¢ > 0 such that

1

g*vol = ¢ 'vol, lgu|™™ = clu|™!

for every u € V. Since n > 1, this gives |gu| = = |u| for u € V and hence

2n+1 3n
g“vol = ¢ »1vol = cn-1g*vol.

Thus ¢ = 1 and this proves Lemma 2.20. O

Proof of Theorem 2.5. Assume dimV > 1, let (2.2) be a cross product on V, and define ¢: V XV X
V — R by (2.8). By Lemma 2.6, we have ¢ € A>V*. By Lemma 2.18 (1), the dimension of V' is odd.
By Lemma 2.20, we have dim V' = 4n + 3 for some integer n > 0. In particular dimV # 5.
We prove that dimV < 7. Define A: V — End(V) by A(u)v := u X v. Then it follows from
Lemma 2.9 that
A(u)u = 0, Aw)® = uu* — |ul1.



Definey: V — End(R& V) by

(221) Yw) = (2 ;(’j;),

where u*: V — R denotes the linear functional v +— (u,v). Then

(2.22) Y@ +y@ =0 yWy@w = lu’1

for every u € V. Here the first equation follows from the fact that A(u) is skew-adjoint for every u
and the last equation follows by direct calculation. This implies that y extends to a linear map
from the Clifford algebra C£(V') to End(R @ V). The restriction of this extension to the Clifford
algebra of any even dimensional subspace of V is injective (see, e.g. [Salgg, Proposition 4.13]).
Hence, 22" < (2n + 2). This implies n < 3 and so dimV = 2n + 1 < 7. Thus we have proved that
the dimension of V is either 0, 1, 3, or 7. That the cross product vanishes in dimension 0 and 1
is obvious. That it is uniquely determined by the orientation of V in dimension 3 follows from
Lemma 2.12. The last assertion of Theorem 2.5 is restated and proved in Theorem 3.2 below. O

Remark 2.23. Let V be a nonzero real Hilbert space that admits a 3—form ¢ whose isotropy subgroup
G is contained in SO(V'). Then

dim Aut(V) — dim A*V* < dim G < dim SO(V).

Hence, dim V > 7 as otherwise dim SO(V) < dim Aut(V) — dim A*V*. This gives another proof for
the nonexistence of cross products in dimension 5.

3 Associative calibrations

Definition 3.1. Let V be a real vector space. A 3—form ¢ € A*V* is called nondegenerate if, for
every pair of linearly independent vectors u, v € V, there is a vector w € V such that ¢(u, v, w) # 0.
An inner product on V is called compatible with ¢ if the map (2.2) defined by (2.8) is a cross
product.

Theorem 3.2. LetV be a 7-dimensional real vector space and ¢, ¢’ € A3V*. Then the following holds:
1. ¢ is nondegenerate if and only if it admits a compatible inner product.
2. The inner product in (1), if it exists, is uniquely determined by ¢.

3. If ¢ and ¢’ are nondegenerate, the vectors u, v, w are orthonormal for ¢ and satisfy ¢p(u, v, w) =
0, and the vectors u’,v’, w’ are orthonormal for ¢’ and satisfy ¢’(u’,v’, w’) = 0, then there
exists a g € Aut(V) such that g(u) = u’, g(v) = v, g(w) = w’, and g*¢’ = ¢.

Proof. See pages 11 and 12. |



Remark 3.3. If dimV = 3, then ¢ € A*V* is nondegenerate if and only if it is nonzero. If ¢ # 0,
then, by Lemma 2.12, an inner product on V is compatible with ¢ if and only if ¢ is the associated
volume form with respect to some orientation, i.e., ¢(u, v, w) = +1 for every orthonormal basis
u,v,w of V. Thus assertion (1) of Theorem 3.2 continues to hold in dimension three.

However, assertion (2) is specific to dimension seven.

Lemma 3.4. Let V be a 7-dimensional real Hilbert space and ¢ € A*V*. Then the following are
equivalent:

1. ¢ is compatible with the inner product.

2. There is an orientation on V such that the associated volume form vol € A’V* satisfies

(3:5) Ww)p A ()P A $ = 6(u, v)vol
forallu,v e V.

Each of these conditions implies that ¢ is nondegenerate. Moreover, the orientation in (2), if it exists,
is uniquely determined by ¢.

Remark 3.6. It is convenient to use equation (3.5) to verify that the bilinear map in Example 2.15
satisfies (2.4). In fact, it suffices to check (3.5) for every pair of standard basis vectors. Care must
be taken. There are examples of 3—forms ¢ on V = R” for which the quadratic form

VXV —= AV (u,0) = (u)p A (v)p A d

has signature (3,4). One such example can be obtained from the 3—form ¢, in Example 2.15 by
changing the minus signs to plus.

Proof of Lemma 3.4. If (1) holds, then, by Lemma 2.18 (2), there is a unique orientation on V such
that the associated volume form satisfies

u)p A u)p A ¢ = 6|ul*vol

for every u € V. Applying this identity to u + v and u — v and taking the difference we obtain (3.5).
Moreover, if u, v € V are linearly independent, then ¢(u, v, u X v) = |uxv|? = |[u|?|v|? = (u, v)? # 0.
Hence, ¢ is nondegenerate. This shows that (1) implies (2) and nondegeneracy.

Conversely, assume (2). We prove that ¢ is nondegenerate. Let u,v € V be linearly independent.
Then u # 0 and, hence, by (3.5), the 7-form

o = (w)p A (u)d A ¢ = 6lu|*vol € AV*

is nonzero. Choose a basis vy, . .., v; of V with v; = u and v, = v. Evaluating ¢ on this basis we
obtain that one of the terms ¢(u, v, v;) with j > 3 must be nonzero. Hence, ¢ is nondegenerate as
claimed.



Now define the bilinear map VXV — V: (u,v) +— u X v by (2.8). This map is skew-symmetric
and, by Lemma 2.6, it satisfies (2.3). We must prove that it also satisfies (2.4). By Lemma 2.9, it
suffices to show

(3.7) lul =1, (w,v)=0 = lu x| = |v|.

We prove this in five steps. Throughout we fix a unit vector u € V.

Step 1. Define the linear map A: V. — V by Av := u X v. Then A is skew-adjoint and its kernel is
spanned by u.

That A is skew-adjoint follows from the identity (Av,w) = ¢(u,v, w). That its kernel is
spanned by u follows from the fact that ¢ is nondegenerate.

Step 2. Let A be as in Step 1. Then there are positive constants A1, Az, A3 and an orthonormal basis
V1, Wi, U2, W2, U3, w3 of ut such that Av; = Ajw; and Aw; = —A;v; forj=1,2,3.

By Step 1, there is a constant A > 0 and a vector v € u* such that
A%y = —)%, lv] = 1.
Denote w := 1"Av. Then Av = Aw, Aw = —Aov, w is orthogonal to v, and
|w|? = 17%(Av, Av) = —1"%(v, A%0) = |v]? = 1.

Moreover, the orthogonal complement of u, v, w is invariant under A. Hence, Step 2 follows by
induction.

Step 3. Let A; be as in Step 2. Then A;AzA3 = 1.
Let A be as in Step 1, denote W := u*, and define w: W X W — R by
w(v,w) = (Av, w) = P(u, v, w)
for v, w € W. Then, by Step 1, 0 € A’W* is a symplectic form. Moreover, w(v;, w;) = (Av;, w;) = A;
for i = 1,2, 3 while w(v;, wj) = 0 for i # j and w(v;,vj) = w(w;, wj) = 0 for all i and j. Hence,
13
Adads = gw (v1, W1, Vg, W, U3, W3)

= VOl(u’ U1, W1, U2, W2, U3, W3)‘

Here the first equation follows from Step 2 and the definition of w and the second equation follows
from (3.5) with u = v and |u| = 1. Since the vectors u, v{, wy, U2, Wa, v3, w3 form an orthonormal
basis of V, the last expression must be plus or minus one. Since it is positive, Step 3 follows.
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Step 4. Define

(3.8) G:={geAut(V):g"¢ = ¢}, H:={geG:gu=u}.
Then dim G > 14 and dimH > 8

Since dim Aut(V) = 49 and dim A®V* = 35, the isotropy subgroup G of ¢ has dimension at least
14. Moreover, by Lemma 2.20, G acts on the sphere S := {v € V : |v| = 1} which has dimension 6.
Thus the isotropy subgroup H of u under this action has dimension dimH > dim G — dim S > 14 — 6 = 8.
This proves Step 4.

Step 5. Let A; be as in Step 2. Then Ay = A3 = A3 = 1.

By definition of A in Step 1 and H in Step 4, we have (Agv, gw) = (Av, w) for all g € H and all
v, w € V. Moreover, H ¢ SO(V), by Lemma 2.20. Hence,

(3.9) geH = gA = Ag.

Now suppose that the eigenvalues A1, A, A3 are not all equal. Without loss of generality, we may as-
sume A; ¢ {1, A3}. Then, by (3.9), the subspaces W; := span{v;, wy } and W3 := span{v;, wy, v3, w3}
are preserved by each element g € H. Thus H c O(W;) X O(Wa3). Since dimO(W;) = 1 and
dim O(W,3) = 6, this implies dimH < 7 in contradiction to Step 4. Thus we have proved that
A1 = A3 = A3 and, by Step 3, this implies A; = 1 for every j. This proves Step 5.

By Step 2 and Step 5 we have A% = —v for every v € u't. Hence, by Step 1, |Av|? = —(v, A?v) =
|v|? for every v € ut. By definition of A, this proves (3.7) and Lemma 3.4. |

Proof of Theorem 3.2 (1) and (2). The “if” part of (1) is the last assertion made in Lemma 3.4. To
prove (2) and the “only if” part of (1) we assume that ¢ is nondegenerate. Then, for every nonzero
vector u € V, the restriction of the 2—form 1(u)¢ € A*V* to u™ is a symplectic form. Namely, if
v € ut is nonzero, then u, v are linearly independent and hence there is a vector w € V such that
¢(u, v, w) # 0; the vector w can be chosen orthogonal to u.

This implies that the restriction of the 6-form («(u)$)* € A°V* to u' is nonzero for every
nonzero vector u € V. Hence, the 7-form 1(u)¢ A 1(u)p A ¢ € A7V* is nonzero for every nonzero
vector u € V. Since V\{0} is connected, there is a unique orientation of V such that ((u)p A (u)p A ¢
is a positive volume form on V for every u € V\{0}. Fix a volume form ¢ € A’V* compatible with
this orientation. Then the bilinear form

VXV ->R: (u,v)— =: g(u,v)

(g A uw)p A
o
is an inner product. Define y > 0 by o = pvoly. Replacing o by ¢ := 120 we get
g=1""g, volg = A7 "vol,,.
Thus
o = A*0 = Apvoly = A’pvoly.

11



With A := (6/p)!/° we get & = 6volg.

Thus we have proved that there is a unique orientation and inner product on V such that
¢ satisfies (3.5). Hence the assertion follows from Lemma 3.4. This proves parts (1) and (2)
of Theorem 3.2. O

Remark 3.10. Let V, W be n-dimensional real vector spaces. Then the determinant of a linear map
A: V — Wisanelement det A € A"V* @ A"W. In particular, if V is equipped with an orientation
and an inner product g € $?V*, and iy : V — V* denotes the isomorphism defined by i v := g(v, -),
then det iy € (A"V*)? and the volume form vol, associated to g is

Volg = ,/det ig.

Here the orientation is needed to determine the sign of the square root.
If V is 7-dimensional and ¢ € A*V* is nondegenerate, then the formula

G(u,v) := %i(u)g{) ANi(v)p A ¢ foru,v eV

defines a symmetric bilinear form G: VXV — A’V* andig: V — V* ® A’V* is an isomorphism
(see second paragraph in the proof of Lemma 3.4). The determinant of i¢ is an element of (A”V*)?
and (det ig)!/° can be defined without an orientation on V. If an inner product g and an orientation
on V are such that (3.5) holds, then
G
voly = (det(ig))"’ and g=—-.
voly

Conversely, with this choice of inner product and orientation, (3.5) holds. This observation is due
to Hitchin [Hito1, Section 8.3].

Lemma 3.11. Let V be a 7-dimensional real Hilbert space equipped with a cross product VXV —
V: (u,v) = u X v. Ifu and v are orthonormal and w := u X v, thenv X w = u and w X u = v.

Proof. This follows immediately from equation (2.11) in Lemma 2.9. O

Proof of Theorem 3.2 (3). Let¢g: R”XR7XR7 — R be the 3-form in Example 2.15 and let ¢ € A*V*
be a nondegenerate 3-form. Let V be equipped with the compatible inner product of Theorem 3.2
and denote by V XV — V: (u,v) — u X v the associated cross product. Let ej,e; € V be
orthonormal and define

e3 1= e X e;.

Let e4 € V be any unit vector orthogonal to ey, e;, e3 and define

e; := —ep X éq4.

12



Then es has norm one and is orthogonal to ey, ey, e3, e4. For e; and ey this follows from the definition
and (2.7). For e3 we observe

(es,e5) = —(e1 X ey, 1 X eg) = (e, 1 X (€1 X e4)) = —(eg,€4) = 0.

Here the last but one equation follows from Lemma 2.9. For e, the argument is similar; since
e; = es3 X e1, by Lemma 3.11, and (es, e4) = 0, we obtain (ey, e5) = 0. Now let e¢ be a unit vector
orthogonal to ey, . . ., es and define

e7 := —ep X eg.

As before we have that e; has norm one and is orthogonal to ey, . . ., €. Thus the vectors ey, ..., e;
form an orthonormal basis of V and it follows from Lemma 3.11 that they satisfy the same relations
as the standard basis of R” in Example 2.15. Hence, the map

7
g
RT =S V:x=(x,...,x7) > ine,-
i=1

is a Hilbert space isometry and it satisfies g*¢ = ¢y. This proves Theorem 3.2 (and the last assertion
of Theorem 2.5). O

4 The associator and coassociator brackets

We assume throughout that V is a 7-dimensional real Hilbert space, that ¢ € A*V* is a nondegener-
ate 3—form compatible with the inner product, and (2.2) is the cross product given by (2.8). It follows
from (2.11) that the expression (u X v) X w is alternating on any triple of pairwise orthogonal vectors
u,v,w € V. Hence, it extends uniquely to an alternating 3—-form V? — V: (u,v,w) — [u,v, w]
called the associator bracket. An explicit formula for this 3-form is

(4.1) [u,v,w] .= (uXv)Xw+ (v,w)u — (u, w)v.

The associator bracket can also be expressed in the form

1
(4.2) [u,v,w]z5((uxv)xw+(vxw)xu+(wxu)xv).
Remark 4.3. If V is any Hilbert space with a skew-symmetric bilinear form (2.2), then the associator
bracket (4.1) is alternating iff (2.11) holds. Indeed, skew-symmetry of the associator bracket in the
first two arguments is obvious, and the identity
[u,v,w] + [u,w,v] =w X (v Xu)+ovX(wXu)
— (u, w)v — {u, v)w + 2{v, w)u

shows that skew-symmetry in the last two arguments is equivalent to (2.11). By Lemma 2.12, the
associator bracket vanishes in dimension three.
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The square of the volume of the 3—dimensional parallelepiped spanned by u, v, w € V will be
denoted by
lul?> w0y (u,w)
luAvAw? :=det| (w,u)  |o]>  (v,w)
(wou) (w,0)  |w|?

Lemma 4.4. Forallu,v,w € V we have
(4.5) d(u, v, w)? + [[u, v, w]|* = [u Av A wl*
Proof. If w is orthogonal to u and v, then we have

I[u, 0, w]l? = |(u x v) X w|®

= |u x v|?|w|* = (u,v X w)?

=lurvAw?- (u, v, w)?.

Here the first equation follows from the definition of the associator bracket and orthogonality, the
second equation follows from (2.4), and the last equation follows from (2.4) and orthogonality, as
well as (2.8). The general case can be reduced to the orthogonal case by Gram-Schmidkt. O

Definition 4.6. A 3—dimensional subspace A C V is called associative the associator bracket
vanishes on A, i.e.,
[u,v,w] =0 for all u, v, w € A.

Lemma 4.7. Let A C V be a 3—dimensional linear subspace. Then the following are equivalent:
1. A is associative.
2. Ifu,v,w is an orthonormal basis of A, then ¢(u, v, w) = £1.
3. Ifu,v € A, thenu X v € A.
4. Ifue At andv € A, thenu x v € A*.
5. Ifu,v € A*, thenu X v € A.

Moreover, ifu,v € V are linearly independent, then the subspace spanned by the vectors u,v,u X v is
associative.

Proof. That (1) is equivalent to (2) follows from Lemma 4.4.

We prove that (1) is equivalent to (3). That the associator bracket vanishes on a 3-dimensional
subspace that is invariant under the cross product follows from Lemma 2.12 (3). Conversely suppose
that the associator bracket vanishes on A. Let u,v € A be linearly independent and let w € A be a
nonzero vector orthogonal to u and v. Then, by Lemma 4.4, we have

(uxv,w)?=du,v,w) =urvAw? =|uxof|w?
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and hence u X v is a real multipe of w. Thus u X v € A.

We prove that (3) is equivalent to (4). First assume (3) and let u € A, v € A*. Then, by (3),
we have w X u € A for every w € A. Hence, {(w,u X v) = (w X u,v) = 0 for every w € A and so
u X v € At. Conversely assume (1) and let u,v € A. Then, by (3), we have w X u € A* for every
w € A*. Hence, (w,u X v) = (w X u,v) = 0 for every w € A*. This implies u X v € A. Thus we
have proved that (3) is equivalent to (4).

We prove that (1) is equivalent to (5). Fix a unit vector u € A* and define the endomorphism
J: ut — ut by Ju := u X v. By Lemma 2.9 this is an isomorphism with inverse —J. Condition (4)
asserts that J maps A to A+ N u* while condition (5) asserts that ] maps A* N u* to A. Since both
are 3—dimensional subspaces of u*, these two assertions are equivalent. This proves that (1) is
equivalent to (5).

If u and v are linearly independent, then u X v # 0, by (2.4), and u X v is orthogonal to u and v,
by (2.3). Hence, the subspace A spanned by u, v, u X v is 3-dimensional. That it is invariant under
the cross product follows from assertion (1) in Lemma 2.9. Hence, A is associative, and this proves
Lemma 4.7. O

Lemma 4.8. The map y: V* — R defined by

Y(u, v, w,x) = ([u,v,w], x)
(4-9) 1
= g(qﬁ(u X v, W, x) + Pp(v X w,u,x) + p(w X u,v,x))
is an alternating 4—form (the coassociative calibration of (V, §)). Moreover, it is given by / = ¢,
where x: A¥V* — A7%V* denotes the Hodge *—operator associated to the inner product and the
orientation in Lemma 3.4.

Proof. See page 16. O

Remark 4.10. By Lemma 4.7 and Lemma 4.8 the associator bracket [u, v, w] is orthogonal to the
vectors u, v, w,v X w, w X u,u X v. Second, these six vectors are linearly independent if only if
[u, v, w] # 0. (Make them pairwise orthogonal by adding to v a real multiple of u and to w a linear
combination of u, v, u X v. Then their span and [u, v, w] remain unchanged.) Third, if [u, v, w] # 0
then the vectors u, v, w,v X w, w X u, u X v, [u, v, w] form a positive basis of V.

Remark 4.11. The standard associative calibration on R” is

(4.12) b0 = o123 _ 145 _ 167 _ 246 | 257 _ 347 _ 356

(see Example 2.15). The corresponding coassociative calibration is

¢0 — —6’1247 _ 61256 + 61346 _ 81357 _ 62345 _ 62367 4567‘

(4.13) te

Remark 4.14. Let V. — V*: u +— u" := (u, ) be the isomorphism induced by the inner product.
Then, for @ € AKV* and u € V, we have

(4.15) s (wa = (=) u* A xa.

This holds on any finite dimensional oriented Hilbert space.
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Remark 4.16. Throughout we use the notation
(4.17) (Laa)(vr,...,vk) = a(Avy, vp, .., 0) + -+ + a(vr, .., Vg1, Ag)

for the infinitesimal action of A € End(V) on a k—form & € A¥V*. For u € V denote by A, € so(V)
the skew-adjoint endomorphism A, v := u X v. Then equation (4.9) can be expressed in the form

(4.18) La,¢=30u)y.
Since = *¢, we have L4 = =L 4¢ for all A € so(V). Hence, it follows from equation (4.15) that
(4.19) La, ¥ ==Guu)y) = =3u" A §.

Proof of Lemma 4.8. It follows from Remark 4.3 that ¢ is alternating in the first three arguments.
To prove that € A*V* we compute

U(u, v, w,x) = ((uXv)Xw+ (v, wyu — (u, w)v, x)

(4.20) _
=(uXv,wXx)+ (v,w){u,x)— (u,w){v, x).

Here the first equation follows from the definition of ¢/ in (4.9) and the definition of the associator
bracket in (4.1). Swapping x and w as well as u and v in (4.20) gives the same expression. Thus

Y(u,v,w,x) = ¥(v,u,x,w) = —(u, v, x, w).
This shows that i/ € A*V* as claimed. To prove the second assertion we observe the following.

Proposition 4.21. Ifu,v, w,x are orthonormal and u X v = w X x, then (u, v, w,x) = 1.

This follows directly from the definition of ¢ and of the associator bracket in (4.1) and (4.9).
Now, by Theorem 3.2, we can restrict attention to the standard structures on R’. Thus ¢ = ¢y is
given by (4.12) and this 3-form is compatible with the standard inner product on R’. We have the
product rule e; X e; = ex whenever the term e”/* or one of its cyclic permutations shows up in this
sum, and the claim shows that we have a summand ee*/* in i/ = ¢, whenever e; X ej = cer X ep
with e € {+1}. Hence, 1 is given by (4.13). Term by term inspection shows that /) = *¢@,. This
proves Lemma 4.8. |

Lemma 4.22. Forallu,v,w,x € V we have

[u, v, w,x] := d(u, v, w)x — ¢(x, u, V)W + d(w, x, u)v — ¢(v, w, x)u
(4-23) 1

= g(—[u,v,w] XX+ [x,u, 0] Xw—[w,x,u] Xv+[v,w,x] X u).
The resulting multi-linear map

VvtV (u,v,w,x) > [u,v,w, x|

is alternating and is called the coassociator bracket on V.
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Proof. Define the alternating multi-linear map 7: V* — V by

(U, v, w,x) := 3(q5(u, v, w)x — d(x, u, V)W + dp(w, x,u)v — p(v, w, x)u)

+ [u,0,w] X x — [x,u,v] X w+ [w,x,u] X v —[v,w, x] X u.

We must prove that ¢ vanishes. The proof has three steps.
Step 1. 7(u, v, w, x) is orthogonal to u,v, w,x for allu,v,w,x € V.

It suffices to assume that u, v, w, x are pairwise orthogonal. Then we have
[u,0,w] = (u X V)XW
and similarly for [x, v, w] etc. Hence,

(r(u, v, w, x), x) = 3|x|*Pp(u, v, w) — ([u, v, x], w X x)
- (Iw,u,x],v X x) = ([v,w,x],u X x)
= 3|x[*p(u, v, w) — ((u X V) X x, w X x)
—{((wxu)xx,vXx)—{(vXW)Xx,uXx)
=0.
Here the last step uses the identity (2.7) and the fact that x X (u X x) = |x|?u whenever u is
orthogonal to x. Thus 7(u, v, w, x) is orthogonal to x. Since 7 is alternating, this proves Step 1.
Step 2. 7(u,v,u Xv,x) =0 forallu,v,x € V.

It suffices to assume that u, v are orthonormal and that x is orthogonal to u, v, and w := u X v.
Then v X w =u, wXu = v, §u,v,w) = 1, and @(x, v, w) = §(x, w,u) = ¢(x,u,v) = 0. Moreover,
[u,v,w] = 0and

[x,v,w] =[v,w,x] = (VX W) Xx=uXx, [x,v,w] Xu = x,
and similarly [x, w,u] X v = [x, u, v] X w = x. This implies that r(u, v, w, x) = 0.

Step 3. t(u,v,w,x) =0 forallu,v,w,x € V.

By the alternating property we may assume that u and v are orthonormal. Using the alternating
property again and Step 2 we may assume that w is a unit vector orthogonal to u, v, u X v and that
x is a unit vector orthogonal to u, v, w and v X w, w X u, u X v. This implies that

d(u, v, w) = d(x,v,w) = d(x, w,u) = ¢p(x,u,v) = 0.

Hence, the vectors x X u, x X v, x X w form a basis of the orthogonal complement of the space
spanned by u, v, w, x. Each of these vectors is orthogonal to 7(u, v, w, x) and hence 7(u, v, w,x) = 0
by Step 1. This proves Lemma 4.22. O
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The square of the volume of the 4-dimensional parallelepiped spanned by u, v, w,x € V will
be denoted by
ul>  (wo) (ww) (ux)
(wu) olP (o,w) (v,x)
oww oy Wk o |
(ru) (o) (xow)  |xf

[uAvAwAx|?:=d

Lemma 4.24. For allu,v,w,x € V we have
(4.25) Y(u, v, w,x)* + [[u,0,w,x]* = [u AvAwAx[2

Proof. The proof has four steps.

Step 1. Ifu,v,w,x are orthogonal, then
U(u, v, w, x)* = (u X v,w X x)?,
[, 0, w, x]7 = (ux 0, w)?|x|* + (u x v, x)*|w|*

+ (u, w X X202 + (v, w x x)2|ul?,
lu Ao AwAx|? = |ul?|o?|w|?|x]?.
The first equation follows from (4.1) and (4.9), using (2.7). The other two equations follow
immediately from the definitions.

Step 2. Equation (4.25) holds when u, v, w, x are orthogonal and, in addition, w and x are orthogonal
tou Xv.

Since [u,v, w] # 0, it follows from the assumptions and Lemma 4.7 that w X x is a linear
combination of the vectors u, v, u X v. Hence, the assertion follows from Step 1.

Step 3. Equation (4.25) holds when u, v, w, x are orthogonal
Suppose, in addition, that w and x are orthogonal to u X v and replace x by x; := x + Au X v
for A € R. Then ¢/(u, v, w, x)) is independent of A and
[, 0, w, xal? = |[w, 0, w, x]12 + 22 [ul?|o]*|w|*|u x 0.
Hence, it follows from Step 2 that (4.25) holds when u, v, w, x are orthogonal and, in addition, w is
orthogonal to u X v. This condition can be achieved by rotating the pair (w, x). This proves Step 3.
Step 4. Equation (4.25) holds always.

The general case follows from the orthogonal case via Gram-Schmidt, because both sides of
equation (4.25) remain unchanged if we add to any of the four vectors a multiple of any of the
other three. This proves the lemma. O
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Definition 4.26. A 4-dimensional subspace H C V is called coassociative if

[u,v,w,x] =0 for all u,v, w,x € H.

Lemma 4.27. Let H C V be a 4—dimensional linear subspace. Then the following are equivalent:

1. H is coassociative.

2. Ifu,v,w,x is an orthonormal basis of H, then {/(u,v, w,x) = £1.
3. Forallu,v,w € H we have ¢(u,v, w) = 0.

4. Ifu,v € H, thenu xv € H-.

5. Ifue Handv € H*, thenu X v € H.

6. Ifu,v € H', thenu xv € H*.

7. The orthogonal complement H* is associative.

Proof. That (1) is equivalent to (2) follows from Lemma 4.24.

We prove that (1) is equivalent to (3). That (3) implies (1) is obvious by definition of the
coassociator bracket in (4.23). Conversely, assume (1) and choose a basis u, v, w, x of H. Then
[u, v, w,x] = 0 and hence, by (4.23), we have ¢(u, v, w) = d(x, v, w) = ¢(x, w,u) = ¢(x,u,v) = 0.
This implies (3).

We prove that (3) is equivalent to (4). If (3) holds and u, v € H, then (u X v, w) = ¢(u,v, w) =0
for every w € H and hence u X v € H*. Conversely, if (1) holds and u,v € H, then u x v € H*
and hence ¢(u,v, w) = (u X v,w) = 0 for all w € H.

Thus we have proved that (1), (2), (3), (4) are equivalent. That assertions (1), (5), (6), (7) are
equivalent was proved in Lemma 4.7. O

Remark 4.28. Let V be a 7-dimensional real Hilbert space equipped with a cross product and
denote the associative and coassociative calibrations by ¢ and i/. Let A C V be an associative
subspace and define H := A*. Orient A and H by the volume forms vol, := ¢| and voly := /|g.
A standard basis of the space A"H* of self-dual 2-forms on H is a triple wy, w2, w3 € A*H* that
satisfies the condition w; A w; = 2§;jvoly for all i and j. In this situation the map

(4.29) A= ANH: u— —(u)dlyg

is an orientation preserving isomorphism that sends every orthonormal basis of A to a standard
basis of A*H*. (To see this, choose a standard basis of V as in Remark 4.1 with A = span{ey, e, e3}.)
Let mp : V — A and g : V — H be the orthogonal projections. Let uy, uz, us be any orthonormal
basis of A and define a; := u}|s and w; := —1(u;)$|g for i = 1,2, 3. Then the associative calibration
¢ can be expressed in the form

(4.30) ¢ = myvolpy — mhay A w1 — Txap A Tfwp — Taa3 A T3,
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The next theorem characterizes a nondegenerate 3—form ¢ in terms of its coassociative cali-
bration ¢ in Lemma 4.8.

Theorem 4.31. LetV be a 7-dimensional vector space over the reals, let ¢, ¢’ € A*V* be nondegenerate
3—forms, and let /, )’ € A*V* be their coassociative calibrations. Then the following are equivalent:

L ¢ =dord’ =—¢.
2.9 =1.

Proof. That (1) implies (2) follows from the definition of ¢/ in Lemma 4.8 and the fact that revers-
ing the sign of ¢ also reverses the sign of the cross product and thus leaves {y unchanged (see
equation (4.9)). To prove the converse assume that ¢’ = { and denote by (-, -)’ the inner product
determined by ¢’, by X’ the cross product determined by ¢’, and by [, -, -]’ the associator bracket
determined by ¢’. We prove in four steps that ¢’ = +¢.

Step 1. A 3—dimensional subspace A C V is associative for ¢ if and only if it is associative for ¢'.

Let A C V be a three-dimensional linear subspace. By Definition 4.6 it is associative for ¢ if
and only if [u, v, w] = 0 for all u, v, w € A. By Lemma 4.8 this is equivalent to the condition that
the linear functional ¢/(u, v, w, -) on V vanishes for all u, v, w € A. Since ¥ = ¢/, this proves Step 1.

Step 2. There is a linear functional «: V — R and a c € R\{0} such that
ux'v=auv-al@u+cuxov

forallu,v eV.

Fix two linearly independent vectors u, v € V. Then the vectors u, v, u X v span a ¢—associative
subspace A C V by Lemma 4.7. The subspace A is also ¢’—associative by Step 1. Hence, u X’ v € A
by Lemma 4.7 and so there exist real numbers a(u, v), f(u, v), y(u, v) such that

(4.32) ux"v=a(u,v)v+ f(u,v)u+yu,v)uxo.

Since u, v, u X’ v are linearly independent, it follows that y(u, v) # 0 and the coefficients a, f, y
depend smoothly on u and v. Differentiate equation (4.32) with respect to v to obtain that @ and y
are locally independent of v. Differentiate it with respect to u to obtain that  and y are locally
independent of u. Since the set of pairs of linearly independent vectors in V is connected, it follows
that there exist functions @, f: V — R and a constant ¢ € R\{0} such that

ux'v=awo+p@u+cuxov

for all pairs of linearly independent vectors u, v € V. Interchange u and v to obtain f(v) = —a(v)
for all v € V. Since the function V.— V: u +— u X’ v is linear for all v € V it follows that
a: V — Ris linear. This proves Step 2.

Step 3. Let a and ¢ be as in Step 2. Then a = 0 and (u,v)’ = ¢*(u,v) forallu,v € V.
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Fix a vector u € V\{0} and choose a vector v € V such that u and v are linearly independent.
Then u X (u X v) = (u, v)u — |u|?v by Lemma 2.9. Hence, it follows from Step 2 that

(w,0)u—|ul*v=ux"(ux'v)
=u X' (a(u)v — a(v)u + cu X v)
=a(wu x" v+ cux' (uxv)
= a(u)(a(u)v - a(v)u + cu X v)
+ c(a(wu x v — a(u X v)u + cu X (u X v))
= a(u)(a(w)v — a(v)u + cu X v)
+ c(aux v —a(u x v)u + c{u, v)u — clul*v)
= (c2 (u,v) = ca(u X v) — a(u)a(v))u
+ (a(u)2 - cz|u|2)v + 2ca(u)u X v.
Since u, v, and u X v are linearly independent, it follows that
a(u) =0, lul”® = Aul® — a(u)?.
Since u € V\{0} was chosen arbitrarily, it follows that a(u) = 0 and

(u,v) = c*(u,v), ux'v=cuxv

for all u,v € V. This proves Step 3.
Step 4. ¢’ = *¢.
It follows from Step 2 and Step 3 that
¢ (u,v,w) = (ux'v,wy =cuxov,wy=cd(u, v, w)

for all u,v,w € V, and so ¥ = ¢’ = c*J by equation (4.9). Hence ¢ = +1 and this proves
Theorem 4.31. ]

The next theorem follows a suggestion by Donaldson for characterizing coassociative calibra-
tions in terms of their dual 3—forms.

Theorem 4.33. Let V be a 7-dimensional vector space over the reals and let y € A*V*. Then the
following are equivalent:

1. There exists a nondegenerate 3—form ¢ € A>V* and a number ¢ = +1 such that ey is the
coassociative calibration of (V, ¢).

2. Ifa, B € V* are linearly independent, then there exists al—formy € V* suchthata ABAYy Ay #
0.
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Proof. That (1) implies (2) follows from equation (4.39) in Lemma 4.38 below. To prove the converse,
assume (2) and fix any volume form ¢ € A’V*. Define the 3—form ® on the dual space V* by

(4.34) (e, B,y) =

APpAY A
aNpAYNY for a, B,y € V*.
o

This 3—-form is nondegenerate by (2). Denote the corresponding coassociative calibration by
¥: VP XV*XV*XV* - R and let (-, )y« be the inner product on V* determined by ®. Let
k: V — V* be the isomorphism induced by this inner product, so a(u) = (@, x(u))y+ for @ € V*
and u € V. Let (-, -)y be the pullback under x of the inner product on V*. Then ¢ := x*® € A*V*
is a nondegenerate 3—form compatible with the inner product and the volume form

vol := 2k"® A K"

By equation (4.34),
(4.35) B, v, w)a = k(u) A K(0) A k(W) A ¥
for all u, v, w € V. Choose A > 0 and ¢ = +1 such that
(436) vol = eA™¥36.
Replace o by 0 := Ao in (4.34) to obtain ®; = A~1®. Its coassociative calibration is ¥; = A43Y the
inner product on V* induced by @, is (-, -)y+ 1 = A723(., yy+, and the isomorphism k;: V — V*
isky = 123k Hence ,

$r =KDy = A, Yp = K3 = AT

By (4.36) this implies
voly = 1y Ay = A"Pvol = edo = ey,

Multiply both sides in equation (1.35) by £A? to obtain
$a(u, v, w)eap = ka(u) Aka(v) A ka(w) A ey

Since €0 = voly, it follows from (4.39) below that the same equation holds with ¢y replaced by ;.
Thus ey = ¢, is the associative calibration of ¢,. (Here ¢ is independent of the choice of ¢.) This
proves Theorem 4.33. O

Remark 4.37. We can interpret Theorem 4.33 in the spirit of Remark 3.10. In the notation of
Remark 3.10, if V is an oriented n—dimensional vector space with an inner product g, then the
Hodge *—operator *: AXV* — A" *V* can be defined as

xa = (iy")'a @ voly € AV @ A"V* = AMTFV
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If V is a 7-dimensional vector space and {/ € A*V*, then we can equivalently think of it as
a 3—form ¢* on V* with values in A7V* since A*V* = A’V ® A’V*. Define a symmetric bilinear
form G*: V* x V* — (A7V*)? by

G*(a, p) := %i(a)gb* ANi(B)p* A ¢* fora,p e V*.

Condition (2) in Theorem 4.33 is equivalent to ig+: V* — V®(A’V*)? being an isomorphism. Note
that det i+ € (A7V*)'2. After picking an orientation we define a positive root (det ig:)"/1? € A7V*.
Define a volume form on V and an inner product on V* by

G*

>
VOlg

voly := (det(ig+))"/** and g =

A moment’s thought shows that vol, is the volume form associated with the dual inner product g
and the chosen orientation on V. Further, the 3—form

¢ = Ul 9" oy
voly
satisfies )
gi(u)qﬁ Ni(v)p A ¢ = g(u,v)voly.
and *¢ = 1.

The next lemma summarizes some useful identities that will be needed throughout. The first
of these has already been used in the proof of Theorem 4.33. Assume that V is a 7-dimensional
oriented real Hilbert space equipped with a compatible cross product, ¢ € A*V* is the associative
calibration, and ¢ := *¢ € A*V* is the coassociative calibration of (V, ¢).
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Lemma 4.38. The following hold for allu,v,w,x € V and all v € A2V*:

(4.39) AU AU AW = d(u, v, w)vol,
(4.40) dAU AV AW AX" = Y(u,v,w,x)vol,
(4-41) (u)y A" A (v)y =0,

(4.42) (Y Au) = u)g,

(4.43) (P Au') = )y,

(4.44) [(w)g|* = 3Jul’,

(4.45) )y |® = 4lul?,

(4-46) g AUw)p =2y AU,

(4.47) ¢ A uw)y = —4u(u)vol,
(4-48) ¥ A (u)g = 3u(u)vol,
(4.49) Y Alu)y =0,

(450) #(P A w(u)g) = 2u0(u)g,

(4.51) (¢ A (u)y) = —4u’,

(452) (Y A (u)p) = 3u”,

(4.53) #(Y A (Y A lw)p)) = 3uu)g,

(4.54) (w)p A #1(v)$ = 3(u, v)vol,
(4-55) Ut AU = u X v)p— vy,
(4.56) u* AUt A (U X 0)g = |u X v]*vol,
(4.57) uwt AVt A g A ()Y = 2|u X v|*vol,
(4.58) Y AU AU = 1(u X v)vol,
(4.59) dAU AV AW = 1([u, v, w])vol,
(4.60) G Au" AV = x(v)(u)y,
(4.61) WY A=Y Aw)) =0+ x(d A o),
(4.62) #(P A #(P A w)) =20 + *(P A w).

Proof. 1t is a general fact about alternating k—forms on a finite-dimensional Hilbert space V that
(ui A Aug,a) = aluy, ... ux) forallu; € Vandalla € AKV*. This proves (4.39) and (4.40).
Equations (4.42) and (4.43) follow from (4.15) in Remark 4.14.

To prove equations (4.41) and (4.44)—(4.48) assume without loss of generality that u, v are
orthonormal. By Theorem 3.2 assume that V = R7 with u = e; and v = e, and that ¢ and ¢/ are as
in (4.12) and (4.13), i.e.,

¢ = o= e - 145 _ o167 _ 246 | 257 _ 34T _ 356

(4.63)
¥ =y = _ 1247 _ 1256 4 1346 _ 1357 _ 2345 _ 2367 4567

+e
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Then

() = €2 — ¥ — o,
(4.64) W(u)y = _eP4T _ g256 4 (346 _ o357,

UF A (0)f) = —el24T — 1256 | 2345 _ (2367

Equation (4.41) follows by multipying the last two sums, and (4.44) and (4.45) follow by examining
the first two sums. Moreover, by (4.63) and (4.64),

¢ A lu)p = =2 — 21237 4 27 = 25i(u)p = 2u* A Y.

This proves (4.46). By (4.63) and (4.64) we also have ¢ A 1(u)$ = 3e?**5%7 and @ A 1(u)y = —4e2347,
This proves (4.47) and (4.48).

Equation (4.49) follows by contracting u with the 8—form ¢y A ¢ = 0. Equations (4.50)—(4.52)
follow from (4.46)—(4.48) and the fact that «u™ = (u)vol and *(u* A ) = «(u)¢ by (4.42). To prove
equation (4.53) take the exterior product of equation (4.52) with ¢ and then use (4.42) to obtain

U A=Y A lu)g) =1 A3u" = 3xu(u)d.

Equation (4.54) follows from (4.44) and the fact that the left hand side in (4.54) is symmetric in u
and v. Equation (4.55) is equivalent to (4.20) in the proof of Lemma 4.8. To prove equation (4.56)
choose w := u X v in (4.39) to obtain

lu x v|>vol = u* Av* A(uxv)* Ay =u* Av* A xi(u X ).
Here the last equation follows from (4.42). To prove (4.57) we compute

u* AU" A lu)d A (o)

= —1(v)(u" AV AUu)P) A Y

= —(u, 0)v* Au)p Ay + [oPu* Au)p Ay —ut Av* A (uxv) AY
= —(u, V)i(w)p A (V)P + |v]2w)P A *1(u)p — u* A v* A xi(u X V)P

= 2|u x v|*vol.

Here the second step uses the identity (v)(u)p = ¢(u,v,-) = (u X v)*, the third step follows
from (4.42), and the last step follows from (4.46) and (4.56).

To prove equation (4.58) take the exterior product with a 1-form w* and use equation (4.39) to
obtain

(¥ Au" Av") Aw" = $(u, v, w)vol = (u X v, w)vol
= (x(u X)) Aw" = (i(u X v)vol) A w".
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To prove equation (4.59) take the exterior product with a 1-form x* and use equation (4.40) to
obtain

(p Au* AV AW') Ax™ = Y(u, v, w,x)vol = ([u, v, w], x)vol

= (*[u, v, w]") A x* = (([u, v, w])vol) A x*.

To prove equation (4.60) take the exterior product with w* A x* for w,x € V and use equa-
tion (4.58) to obtain

(p Au" AV") A (W AX*) = Y(u, v, w, x)vol
= (Wo)(u)y, w* A x*)vol
= (=) w)P) A (W" A x7).

Since A?V* has a basis of 2-forms of the form w* A x*, this proves (4.60).
To prove equations (4.61) and (4.62) it suffices to assume

w=u"AV"
for u,v € V. Then it follows from (4.55) and (4.60) that

uxov)p =u" Av" + W(v)(u)y
(4-65) =u" AU+ (U AV A P)
=+ *(¢ A 0).

Moroever, (i A w) = (u X v)* by (4.58). Hence, by (4.42) and (4.65),

#(Y A*(Y Aw)) == A (uxv))
(u X v)p

=+ *(P A ).

This proves equation (4.61). Moreover, by (4.50) and (4.65),

(P A*(PAw)) ==(d A ((ux0)p - )
= (P A llu X v)P) — *(¢ A ©)
= 2i(u X v)p — *(P A w)

=20 + *(P A ).

This proves equation (4.62) and Lemma 4.38. O
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5 Normed algebras

Definition 5.1. A normed algebra consists of a finite dimensional real Hilbert space W, a bilinear
map
WXW — W: (u,v) — uv,

(called the product), and a unit vector 1 € W (called the unit), satisfying
lu=ul=u

and

(5.2) luv| = |ull]

forallu,v € W.

When W is a normed algebra it is convenient to identify the real numbers with a subspace of
W via multiplication with the unit 1. Thus, for u € W and 1 € R, we write u + A instead of u + A1.

Define an involution W — W: u + 4 (called conjugation) by 1 := 1 and @ := —u for u € 1+.
Thus
(5.3) :=2{u,1) —u.

We think of R € W as the real part of W and of its orthogonal complement as the imaginary part.
The real and imaginary parts of u € W will be denoted by Reu := (u, 1) and Imu := u — (u, 1).

Theorem 5.4. Normed algebras and vector spaces with cross products are related as follows.

1. IfW is a normed algebra, then V := 1+ is equipped with a cross product VxV — V: (u,v) >
u X v defined by

(5.5) uXv:=uv+{u,o)
foru,v € 1+

2. IfV is a finite dimensional Hilbert space equipped with a cross product, then W := R& V isa
normed algebra with

(5.6) uv = Ugvy — (U1, V1) + UV + Vol + Uy X U1

foru = uy + u;,v = vy +v; € R® V. Here we identify a real number A with the pair
(4,0) e R® V and a vector v € V with the pair (0,v) e R® V.

These constructions are inverses of each other. In particular, a normed algebra has dimension 1, 2,
4, or 8 and is isomorphic to R, C, H, or O.

Proof. See page 29. O

27



Lemma 5.7. Let W be a normed algebra. Then the following hold:
1. Forallu,v,w € W we have

(5-8) (uv, w) = (v, aw), (uv, w) = (u, wo).
2. Forallu,v € W we have
(5.9) ui = |ul?, ud + v = 2{u, v).

3. Forallu,v € W we have

(5.10) (u,v) = (@1, 0), uo = ou.

4. Forallu,v,w € W we have

(5.12) u(ow) + v(aw) = 2{(u, v)w, (uo)w + (uw)v = 2{v, w)u

Proof. We prove (1). The first equation in (5.8) is obvious when u is a real multiple of 1. Hence, it
suffices to assume that u is orthogonal to 1. Expanding the identities |uv + uw|? = |u|*|v + wl|?
and |uv + wo|? = |u + w|?|v|? we obtain the equations

(5.12) (uv,uw) = [u|*(v, w), (uv, wo) = (u, w)|v|%.
If u is orthogonal to 1, the first equation in (5.12) gives
(uv, w) + (v, uw) = (1 + w)v, (1 + w)w) — (1 + |[u|*){(v, w) = 0.

Since @ = —u for u € 1%, this proves the first equation in (5.8). The proof of the second equation is
similar.

We prove (2). Using the second equation in (5.8) with v = @ we obtain (ua, w) = (u, wu) =
(1, w)|u|?. Here we have used the second equation in (5.12). This implies uii = |u|? for every u € W.
Replacing u by u + v gives uo + vt = 2{(u, v). This proves (5.9).

We prove (3). That conjugation is an isometry follows immediately from the definition.
Using (5.9) with v replaced by © we obtain

ot = 2{u, o) — uv = 2{uv, 1) — uv = uo.

Here the second equation follows from (5.8). This proves (5.10).
We prove (4). For all u,w € W we have

(5.13) (u@aw), w) = |aw|* = [al*|w]* = |ul*|w|?

Since the operator w + u(aw) is self-adjoint, by (5.8), this shows that u(iiw) = |u|?w for all
u,w € W. Replacing u by u + v we obtain the first equation in (5.11). The proof of the second
equation is similar. O
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Proof of Theorem 5.4. Let W be a normed algebra. It follows from (5.8) that (u,v) = —(uv, 1) and,
hence, u X v := uv + {(u,v) € 1+ for all u,v € 1+. We write an element of W as u = uy + u; with
ug = (u,1) e Rand u; :=u — (u,1) € V.= 1*+. For u,v € W we compute

|u*|of® = Juv)? = (uf + [ur]?) (0f + [011*) = (uovo — (w1, v1))?
— |ugvy + vouy + ug X vy
= uf|v|? + vglus | + 2ugvo(ur, v1) + [ur*lor]? = (uy, v1)?
— Jugvy + vous|® — lug X v1]* — 2(ugvy + vous, ug X vy)
=|1«11|2|U1|2 - <u1,01>z = fug 01|Z

— 2up(v1, U X v1) — 200U, Uy X V1).

The right hand side vanishes for all u and v if and only if the product on V satisfies (2.3) and (2.4).
Hence, (5.5) defines a cross product on V and the product can obviously be recovered from the cross
product via (5.6). Conversely, the same argument shows that, if V is equipped with a cross product,
the formula (5.6) defines a normed algebra structure on W := R @ V. Moreover, by Theorem 2.5, V
has dimension 0, 1, 3, or 7. This proves Theorem 5.4. O

Remark 5.14. If W is a normed algebra and the cross product on V := 1+ is defined by (5.5), then
the commutator of two elements u,v € W is given by

(5.15) [u,v] := uv — vu = 2u; X vy.

In particular, the product on W is commutative in dimensions 1 and 2 and is not commutative in
dimensions 4 and 8.

Remark 5.16. Let W be a normed algebra of dimension 4 or 8. Then V := 1+ has a natural orientation
determined by Lemma 2.12 or Lemma 3.4, respectively, in dimensions 3 and 7. We orient W as
RoV.

Remark 5.17. If W is a normed algebra and the cross product on V := 1+ is defined by (5.5), then
the associator bracket on V is related to the product on W by

(5.18) (wo)w — u(ow) = 2[uq, vy, wi]

for all u,v,w € W. Thus W is an associative algebra in dimensions 1, 2, 4 and is not associative in
dimension 8. The formula (5.18) is the reason for the term associator bracket. Many authors actually
define the associator bracket as the left hand side of equation (5.18) (see for example [HL82]).

To prove (5.18), we observe that the associator bracket on V can be written in the form

2[u, v, w] = 2(u X v) X w + 2{v, w)u — 2{u, whv

(5-19) =(uxv)Xw-—uX(@OxXw)+{v,wu— (u,v)w
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for u, v, w € V. Here the first equation follows from (4.1) and the second equation follows from (2.11).
For u,v, w € V we compute

(wo)w — u(ow) = (—(u,v) + u X V)w — u(—(v, w) + v X w)
=(uxov)Xw-—uX(vXxw)—{uo)w+ {(v,w)u

= 2[u, v, w].

Here the first equation follows from the definition of the cross product in (5.5), the second equation
follows by applying (5.5) again and using (2.7), and the last equation follows from (5.19). Now, if
any of the factors u, v, w is a real number, the term on the left vanishes. Hence, real parts can be
added to the vectors without changing the expression.

Theorem 5.20. Let W be an 8—dimensional normed algebra.
1. The map W3 — W: (u,v,w) = u X v X w defined by
(5.21) UXVXW:= %((u@)w — (wd)u)
(called the triple cross product of W) is alternating and satisfies

(5.22) (x,uXvXw)+{uxXovxXx,wy=0,

(5.23) luXvXwl=luAvAw|,
forallu,v,w,x € W and
(5.24) (exuxuv,exwxXx)=—le[*(uxvxw,x)

whenever e, u,v,w,x € W are orthonormal.

2. The map ®: W* — R defined by
O(x,u,v,w) := (X, u XV X W)
(called the Cayley calibration of W) is an alternating 4—form. Moreover, ® is self-dual, i.e.,
(5.25) D = *®,

where x: AKW* — A3"KW* denotes the Hodge x—operator associated to the inner product and
the orientation of Remark 5.16.
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3. Let V := 11 with the cross product defined by (5.5) and the associator bracket |-, -, -] defined
by (4.1). Let ¢ € A3V* and y € A*V* be the associative and coassociative calibrations of V
defined by (2.8) and (4.9), respectively. Then the triple cross product (5.21) of u,v,w € W can
be expressed as

uXovXw=¢(ug, v, wy)— [ug, v, wi]

(5.26)
— up(v1 X wy) — vo(w1 X up) — wo(uy X vy)

and the Cayley calibration is given by
(5.27) O=1"ANPp+1.
4. Forallu,v € W we have

(5.28) uv =uX1xov+{ul)v+{v,1)u— (u,v).

Remark 5.29. There is a choice involved in the definition of the triple cross product in (5.21). An
alternative formula is
(u,0,w) — 3 (u(ow) — w(ou)).

This map also satisfies (5.22) and (5.23). However, it satisfies (5.24) with the minus sign changed
to plus and the resulting Cayley calibration is given by ® = 1* A ¢ — ¢ and is anti-self-dual.
Equation (5.28) remains unchanged.

Proof of Theorem 5.20. Let W X W X W — W : (u,v, w) — u X v X w be the trilinear map defined
by (5.21). We prove that this map satisfies (5.26). To see this, fix three vectors u, v, w € W. Then,
by (5.15), we have

W — w0 = =201 X Wy, UW— wu = —2wy XUy, U0 —ou = —2u; X 0y.

Multiplying these expressions by uy, vy, Wy, respectively, we obtain (twice) the last three expressions
on the right in (5.26). Thus it suffices to assume u, v, w € V. Then we obtain

2uXvXw=(ud)w— (wo)u
= —(uv)w + (wo)u
= —(—(u,v) +uXv)w+ (—(w,v) + w X v)u
=(uxv,w)+{U,ov)w—(uXv)Xw
—(wxov,u) —{w,0)u+ (wXv)Xu
= 2¢(u, v, w) — 2[u, v, w].

Here the third and fourth equations follow from (5.5), and the last equation follows from (2.8)
and (5.19). This proves that the formulas (5.21) and (5.26) agree.
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We prove (1). By (5.26) we have

(6, u X v X wy = xo¢(ug, v1, wi) + Y(x1, ug, vy, wy)
(5-30) - uo¢(X1, vy, Wy) — Uo¢(X17 wy, Ug)

- W0¢(X17u1,01)

for x,u,v, w € W. Here we have used ¢(uy, vy, wi) = {uy,v; X wy) and

—(x1, [ur, v1, wq]) = —¢(u1,01,W1,x1) = ¢(X1,u1,01,W1)-

It follows from the alternating properties of ¢ and ¢ that the right hand side of (5.30) is an
alternating 4-form. Hence, the map (5.21) is alternating and satisfies (5.22). For u,o,w € V = 1+
equation (5.23) follows from Lemma 4.4. In general, if u,v,w € W are pairwise orthogonal, it
follows from (5.9) and (5.11) that

(uo)w = —(uw)v = (wit)v = —(wo)u.
This shows that
(5.31) (u,v) = {v,w) ={(w,u) =0 = uXvXw=u(ow)

and, hence, by (5.2), we have |[uXxvXw| = |[uAv Aw| in the orthogonal case. This equation continues
to hold in general by Gram-Schmidt. This proves that the triple cross product satisfies (5.23).

We prove (5.24). The second equation in (5.11) asserts that (yz)z = |z|?y for all y,z € W. Hence,
by (5.31), we have

(eXuXv,eXxwXx)y={uXvXe,wXxXe)
= {(ud)e, (wx)e)
= (ud, (wx)e)e)
= le|*(ud, wx)
= |e|*((wo)x, w)
= le|*(u x v X x,w)

= —|e|?(x,u X v X W)

whenever e,u,v, w,x € W are pairwise orthogonal. Thus the triple cross product (5.21) satis-
fies (5.24). This proves (1).

We prove (2) and (3). That @ is a 4-form follows from (1). That it satisfies equation (5.27)
follows directly from the definition of ® and equation (5.30). That ® is self-dual with respect to the
orientation of Remark 5.16 follows from (5.27) and Lemma 4.8. Equation (5.26) was proved above.

We prove (4). By (5.15) and (5.21), we have

ulxvlzé(uv—vu):uxlxv.
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Hence, it follows from (5.6) that

uv = ugvy — (U1, V1) + UgUy + Vol + Uy X Uy
= —ugvg — (U1, V1) + UV + VoU + Uy X Uy
=—(u, vy +u, Do+ {v,Du+ux1xo.
This proves (5.28) and Theorem 5.20. |

Example 5.32. f W = R® = R @ R’ with coordinates xg, x1, . .., x; and the cross product of
Example 2.15 on R7, then the associated Cayley calibration is given by

Dy = 0125 _ Q0145 _ 0167 _ 0246 4

2367 _ ,2345 _ 1357 4 ,

0257 _ 0347 _ 0356

e

4567 _ 1346 _ 1256 _ 1247

+e e

Thus
(I)() A CDO = 14vol.

(See the proof of Lemma 4.8.)

Definition 5.33. Let W be an 8—dimensional normed algebra. The fourfold cross product on W
is the alternating multi-linear map W* - W: (u,v,w,x) — u X v X w X x defined by

(5.34) AxXUXoXW:=UXOXWE—(UXWXX)d+(WXxXu)d—(xXuXov)w.

Theorem 5.35. Let W be an 8—dimensional normed algebra with triple cross product (5.21), Cayley
calibration ® € A*W*, and fourfold cross product (5.34). Then, for all x,u,v,w € W, we have

(5.36) [xXuXovXw =|x AuAvAw

and

Re(x X u X v Xw)=0(x,u,v,w),
Im (x XuXvX W) = [xl’ U, vy, Wl] - xO[ul, Ul,Wl]
(5:37)
+ up[vr, wi, x1] = vo[wi, X1, us]
+ wo[x1, ug, v1],
where the last five terms use the associator and coassociator brackets on'V := 1+ defined by (4.1)
and (4.23). In particular,

(5.38) O(x,u, v, W) + Im(x XxuxoXw)|> =[x AuAvAw

Proof. That the fourfold cross product is alternating is obvious from the definition and the alter-
nating property of the triple cross product. We prove that it satisfies (5.36). For this it suffices to
assume that u, v, w, x are pairwise orthogonal. Then u X v X w = (u)w and hence

(uxvxw)x = (uo)w)x = —((ud)x)w = —(u X v X x)w.
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Here we have used (5.9) and (5.11). Using the alternating property of the triple cross product we
obtain that the four summands in (5.34) agree in the orthogonal case. Hence, xXuXvXw = ((u0)w)x
and so equation (5.36) follows from (5.2).

We prove (5.37). Since u X 1 X v = uy X vy, we have

1><u><v><w=}L(uxvxw+(vlle)a+(w1xu1)0+(u1><vl)w)
= %(u X v X W+ up(vr X wy) + vg(wy X up) + wo(ug X vl))
+ i((vl X wi,uy) + {(wy X u,v1) + {ug X vl,wl))
- i((vl Xwy) Xup +(wy Xug) Xo; + (g X0q) le)
= ¢(u1,01,W1) = [u1, v1, w1].

The last equation follows from (5.26) and the definition of the associator bracket in (4.1). This
proves (5.37) in the case x; = 0. Using the alternating property we may now assume that x, u, v, w €
V := 1+ If x, u, v, w are orthogonal to 1 it follows from (5.26) that u X v X w = ¢(u, v, w) — [u, v, w]
and ®(x,u,v,w) = —{(x, [u,v,w]) = ¢(x,u,v,w). Moreover, ¥ = —x and similarly for u, v, w.
Hence,

dx XuXovXw
=—(uXoXwWx+@XwXx)u—(wXxXu)v+(xXuXov)w
= [u, v, wlx — [v, w, x]u + [w, x, ul]v — [x, u, v]w

— d(u, v, w)x + (v, w, x)u — p(w, x, u)v + P(x, u, v)w
= —([u, v, w],x) + {[v,w, x],u) — {{w, x, u],v) + ([x,u,v], w)
+ [u,0,w] X x — [o,w,x] Xu+[w,x,u] Xv—[x,u,v] Xw

= ¢(u, v, w)x + (v, w, x)u — p(w, x, u)v + ¢(x, u, v)w

—4¢(u, v, w, x) — 4[u, v, w, x|

= 4®(x,u, v, w) + 4[x,u, v, w].
Here the last but one equation follows from Lemma 4.22. Thus we have proved (5.37) and Theo-
rem 5.35. ]
6 Triple cross products

In this section we show how to recover the normed algebra structure on W from the triple cross
product. In fact we shall see that every unit vector in W can be used as a unit for the algebra
structure. We assume throughout that W is a finite dimensional real Hilbert space.
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Definition 6.1. An alternating multi-linear map
(6.2) WXWXW > W: (u,0,w) > uXvXw
is called a triple cross product if it satisfies

(6.3) (uxovXw,u)=(UuXvXw,v)=(uXvXw,w)=0,

(6.4) luXovXw|=|uAvAw

for all u,v,w € W.

A multi-linear map (6.2) that satisfies (6.4) also satisfies u X v X w = 0 whenever u,v,w € W
are linearly dependent, and hence is necessarily alternating.

Lemma 6.5. Let (6.2) be an alternating multi-linear map. Then (6.3) holds if and only if, for all
x,u,v,w € W, we have

(6.6) (x,uXvXw)+{uXovxXx,w)y=0.

Proof. If (6.6) holds, then (6.3) follows directly from the alternating property of the map (6.2). To
prove the converse, expand the expression (u X v X (w + x), w + x) and use (6.3) to obtain (6.6). O

Lemma 6.7. Let (6.2) be an alternating multi-linear map satisfying (6.3). Then equation (6.4) holds
if and only if, for allu,v,w € W, we have

(6.8) uxovxUxoxXw)+|uAoliw
’ = (|U|2(u, w) — (u, v){v, w)) u + (|u|2<v, w) — (v, u){u, w)) v.

Proof. If (6.8) holds and w is orthogonal to u and v, then
uxovX(UxovxXw)=—|uAov|*w.

Taking the inner product with w and using (6.6) we obtain (6.4) under the assumption (u, w) =
(v, w) = 0. Since both sides of equation (6.4) remain unchanged if we add to w a linear combination
of u and v, this proves that (6.8) implies (6.4).

To prove the converse we assume (6.4). If w is orthogonal to u and v, we have |u X v X w|? =
lu A v|%|w|?. Replacing w by w + x we obtain

(6.9) wx eutNot =  (uxouxwuxovxx)=|uAovl*(wx).

Using (6.6) we obtain (6.8) for every vector w € u™ N v. Replacing a general vector w by its
projection onto the orthogonal complement of the subspace spanned by u and v we deduce that (6.8)
holds in general. This proves Lemma 6.7. O
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Let (6.2) be a triple cross product. If e € W is a unit vector, then the subspace V, := e* carries a
cross product (u, v) — u X, v defined by u X, v := u X e X v. Hence, by Theorem 2.5, the dimension
of V,is0,1,3,0r7.

It follows that the dimension of W is 0, 1, 2, 4, or 8.

Lemma 6.10. Assume dimW = 8 and let (6.2) be a triple cross product. Then there is a number
¢ € {£1} such that

(6.11) exux(exvxw)=elefuxovxw

whenever e,u,v € W are pairwise orthogonal and w € W is orthogonal to e, u, v, and e X u X v.

Proof. 1t suffices to assume that the vectors e, u,v € W are orthonormal. Then the subspace
H := span(e,u,v,e X u X v)*
has dimension four. It follows from (6.6) and (6.9) that the formulas
Iw:=eXuXw, Jw:i=eXvXw, Kw:=uXvXw,

define endomorphisms I, J, K of H. Moreover, by (6.6), these operators are skew adjoint and, by (6.9),
they are complex structures on H. It follows also from (6.9) that e X x X (e X x X w) = —|x|*w
whenever e, x, w are pairwise orthogonal and |e| = 1. Assuming w € H and using this identity with
X = u+v we obtain IJ + JI = 0. This implies that the automorphisms of H of the form al +b] +cI]
with a? + b? + ¢? = 1 belong to the space J of orthogonal complex structures on H. They form
one of the two components of J and K belongs to this component because it anticommutes with
I and J. Hence, K = ¢I] with ¢ = +1. Since the space of orthonormal triples in W is connected,
and the constant ¢ depends continuously on the triple e, u, v, we have proved (6.11) under the
assumption that e, u, v are orthonormal and w is orthogonal to the vectors e, u, v, e X u X v. Hence,
the assertion follows by scaling. This proves Lemma 6.10. O

Definition 6.12. Assume dim W = 8. A triple cross product (6.2) is called positive if it satisfies (6.11)
with € = 1 and is called negative if it satisfies (6.11) with £ = —1.

Definition 6.13. Assume dim W = 8 and let (6.2) be a triple cross product. Then, by Lemma 6.5,
the map ®: W X W X W x W — R defined by

(6.14) D(x,u,v,w) ;= (x,u XX W)
is an alternating 4-form. It is called the Cayley calibration of W.

Theorem 6.15. Assume dim W = 8 and let (6.2) be a triple cross product with Cayley calibration
® € A*W* given by (6.14). Let e € W be a unit vector.
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1. Define the map .: W* — R by

Ve(u,v,w,x) := (e XU Xv,e XWXX)
(6.16) - ((w, w) = (u, e){e, w)) ((v, x) — (v, e){e, x))
+ ((u, x) = (u, e){e, x)) ((v, w) — (v, e) (e, w)).

Then ¢, € A*W* and
(6.17) O =e" A e + e, be = (e)d € A*W*,
where ¢ € {x1} is as in Lemma 6.10.
2. The subspace V, := e* carries a cross product
(6.18) Vex Ve, > Vo: (,v) »uXev:i=uXexXuo,

the restriction of . to Ve is the associative calibration of (6.18), and the restriction of . to Ve
is the coassociative calibration of (6.18).

3. The space W is a normed algebra with unit e and multiplication and conjugation given by
(6.19) uv:=uXxeXov+{ueyv+{(v,eu—(uuve, o= 2{u,e)e —u.
If the triple cross product is positive, then (u0)w — (WO)u = 2u X v X w.

Proof. We prove (1). If the vectors e, u, v, w, x are pairwise orthogonal, then
(6.20) (exuxx,exvxw)=—¢elel(x,uxvxw).

To see this, take the inner product of (6.11) with x. Then it follows from (6.6) that (6.20) holds
under the additional assumption that w is perpendicular to e X u X v. Since x is orthogonal to e,
this additional condition can be dropped, as both sides of the equation remain unchanged if we
add to w a multiple of e X u X v. Thus we have proved (6.20).

Now fix a unit vector e € W. By definition, ¢/, is alternating in the first two and last two
arguments, and satisfies ¥, (u, v, w, x) = Ye(w, x, u,v) for all u, v, w,x € W. By (6.4) we also have
Ve(u,v,u,v) = 0. Expanding the identity ¥, (u, v + x,u, v + x) = 0 we obtain . (u, v, u, x) = 0 for
all u,v, x € W. Using this identity with u replaced by u + w gives

Ve(u, v, w, x) + Ye(w,v,u, x) = 0.

Hence, ¥, is also skew-symmetric in the first and third argument and so is an alternating 4-
form. To see that it satisfies (6.17) it suffices to show that ¢® and i, agree on et. Since they
are both 4-forms, it suffices to show that they agree on every quadrupel of pairwise orthogonal
vectors u, v, w, x € e*. But in this case we have . (u, x, v, w) = —e®(x, u, v, w) = e®(u, x, v, w), by
equation (6.20). This proves (1).
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We prove (2). That (6.18) is a cross product on V, = e* follows immediately from the definitions.
By (6.14) we have

<u Xe U, W> = CI)(W, u9 69 'U) = q)(ea uv U’ W) = ¢€(uv 'U, W)

for u, v, w € V, and hence the restriction of ¢, to V, is the associative calibration. Moreover, the
associator bracket (4.1) on V is given by

[u,0,w]le = (u X e X v)XeXw+ (v,wyu — (u, wv.
Hence, for all u, v, w, x € V., we have

([u,v,wle, x) = (e X w X (u X eXv),x)+ (v,w){u,x) — {u, w){v, x)
={(eXuXuv,eXwXxx)—{u,wy{v,x) + {(u,x)(v,w)

= we(uy 'U, Wa x)’

where the last equation follows from (6.16). Hence, the restriction of i/, to V, is the coassociative
calibration and this proves (2).

We prove (3). That e is a unit follows directly from the definitions. To prove that the norm of
the product is equal to the product of the norms we observe that u X e X v is orthogonal to e, u,
and v, by equation (6.6). Hence,

luv|? = lux e x v+ (u,e)v + (v, edu — (u, v)e|?
= |uxexv|® - 2(v, e)u,v) (v, e)
+ (u,e)?ol* + (v, €)*[ul® + (u, v)?

= [ul’Jol*.

Here the last equality uses the fact that |u X e X v|? = |u A e A v|?. Thus we have proved that W is
a normed algebra with unit e.

If the triple cross product (6.2) is positive, then ¢ = 1 and hence equation (6.17) asserts that
® = e* A ¢ + V.. Hence, it follows from (5.27) in Theorem 5.20 that the Cayley calibration ®,
associated to the above normed algebra structure is equal to ®. This implies that the given triple
cross product (6.2) agrees with the triple cross product defined by (5.21). This proves (3) and
Theorem 6.15. m]

Remark 6.21. Assume dim W = 8 and let (6.2) be a triple cross product with Cayley calibration
® € A*W* given by (6.14). Then, for every unit vector e € W, the subspace V, = e is oriented by
Lemma 3.4 and Theorem 6.15. We orient W as the direct sum W = Re @ V,.. This orientation is
independent of the choice of the unit vector e. With this orientation we have e* A ¢, = /., by
Theorem 6.15 (2) and Lemma 4.8. Hence, it follows from equation (6.17) in Theorem 6.15 (1) that
® A @ # 0. In fact, the triple cross product is positive if and only if ® A ® > 0 with respect to our
orientation and negative if and only if ® A ® < 0. In the positive case ® is self-dual and in the
negative case @ is anti-self-dual.
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Corollary 6.22. Assumedim W = 8 and let (6.2) be a triple cross product and let € be as in Lemma 6.10.
Then, for all e,u,v,w € W, we have

exuX(exvxw)=e¢lelfuxvXw-—ele,uxXvXwe
—ele,uyeXvXwW
—ele,v)eXwXu
(6.23) —ele,we X uXv
— (lel*(u, v) = (e, u) (e, v))w
+ (|e|2(u, w) — (e, u){e, w))v

+ ((u,v)(e, w) — (u, w)(e,v))e.

Proof. Both sides of the equation remain unchanged if we add to u, v, or w a multiple of e. Hence,
it suffices to prove (6.23) under the assumption that u, v, w are all orthogonal to e. Moreover, both
sides of the equation are always orthogonal to e. Hence, it suffices to prove that the inner products
of both sides of (6.23) with every vector x € e* agree. It also suffices to assume |e| = 1. Thus we
must prove that, if e € W is a unit vector and u, v, w,x € W are orthogonal to e, then we have

(exux(exvXw),x)=euxXxvXwx)— (uov)w,x)+ {u,w)v,x)
or equivalently
(6.24) —(exuxx,eXxvXw)+ {u,v){x,w) — (U, w){x,v) = e{x,u X VX w).

The right hand side of (6.24) is e®(x, u, v, w) and, by (6.16), the left hand side of (6.24) is =¥/ (u, x, v, w).
Hence, equation (6.24) is equivalent to the assertion that the restriction of ¢ to e* agrees with .
But this follows from equation (6.17) in Theorem 6.15. This proves Corollary 6.22. O

Lemma 6.25. Assume dimW = 8 and let (6.2) be a triple cross product with Cayley calibration
® € A*W* given by (6.14). Let H C W be a 4—dimensional linear subspace. Then the following are
equivalent:

1 Ifu,u,we H,thenuXvXweH.

2. Ifu,v € Handw € H*, thenu X v X w € H*.

3. Ifu € H andv,w € H', thenu X v X w € H.

4. Ifu,v,w € HY, thenu X v X w € H*.

5. Ifu,u,w € H and x € H*, then ®(x,u,v, w) = 0.

6. Ifx,u, v, w is an orthonormal basis of H, then ®(x,u, v, w) = 1.

7. Ife € H* has norm one, then H is a coassociative subspace of V, := e*.
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8. Ife € H has norm one, then H NV, is an associative subspace of V.

A 4—dimensional subspace that satisfies these equivalent conditions is called a Cayley subspace of
W. If the vectorsu,v,w € W are linearly independent, then H := span{u, v, w,uXvXw} is a Cayley
subspace of W.

Proof. We prove that (1) is equivalent to (5). If (1) holds and u,v,w € H, x € H*, thenuXvXw € H
and, hence, ®(x,u,v,w) = (x,u X v X w) = 0. Conversely, if (5) holds and u,v,w € H, then
(x,u X vXw)=d(x,u,v,w) =0 for every x € H* and hence u X v X w € H.

We prove that (1) is equivalent to (6). If (1) holds and x, u, v, w is an orthonormal basis of H,
then u X v X w is orthogonal to u, v, w and has norm one. Since u X v X w € H, we must have
x = +u X v X w. Hence ®(x,u,v,w) = +|x|* = +1. Conversely, assume (6), let u,v,w € H be
orthonormal, and choose x such that x, u, v, w form an orthonormal basis of H. Then

(x,uxvXw)y =d(x,u,v,w)? =1=|x|*luxvxw?

Hence, u X v X w is a real multiple of x and so u X v X w € H. Since the triple cross product is
alternating, the general case can be reduced to the orthonormal case by scaling and Gram-Schmidt.

That (6) is equivalent to (7) follows from Lemma 4.27 and the fact that ®|y, is the coassociative
calibration on V,. Likewise, that (6) is equivalent to (8) follows from Lemma 4.7 and the fact that
1(e)®|y, is the associative calibration on V.

Thus we have proved that (1), (5), (6), (7), (8) are equivalent. The equivalence of (1), (2), (3) for
a unit vector u = e € H follows from Lemma 4.27 with V := V, and H replaced by H*, using the
fact that v X, w = —e X v X w is the cross product on V.

The equivalence of (3) and (1) follows from the equivalence of (1) and (2) by interchanging the
roles of A and A*. Thus we have proved the equivalence of conditions (1)—(8). The last assertion
of the lemma follows from (1) and equation (6.8). This proves Lemma 6.25. O

7 Cayley calibrations

We assume throughout that W is an 8-dimensional real vector space.

Definition 7.1. A 4-form ® € A*W* is called nondegenerate if for every triple u, v, w of linearly
independent vectors in W there is a vector x € W such that ®(u, v, w, x) # 0. An inner product on
W is called compatible with a 4-form @ if the map W* — W: (u,v, w) — u X v X w defined by

(7.2) (x,uXvXw):=0(x,u,v,w)

is a triple cross product. A 4—form ® € A*W* is called a Cayley-form if it admits a compatible
inner product.
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Example 7.3. The standard Cayley-form on R® in coordinates x, x1, . . ., X7 is given by
0167 _ 0246 | 0257 _

2345 _ 1357 1346 _

0347 _ 80356

1256

e
2367 _

Dy = 123 _ 0145 _

4567 __ 1247

+e e e e e

It is compatible with the standard inner product and induces the standard triple cross product on
R8 (see Example 5.32). Note that &y A &, = 14 vol.

As in Section 3 we shall see that a compatible inner product, if it exists, is uniquely determined
by ®. However, in contrast to Section 3, nondegeneracy is, in the present setting, not equivalent to
the existence of a compatible inner product, but is only a necessary condition. The goal in this
section is to give an intrinsic characterization of Cayley-forms. In particular, we shall see that
every Cayley-form satisfies the condition ® A ® # 0. It seems to be an open question whether or
not every nondegenerate 4—form on W has this property; we could not find a counterexample but
also did not see how to prove it. We begin by characterizing compatible inner products.

Lemma 7.4. Fix an inner product on W and a 4—form ® € A*W*. Then the following are equivalent:
1. The inner product is compatible with .

2. Thereis a unique orientation on W, with volume formvol € AW*, such that, for allu,v,w € W,
we have

(7.5) 1(0)(w)® A 1(0)(u)® A D = 6|u A v|*vol.

3. Choose the orientation on W and the volume form vol € AW* as in (2). Then, for allu,v,w €
W, we have

(7.6) 1(0)(u)® A (w)(u)d AP =6 (|u|2(v, w) — (v, u){u, w)) vol

Each of these conditions implies that ® is nondegenerate and ® A @ # 0.

Proof. We prove that (1) implies (2). Assume the inner product is compatible with ® and let
W3 — W: (u,v,w) = u X v X w be the triple cross product on W defined by (7.2). Assume
u,v € W are linearly independent. Then the subspace

Wyo i ={weW: (u,w)=(v,w) =0}

carries a symplectic form wy , : Wy, »XW, , — Rand a compatible complex structure J, ,,: W, , —
Wy, » given by

O(x, u, v, w) UXVXwW

wu,v(x’ W) = s Ju,UW =
|lu A vl

lu A vl
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Equation (6.4) asserts that J, ., is an isometry on W, , and equation (6.6) asserts that J, ,, is
skew adjoint. Hence, J, . is a complex structure on W, ,, and equation (7.2) shows that, for all
x,w € W, ,, we have

(x,uxvXw)

Oy, (X, W) = W = —(x, Ju,oW).

Thus the inner product wy, o (:, Ju,») on W, ,, is the one inherited from W. It follows that
(7-7) Oy, N Wy N Oy v = 6V01u,v,

where vol, ., € A°W; , denotes the volume form on W, ,, with the symplectic orientation. Since
the space of linearly independent pairs u, v € W is connected, there is a unique orientation on
W such that, for every pair u, v of linearly independent vectors in W and every symplectic basis
ey, ...,e, of W, ., the basis u,v,ey,...,es of W is positively oriented. Let vol € ABW* be the
volume form of W* for this orientation. Then

vol, , = ——1(v)(u)vol|w,
’ lu A e
and, hence, equation (7.5) follows from (7.7). This shows that (1) implies (2). That (2) implies (3)
follows by using (7.5) with v replaced by v + w.
We prove that (3) implies (1). Assume there is an orientation on W such that (7.6) holds, and
define the map W3 — W: (u,v,w) — u X v X w by (7.2). That this map is alternating and
satisfies (6.3) is obvious. We prove that it satisfies (6.4). Fix a unit vector e € W and denote

Ve ={veW:(ev)=0}, ¢.:=1(e)®ly,, vol.:=1ile)volly,.
Then equation (7.6) asserts that

Ww)pe A 0)pe A pe = 6(u,0)vol,

for every u € V.. Hence, ¢, satisfies condition (1) in Lemma 3.4 and therefore is compatible with
the inner product. This means that the bilinear map V, X V, — V,: (u,v) — u X, v defined by
(U Xev,w) := P(u, v, w) is a cross product on V,. Since ¢.(u, v, w) = ®(w,u,e,v) = (uXeXv, w),
we have uX,v = uXeXwv. This implies |[uXeXv| = [u Av| whenever u and v are orthogonal to e and
e has norm one. Using Gram-Schmidt and scaling, we deduce that our map (u,v, w) —» u X v X w
satisfies (6.4) and, hence, is a triple cross product. Thus we have proved that (1), (2), and (3) are
equivalent. Moreover, condition (2) implies that ® is nondegenerate and (1) implies that ® A & # 0,
by Remark 6.21. This proves Lemma 7.4. O

We are now in a position to characterize Cayley-forms intrinsically. A 4-form ® is nondegen-
erate if and only if the 2—form 1(v)i(u)® € A’W* descends to a symplectic form on the quotient
W /span{u, v} or, equivalently, the 8—form 1(v)(u)® A ((v)(u)® A @ is nonzero whenever u, v are
linearly independent. The question to be adressed is under which additional condition we can find
an inner product on W that satisfies (7.5).
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Theorem 7.8. A 4—form ® € A*W* admits a compatible inner product if and only if it satisfies the
following condition.

® is nondegenerate and, ifu,v,w € W are linearly independent and
(7.9) 1))@ A (w)(u)® A D = t(u)(v)® A t(w)i(v)d A D =0,
(@) then, for all x € W, we have

I(w)i(w)® A 1(x)(u)® A D =0

(7.10) B
— (w)(V)D A 1(x)i(v)d A D = 0.

If this holds, then the compatible inner product is uniquely determined by ®.
Proof. See page 47. O

To understand condition (C) geometrically, assume @ satisfies (7.6) for some inner product
on W. Then «(v)u(u)® A ((w)(u)® A ® = 0 if and only if |u|*(v, w) — (v, u){u, w) = 0. Hence, if u,
v, w are linearly independent, equation (7.9) asserts that w is orthogonal to u and v. Under this
assumption both conditions in (7.10) assert that w and x are orthogonal.

Every Cayley-form @ induces two orientations on W. First, since the 8—form i(v)i(u)® A
1(v)(u)® A @ is nonzero for every linearly independent pair u,v € W and the space of linearly
independent pairs in W is connected, there is a unique orientation on W such that «(v)(u)® A
(0)(u)® A ® > 0 whenever u,v € W are linearly independent. The second orientation of W is
induced by the 8—form ® A ®. This leads to the following definition.

Definition 7.11. A Cayley-form ® € A*W* is called positive if the 8—forms ® A ® and 1(v)1(u)® A
1(v)(u)® A ® induce the same orientation whenever u, v € W are linearly independent. It is called
negative if it is not positive.

Thus @ is negative if and only if —® is positive. Moreover, it follows from Remark 6.21 that a
Cayley-form ® € A*W* is positive if and only if the associated triple cross product is positive.

Theorem 7.12. If ®, ¥ € A*W* are two positive Cayley-forms, then there is an automorphism
g € Aut(W) such that g® = 7.

Proof. See page 48. O
Lemma 7.13. Let W be a real vector space and g: W* — R be a multi-linear map satisfying
(7.14) 9(u,v3w, x) = g(w, x;u,v) = —g(v, u; W, X)

forallu,v,w,x € W and

(7.15) g(u,v;u,v) >0
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whenever u,v € W are linearly independent. Then the matrices

gu,v;u,v)  g(u,v;u, w)

2X2
g(u, wiu,v)  g(u, w;u, w) ¢R™, and

Ay(v,w) =

g(v,w;o,w) g(v,w;w,u) g(v,w;u,v)
Alu,v,w) = glw,u;0,w) glw,u;w,u) glw,u;u,v)| € R
gu,v;o,w) gu,v;w,u) g(u,v;u,v)

are positive definite whenever u,v,w € W are linearly independent. Moreover, the following are
equivalent:

1. Ifu,v, w are linearly independent and g(u, v; w,u) = g(v, w;u, v) = 0, then, for all x € W, we
have

(7.16) gu, w;u,x) =0 — g(v, w;v,x) = 0.

2. Ifu,v,w and u,v,w’ are linearly independent, then

det(Ay(v, w))  det(Ay(v, "))
(7.17) det(Ay(m, w))  det(Ag(m, w')’

3. Ifu,v,w and u,v’,w’ are linearly independent, then

det(A, (v, w)) _ det(A, (v, w'))
Vdet(A(u, v, w))  +/det(A(u, v’, w’)) .

(7.18)

4. There is an inner product on W such that
(7.19) g(u, v;u,0) = [ul*|v]* ~ (u, v)?
forallu,v e W.

If these equivalent conditions are satisfied, then the inner product in (4) is uniquely determined by g
and it satisfies

det(Ay(v, w)) = |ul*lu Av A wl?,

(7.20) det(A(u, v, w)) = lu Av A w|.

Proof. Letu,v, w € W be linearly independent. We prove that the matrices A, (v, w) and A(u, v, w)
are positive definite. By (7.15) they have positive diagonal entries. Since the determinant of
Ay (v, w) agrees with the determinant of the lower right 2 X 2 block of A(u, v, w), it suffices to
prove that both matrices have positive determinants. To see this, we observe that the determinants
of Ay(v,w) and A(u, v, w) remain unchanged if we add to v a multiple of u and to w a linear
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combination of u and v. With the appropriate choices both matrices become diagonal and thus
have positive determinants. Hence, A, (v, w) and A(u, v, w) are positive definite, as claimed.

We prove that (1) implies (7.20). The matrix A, (v, w) and |u A v A w|? remain unchanged if
we add to v and w multiples of u. Hence, we may assume that v and w are orthogonal to u. In this

case
ol (o, W>)

Au(U, W) = |u|2 (<W, ’U> |W|2

and this implies the first equation in (7.20). Since the determinant of the matrix A(u, v, w) remains
unchanged if we add to v a multiple of u and to w a linear combination of u and v, we may assume
that u, v, w are pairwise orthogonal. In this case the second equation in (7.20) is obvious. Thus we
have proved that (1) implies (7.20). By (7.20) the inner product is uniquely determined by g.

We prove that (1) implies (2). Fix two linearly independent vectors u, v € W. Then the subspace

Wyo i={w e W :g(u,v;w,u) = g(v,w;u,v) = 0}

has codimension two and W = W, ., ® span{u,v}. Now fix an element w € W, ,,. Then (7.16)
asserts that the linear functionals x — ¢g(u, w;u, x) and x — ¢g(v, w;v,x) on W have the same
kernel. Hence, there exists a constant A € R such that g(v, w; v, x) = Ag(u, w; u, x) for all x € W.
With x = w we obtain A = g(v, w; v, w)/g(u, w; u, w) and hence

g(u, w; u, x)g(v, w; v, w) = g(u, w; u, w)g(v, w; v, x) forallx e W.
This equation asserts that the differential of the map

Wi o\{0} = R: w > g(u, wiu, w)
| g(v, w; v, w)

vanishes and so the map is constant. This proves (7.17) for all w, w” € W, ,\{0}. Since adding to
w a linear combination of u and v does not change the determinants of A, (v, w) and A, (u, w),
equation (7.17) continues to hold for all w, w’ € W that are linearly independent of u and v. Thus
we have proved that (1) implies (2).

We prove that (2) implies (3). It follows from (7.17) that

w,w' € Wy o\ {0} _ glu, wiu,w)  gu, w'su, w’)

gv,wiv,w)  go,w;o,w)’
Using this identity with u replaced by u + v we obtain

wow € Wy o\ {0} . gu, w;v,w) — glu,w’;v,w’)

gv,wiv,w)  go,wio,w)’

Now let w,w’ € W, ,, and assume that g(u, w; v, w) = 0. Then we also have g(u, w;v,w’) = 0
and so it follows from the definition of W, ,, that all off-diagonal terms in the matrices A, (v, w),
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Ay(v,w), A(u, v, w), and A(u, v, w") vanish. Hence,

det(Ay (v, w))*  g(u, v;u,v)g(u, w;u, w)

det(A(u, v, w)) g(v, w; v, w)
9w, v;u,0)g(u, wiu,w)  det(Ay(v, w'))?
B g(v, w;v, w’) "~ det(A(u, v, w"))’

Thus we have proved (7.18) under the assumption that w,w’ € W, ,\{0} and g(w,u; w,v) = 0.
Since the determinants of A, (v, w) and A(u, v, w) remain unchanged if we add to w a linear
combination of u and v and if we add to v a multiple of u, equation (7.18) continues to hold when
v=v".Ifu,uv,wand u,v,w and u,v’, w’ are all linearly independent triples we obtain

det(Ay (v, w))? B det(Ay (v, w))? 3 det(Ay (v, w))?
det(A(u, v, w))  det(A(u,v,w’))  det(A(u,v’,w’))’

Here the last equation follows from the first by symmetry in v and w. This proves equation (7.18)
under the additional assumption that u, v, w’ is a linearly independent triple. This assumption can
be dropped by continuity. Thus we have proved that (2) implies (3).

We prove that (3) implies (4). Define a function W — [0,00): u — |u| by |u| := 0 foru = 0
and by

| |2 g(u, w; u, w)g(u, v;u, v) — g(u, v; u, w)?
ul® =
det(A(u, v, w))

(7.21)
for u # 0, where v, w € W are chosen such that u, v, w are linearly independent. By (7.18) the right
hand side of (7.21) is independent of v and w. It follows from (7.21) with u replaced by u + v that

2g(u, w; v, w)g(u, v;u, v) — g(u, v; u, w)g(u, v; v, w)
det(A(u, v, w)) .

lu+ o — |uf® ~ |of* =

Replacing v by —v gives |u + v|? + |u — v|? = 2|u|? + 2|v|%. Thus the map W — [0,00): u > |u|
is continuous, satisfies the parallelogram identity, and vanishes only for u = 0. Hence, it is a norm
on W and the associated inner product of two linearly independent vectors u,v € W is given by

g(u, w; v, w)g(u, v; u, v) — g(u, v;u, w)g(u, v; v, w)
det(A(u, v, w))

(7.22) (u,v) =

whenever w € W is chosen such that u, v, w are linearly independent. That this inner product
satisfies (7.19) for every pair of linearly independent vectors follows from (7.21) and (7.22) with
w € W, ». This proves that (3) implies (4).

We prove that (1) implies (1). Replacing v in equation (7.19) by v + w we obtain

9, v;u, w) = [ul® (v, w) = (u, v)(u, w).
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for all u, v, w € W. Hence,
gu,v;w,u) = g(v,w;u,v) =0 = (u, w) = (v, w) = 0.

If w € W is orthogonal to u and v, then we have g(u, w;u,x) = |u|?*(w,x) and g(v, w;v,x) =
|v|?(w, x). This implies (7.16) and proves Lemma 7.13. O

Proof of Theorem 7.8. If ® is nondegenerate and u € W is nonzero, then (u)® descends to a
nondegenerate 3—form on the 7-dimensional quotient space W /Ru. By Lemma 3.4 this implies
that 1(v)u(u)® A 1(v)i(u)PAi(u)® descends to a nonzero 7-form on W /Ru for every vector v € W\Ru.
Hence, the 8—form 1(v)y(u)® A l(v)(u)® AD on W is nonzero whenever u, v are linearly independent.
The orientation on W induced by this form is independent of the choice of the pair u, v. Choose
any volume form Q € AW compatible with this orientation and, for A > 0, define a multi-linear
function g; : W* — R by

1))@ A 1(x)(w)d A O
6A4Q

(7.23) ga(u,v;w,x) :=

This function satisfies (7.14) and (7.15) and, if ® satisfies (C), it also satisfies (7.16). Hence, it follows
from Lemma 7.13 that there is a unique inner product (-, -); on W such that, for all u,v € W, we
have

(7.24) gau, vsu,0) = [uli|of; — (u,v)3.

Let vol, be the volume form associated to the inner product and the orientation. Then there is a
constant p(A) > 0 such that
vol) = p(1)*Q.

We have g; = A7%gy, hence |u|; = A7!|ul|; for every u € W, and hence vol; = A 8vol;. Thus
1(A) = A74u(1). With A := (1) we obtain p(A) = A™*u(1) = p(1)'/* = A2. With this value of A
we have 1*Q = vol,. Hence, it follows from (7.23) and (7.24) that

1))@ A (V) (u)d AD =6 (|u|i|v|i —{u, v)i) vol,.

Hence, by Lemma 7.4, ® is compatible with the inner product (-, -);. This shows that every 4-form
® € A*W* that satisfies (C) is compatible with a unique inner product.

Conversely, suppose that ® is compatible with an inner product. Then, by Lemma 7.4, there
is an orientation on W such that the associated volume form vol € A3W* satisfies (7.5). Define
g: W* > Rby
1)) A 1(x)(w)P A D

6vol ’

g(u, v;w,x) :=

By (7.5) this map satisfies condition (4) in Lemma 7.13 and it obviously satisfies (7.14) and (7.15).
Hence, it satisfies condition (1) in Lemma 7.13 and this implies that ® satisfies (C). This proves
Theorem 7.8. m]
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Proof of Theorem 7.12. Let ® € A*W* be a positive Cayley-form with the associated inner product,
orientation, and triple cross product. Let ¢y € A3(R7)* and 1y € A*(R”)* be the standard associative
and coassociative calibrations defined in Example 2.15 and in the proof of Lemma 4.8. Then
®p := 1% A @o + Yo € A*(R®)* is the standard Cayley-form on R®.

Choose a unit vector e € W and denote

V, = et pe = 1(e)Dly, € A’V e = @|y, € A*V].

Then ¢, is a nondegenerate 3—form on V, and, hence, by Theorem 3.2, there is an isomorphism
g: R” = V, such that g*¢, = ¢y. It follows also from Theorem 3.2 that g identifies the standard
inner product on R’ with the unique inner product on V, that is compatible with ¢, and the
standard orientation on R’ with the orientation determined by ¢, via Lemma 3.4. Hence, it follows
from Lemma 4.8 that g also identifies the two coassociative calibrations, i.e., "1/ = . Since ® is
a positive Cayley-form, we have

D =¢"Ade + V.

Hence, if we extend g to an isomorphism R® = R @ R” — W, which is still denoted by g and sends
eo = 1 € R C R® to e, we obtain g*® = @ and this proves Theorem 7.12. m]

Remark 7.25. The space S2A?W* of symmetric bilinear forms on A?W can be identified with the
space of multi-linear maps g: W* — R that satisfy (7.14). Denote by SZA*W* C S*A?W* the
subspace of all g € SA?W* that satisfy the algebraic Bianchi identity

(7.26) g(u, v;w, x) + g(v, w; u, x) + g(w, u;v,x) = 0
for all u, v, w,x € W. Then there is a direct sum decomposition
SEAPW* = ATWF @ SEAPWE

and the projection
II: SPA*W* - A'W*

is given by
(Ig)(u, v, w,x) := %(g(u, v;w, x) + g(v, wiu, x) + g(w, u; v, x))
Note that
(7.27) dim AW = 28, dim S2A*W = 406,
(7.28) dim A*W = 70, dim S2A*W = 336.

Moreover, there is a natural quadratic map ¢*: S*W* — SZA?W* given by

(™) (w052, y) == y (. )y (0,y) = y(w, y)y (v, %)
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fory € S°W* and u, v, x,y € W. Lemma 7.13 asserts, in particular, that the restriction of this map
to the subset of inner products is injective and, for each element g € S2A*W*, it gives a necessary
and sufficient condition for the existence of an inner product y on W such that
g-Tg=q"Qy).

We shall see in Corollary 9.9 below that, if ® € A*W* is a positive Cayley-form and g = g¢ €
S?A*W* is given by

1(0)(w)® A i(y)i(x)D A P

vol

dAD
s vol :=
14

go(u, v;x,y) =

2

then

go = 64"(y) + 7
for a unique inner product y € S?W*, and the volume form of y is indeed vol. Thus, in particular,
we have Ilgg = 79.

Remark 7.29. The space S2.5?W* of symmetric bilinear forms on S?W can be identified with the
space of multi-linear maps o: W* — R that satisfy

(7.30) o(u,v;x,y) = o(x,y;u,v) = o(v, u; x, ).

Denote by S3S*W* the subspace of all o € S>S*W* that satisfy the algebraic Bianchi identity (7.26).
Then
SESPW* = S*W* @ SiSPW,

where
(7.31) dim S*W = 36, dim S2S*W = 666,
(7.32) dim S*W = 330, dim S2S*W = 336.

The projection IT: S2S?W* — S*W* is given by the same formula as above. Thus
(o —Ho)u,v;x,y) = %G(u, VX, Y) — %O’(U,x; u,y) — %G(x, u; v, Y).
There is a natural quadratic map ¢°: S?W* — S2S?W* given by

(@° 1)), v;x,y) = y(u, v)y(x,y).

Polarizing the quadratic map ¢*: S?W* — S?A’W* one obtains a linear map T: S?S?W* —
S?A’W* given by

(To)(u,v;x,y) := o(u,x;0,4) — o (U, y; v, x)
such that ¢ = T o ¢°. The image of T is the subspace S?A’W* of solutions of the algebraic

Bianchi identity (7.26) and its kernel is the subspace S*W*. A pseudo-inverse of T is the map
S: SEA’W* — S2S2W* given by

(Sg)(u, v;x,y) = (9(u, x;v,y) + g(u, y; v, x))
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whose kernel is A*W* and whose image is S25*W*. Thus
TSg = g —1lg, STo =0 -1lo
for g € S2A’W* and o € S?S?W*. Given g € S2A’W* and y € S?W*, we have
g-Ng=q"(y) =  Sg=01-IMgy).

Namely, if ¢*(y) = g—IIg, then Sg = S(g—I1g) = Sq*(y) = ¢°(y)-11g°(y), and if (1-I1)g*(y) = Sg,
then (1 - I)g = TSg = T(1 - Mg (y) = ¢*(y).

8 The group G,

Let V be a 7-dimensional real Hilbert space equipped with a cross product and let ¢ € A*V*
be the associative calibration defined by (2.8). We orient V as in Lemma 3.4 and denote by
x: AKV* — A77KV* the associated Hodge #—operator and by 1 := *¢ € A*V* the coassociative
calibration. Recall that V is equipped with an associator bracket via (4.1), related to ¢ via (4.9), and
with a coassociator bracket (4.23).

The group of automorphisms of ¢ will be denoted by

G(V.¢) :={g € GL(V) : g"¢ = ¢} .
By Lemma 2.20, we have G(V, ¢) € SO(V) and hence, by (2.8),
G(V,9)={g€SOV):guxgv=guxv)VuveV}.

For the standard structure ¢, on R’ in Example 2.15 we denote the structure group by G, :=
G(R7, ). By Theorem 3.2, the group G(V, ¢) is isomorphic to G, for every nondegenerate 3—form
on a 7-dimensional vector space.

Theorem 8.1. The group G(V, ¢) is a 14—dimensional simple, connected, simply connected Lie group.
It acts transitively on the unit sphere and, for every unit vector u € V, the isotropy subgroup
Gy, :={g € G(V,9) : gu = u} is isomorphic to SU(3). Thus there is a fibration

SUQ3) — G, —> S°.

Proof. As we have observed in Step 4 in the proof of Lemma 3.4, the group G = G(V, ¢) has
dimension at least 14, as it is an isotropy subgroup of the action of the 49-dimensional group
GL(V) on the 35-dimensional space A3V*. Since G € SO(V), by Lemma 2.20, the group acts on
the unit sphere

S={ueV:|u=1}.

Thus, for every u € S, the isotropy subgroup G, has dimension at least 8. By Lemma 2.18, the
group G, preserves the subspace W,, := ut, the symplectic form w,, and the complex structure J,
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on W, given by w, (v, w) = (u,v X w) and J,v = u X v. Hence, G, is isomorphic to a subgroup of
U(Wy, 0y, Ju) = U(3). Now consider the complex valued 3-form 6, € A*>°W, given by

Ou(x, Y, 2) := (x, y,2) = BP(u X x,y, 2) = P(x, y,2) = BY(u, x,y, 2)

for x,y,z € W,,. (See (4.1) and (4.9) for the last equality.) This form is nonzero and is preserved by
Gy. Hence, G, is isomorphic to a subgroup of SU(W,,, w,, J,,). Since SUW,,, wy, J,) = SU(3) is a
connected Lie group of dimension 8 and G, has dimension at least 8, it follows that

Gy = SU(Wu’ wu,.]u) = SU(3)

In particular, dim G, = 8 and so dimG < dimG, + dim S = 14. This implies dimG = 14
and, since S is connected, G acts transitively on S. Thus we have proved that there is a fibration
SU(3) =< G — S. It follows from the homotopy exact sequence of this fibration that G is connected
and simply connected and that 75(G) = Z. Hence, G is simple.

Here is another proof that G is simple. Let g := Lie(G) denote its Lie algebra and, for every
u € S, let g, := Lie(G,,) denote the Lie algebra of the isotropy subgroup. Then, for every & € g, we
have & € g, if and only if u € ker £. Since every & € g is skew-adjoint, it has a nontrivial kernel
and hence belongs to g,, for some u € S.

Now let I C g be a nonzero ideal. Then, by what we have just observed, there is an element
u € S such that I Nng, # {0}. Thus I N g, is a nonzero ideal in g, and, since g, is simple, this
implies g, C I. Next we claim that, for every v € u', there is an element ¢ € I such that éu = v.
To see this, choose any element € g, C I such that ker y = (u). Then there is a unique element
w € u' such that pw = v. Since G acts transitively on S there is an element { € g such that {u = w.
Hence, & = [5,{] € I and &u = n{u = nw = v. This proves that dim(I/g,) > 6; hence, dim I > 14,
and hence I = g. This proves Theorem 8.1. O

We examine the action of the group G(V, ¢) on the space

5::{(u,v,w)eV: lul = ol = Jwl =1, }

(u,v) = {u,w) ={v,w) ={uxo,w)=0

Let S C V denote the unit sphere. Then each tangent space T,S = u* carries a natural complex
structure v — u X v. The space & is a bundle over S whose fiber over u is the space of Hermitian
orthonormal pairs in T,,S. Hence, § is a bundle of 3—spheres over a bundle of 5-spheres over a
6-sphere and therefore is a compact connected simply connected 14-dimensional manifold.

Theorem 8.2. The group G(V, ¢) acts freely and transitively on &.

Proof. We give two proofs of this result. The first proof uses the fact that the isotropy subgroup
G, € G := G(V, ¢) of a unit vector u € V is isomorphic to SU(3) and the isotropy subgroup in
SU(3) of a Hermitian orthonormal pair is the identity. Hence, G acts freely on §. Since G and &
are compact connected manifolds of the same dimension, this implies that G acts transitively on &
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For the second proof we assume that ¢ = ¢, is the standard structure on V = R’. Given
(u,v,w) € 8, define g: R” — R’ by

gey =u, ge; =0, ges=uXv, gesg=wW

ges =wXu, geg=wXuv, ge;=wX(uXov).

By construction g preserves the cross product and the inner product. Hence, g € G,. Moreover, g is
the unique element of G, that maps the triple (ey, e, e4) to (1, v, w). This proves Theorem 8.2. O

Corollary 8.3. The group G(V, ¢) acts transitively on the space of associative subspaces of V and on
the space of coassociative subspaces of V.

Proof. This follows from Theorem 8.2, Lemma 4.7, and Lemma 4.27. O

Remark 8.4. Let A C V be an associative subspace and define H := At and G, := {g € G(V, ¢) : gA = A}.
Then every h € SO(H) extends uniquely to an element g € G, (choose (u, v, w) € & such that
u,v,w € H) and the action of g on A is induced by the action of h on A*H* under the isomor-
phism in Remark 4.28. Hence the map Gy, — SO(H) : g — g¢|g is an isomorphism and so the
associative Grassmannian & := {A C V : A is an associative subspace} is diffeomorphic to the
homogeneous space G(V, ¢)/SO(H) = G;/SO(4), by Corollary 8.3. Since A C V is associative if
and only if H := A" is coassociative (see Lemma 4.27), & also is the coassociative Grassmannian.

Theorem 8.5. There are orthogonal splittings

AV = A2o AR,
3yr* 3 3 3
NV =A O A 0 A,

where dimA’;l =d and

A= {(u)p:ueV}= {weAZV*:*(gb/\w):Zw},

Ay ={oe NV Yy Aw=0} ={we AV :x($Aw) = -0},
A} = (),

A= {i(w)y cu eV},

Ay ={oeNV i gA0=0, Yy Aw=0}.

Each of the spaces A]:i is an irreducible representation of G(V, ¢) and the representations A% and A3
are both isomorphic to V, A%, is isomorphic to the Lie algebra §(V, §) := Lie(G(V, ¢)) = a2, and A§7
is isomorphic to the space of traceless symmetric endomorphisms of V. The orthogonal projections
mr: A2V* — A2 and myy: A*V* — A2, are given by

(8.6) m(@) = o+ rw) =L (f Ax Aw)),
(87) r1a(0) = 2o =L x (P A ) =0 = L% (§ A (Y A ).
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Proof. For u € V denote by A, € so(V) the endomorphism A,v := u X v. Then the Lie algebra
g := Lie(G) of G = G(V, @) is given by

g={£€End(V): E+ & =0, Agy + [AwE] =0Yu eV},
Step 1. There is an orthogonal decomposition
so(V)=g@h, h:={A,:ueV}

with respect to the inner product (€, n) := —3 tr(én) on so(V).

The group G acts on the space so(V) of skew-adjoint endomorphisms by conjugation and
this action preserves the inner product. Both subspaces g and I) are invariant under this action,
because gA,g7! = Agyforallu e Vandge G. If £ = A, e gNb, then 0 = L4,¢ = 3u(u)y (see
equation (4.19)) and hence u = 0. This shows that g N ) = {0}. Since dim g = 14, dim § = 7, and
dim so(V) = 21, we have s0(V) = g @ . Moreover, g* is another G-invariant complement of g.
Hence ) is the graph of a G-equivariant linear map g* — g. The image of this map is an ideal in g
and hence must be zero. This shows that h = g*.

Step 2. A3, is the orthogonal complement of A

By equation (4.42) in Lemma 4.38 we have u* A/ = #1(u)¢ for allu € V. Hence, u" Aw A ¢ =
@ A *1(u)¢$ and this proves Step 2.

Step 3. The isomorphism so(V) — A?V*: &+ wg := (-, &) is an SO(V)-equivariant isometry and
maps g onto Ai

That the isomorphism ¢ — w¢ is an SO(V)-equivariant isometry follows directly from the
definitions. The image of ) under this isomorphism is obviously the subspace A%. Hence, by Step 1,
the orthogonal complement of A? is the image of g under this isomorphism. Hence, the assertion
follows from Step 2.

Step 4. Letw € A’V*. Thenyy A w = 0 if and only if x(¢ A ®) = —.
Define the operators Q: A?V* — A?V* and R: A’V* — AlV* by

Quw = (¢ A w), Row = #() A w)

for o € A*V*. Then Q is self-adjoint and R*: A'V* — A?V* is given by the same formula
R*a = «( A a) for « € A'V*. Both operators are G-equivariant. Moreover, R‘R = Q + id by
equation (4.61) in Lemma 4.38. Hence, Rw = 0 if and only if Qw = —w. (Note also that the operator
R*R vanishes on A?, by equation (4.61) and has eigenvalue 3 on A2 by (4.53).) This proves Step 4.

One can rephrase this argument more geometrically as follows. The action of G on A?, is
irreducible by Step 3. Hence, A2, is (contained in) an eigenspace of the operator Q. Moreover,
the operator Q is traceless. To see this, let ey, . . ., e; be an orthonormal basis of V and denote by
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el,...,e’ the dual basis of V*. Then the 2-forms e’ := e’ A ¢/ with i < j form an orthonormal

basis of A’V* and we have

Selx@neh) = e Al Ag)e. . e) = 0.

i<j i<j

By equation (4.50) in Lemma 4.38, the operator Q has eigenvalue 2 on the 7-dimensional subspace
AZ. Since dim A®V* = 21, it follows that Q has eigenvalue —1 on the 14-dimensional subspace
A?,. This gives rise to another proof of equation (4.61) and completes the second proof of Step 4.

Step 5. The subspaces A3, A3, and A3, form an orthogonal decomposition of A°V* and dim AZ =d.

That dim AZ = d ford = 1,7 is obvious. Since =i(u)y = —u* A ¢, it follows that A is orthogonal
to A3. Moreover, for every @ € A*V*, we have

prA0=0 & uUAPA0=0YueV < wlA]

and
YAw=0 & olA.

Hence, A}, is the orthogonal complement of A & A3. Since dim A*V* = 35, this proves Step 5.

Step 6. The subspaces A%, A?,,

A3, A3, A3, are irreducible representations of the group G = G(V, §).

The irreducibility of A3 and A2 = A2 is obvious and for A2, it follows from Step 3. We also
point out that A3 is the tangent space of the orbit of ¢ under the action of SO(V'). The space A3,
can be identified with the space of traceless symmetric endomorphisms S: V. — Vvia S — Ls¢
by Theorem 8.8 below. That it is an irreducible representation of G(V, ¢) is shown in [Bry87]. This
proves Step 6. Equations (8.6) and (8.7) follow directly from the definitions and (4.61). This proves
Theorem 8.5. ]

Theorem 8.8. The linear map
End(V) = A’V*: A La¢

(see Remark 4.16) restricts to a G(V, ¢)—equivariant isomorphism from the space of traceless symmetric
endomorphisms of V onto A3,.

Proof. We follow the exposition of Karigiannis in [Karog, Section 2]. Define the linear map
A*V* > End(V): n> S, by

(u)p A uw)P A7

(8.9) (u, Syv) = ool

for n € A*V* and u, v € V. This map has the following properties.
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Step 1. Let A € End(V). Then
(8.10) Scap = 3(A"+A) + 3 tr(A)1.

In particular, Sy = %1.

For t € R define g; := e’ and ¢; := gi¢. Then ¢, € A®V* is a nondegenerate 3—form

compatible with the inner product
(u,v) := (gru, g1v)
on V and the volume form vol, € A’V* given by
vol; := g;vol = det(g;)vol.

Hence,
Ww)pe A Uw)pe A Pp = 6lulivol,

for allu € V and all t € R. Differentiate this equation with respect to t at t = 0 and use the identity
0 = 1(w)((w)p A p An) = u)d A u)d An—(u)p A ¢ A (u)y for n € A3V* to obtain

3u(u) A (u)p A Lag = 12(u, Au)vol + 6|u|? tr(A)vol.
Divide this equation by 12vol and use the definition of S , 4 in equation (8.9) to obtain
(u,Sg ,pu) = (u, Au) + %tr(A)|u|2.

Since S¢ ,4 is a symmetric endomorphism, this proves equation (8.10). Now take A = 1 and use
the identities £1¢ = 3¢ and tr(1) = 7 to obtain S34 = S¢,¢ = %1. This proves Step 1.
Step 2. Letv € V. Then S,,)y = 0.

It follows from equation (4.48) in Lemma 4.38 that

l(u)gb/\a/\gb:a/\*u*

8.
(8.11) vol vol

= 3a(u)

forallu € V and all ¢ € V*. Take a := 1(w)i(v)¢ = ¢(v, w, -) to obtain

(8.12) 36(, 0, w) = (u)d A t(\\;vo)ll(v)gb A tﬁ
Interchange u and v to obtain
(8.13) 3, 0, w) = t(w)t(u)gév/(\)ll(v)d’ A 1,0'
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Now contract the vector w with the 8—form 1(u)¢ A 1(v)$ A ¥ = 0 to obtain

0 = () (1w A 1(0) A )
= (W A (v)p A Y
+1Uu)p A Uw)(©) A Y
+1u)p A Uv)p A l(w)y
= w)p A (V)P A (lw)i.
Here the last step follows from (8.12) and (8.13). Thus we have proved that
(8.14) u)p A (v)p A w)y =0 forallu,v,w e V.
Hence, S,(,,)y = 0 for all w € V by definition of S,,. This proves Step 2.
Step 3. Let S = S* € End(V) be a self-adjoint endomorphism. Then

(8.15) ¥ Log = tr(S)Y — Lsy.
It suffices to prove this for self-adjoint rank 1 endomorphisms. Let u € V and define S := uu*.
Then tr(S) = |u|?> and Ls¢ = u* A 1(u)¢. Hence,
205 = #(u* A w)g)

= x(u" Ax(u" AY))

= (u)(u" AY)

= [ul*y — u" A )y

=tr(S)y — Lsy.
Here the third step uses the identity u* A *a = (=1)*"! % i(u)ar in Remark 4.14 with k = 5 and
a = u* A . This proves Step 3.
Step 4. Let S = S* € End(V) and T = T* € End(V) be self-adjoint endomorphisms. Then
(8.16) (Lsop, L1d) = 2tr(ST) + tr(S) tr(T).

It suffices to prove this for self-adjoint rank 1 endomorphisms. Let u,v € V and define S := uu”*
and T := vv*. Then tr(S) = |u|?, tr(T) = |v|%, tr(ST) = (u, v)?, Lsp = u* A l(u)p, L1¢ = v* A (V).
Hence, by Step 3,

(Lsp, Lrpyvol = Ls¢p A =Lrd
= Lsp A (te(T)y — L)
= |o]2u* A u)p A Y —u A ) Aot A W)y
= |[0]2uw)p A #1(u)p — u* A 0" A (u)d A ()Y
= (3[ul?|v]? - 2]u X v|*)vol

= (|u|2|v|2 + 2(u, v)z)vol.
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Here the fourth step follows from (4.42) and the fifth step follows from (4.44) and (4.57). This
proves Step 4.

Step 5. Let S = S* € End(V) be a self-adjoint endomorphism and let u € V. Then {(1(u)y, Ls@) = 0.

It suffices to prove this for rank 1 endomorphisms. Let v € V and define S := vv*. Then

«Lsd = tr(S)Y — Lsyy = [0’ — v* A Wv)y by Step 3, s0
)y A xLs¢ = [o*1w)y Ay — 1wy A v* A () = 0.
Here the last equation follows from (4.41) and (4.49).

Step 6. Define
End)™ (V) := {S € End(V) : S = S*, tr(S) = 0}.

Then the map A v L a¢ restricts to G(V, ¢p)—equivariant isomorphism
End)"(V) = A}, S+ Lsé.

That the map A — L 4¢ is G(V, §)—equivariant follows directly from the definitions. Now let
S € Endy™(V). Then by Step 4
Lsp A
B0V (54,4) = Hsp Lah = () =0,
Moreover, *i(u))y = —u* A @ by (4.43) and so u* A Lsp A ¢ = —(Lsd, (u)y) = 0 forallu € V by
Step 5. This shows that Ls¢ A ¢ = 0and Lsdp A ¢ = 0, and so Lsp € A3.. Moreover, S o4 = S
forall S € Endf)ym(V) by Step 1. Thus the map Endf)ym(V) — A},: S+ Lg¢ is injective. Since
Endgym(V) and A;7 both have dimension 27, this proves Step 6 and Theorem 8.8. |

The above proof of Theorem 8.8 does not use the fact that the G(V, ¢)-representation Endf)ym(V),
and hence also A§7, is irreducible. Moreover, we have not included a proof of this fact in these
notes (although it is stated in Theorem 8.5). Assuming irreducibility, the proof of Theorem 8.8 can

be simplified as follows.

Proof of Theorem 8.8 assuming End;ym(V) is irreducible. Since

Cap= | ewplias,
=0
it is clear that the map End(V) — A3V* : A — La¢ is G(V, ¢)-equivariant. Its kernel is
Lie(G(V, ¢)) and hence its restriction to End(s)ym(V) is injective. Now the composition of the
map End) (V) — A’V*: A — L,¢ with the orthogonal projection onto A3, respectively A3,
is G(V, ¢)-equivariant by Step 5 in the proof of Theorem 8.5. This composition cannot be an
isomorphism for dimensional reasons, and hence must vanish by Schur’s Lemma, because the
G(V, §)-representations End(s)ym(V), A3, and A; are all irreducible. Thus the image of End(s)ym(V)
under the map A — L ¢ is perpendicular to A? and A2, and hence is equal to A3, O
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We close this section with the proof of a well-known formula for the differential of the map
that assigns to a nondegenerate 3—form its coassociative calibration. Let V be a seven-dimensional
real vector space, abbreviate AR .= AKV* fork = 0,1,...,7, and define

P=PWV):= {(;3 e A’ | ¢ is nondegenerate} .

This is an open subset of A* and it is diffeomorphic to the homogeneous space GL(7, R)/G,. Namely,
if ¢y € P is any nondegenerate 3—form then the map GL(V) — P: g +— (g7!)*¢, descends to a
diffeomorphism from the quotient space GL(V)/G(V, ¢) to P. Define the map ©: P — A* by

(8.17) O() = *4¢.

Here #4: A> — A* denotes the Hodge *—operator associated to the inner product and orientation
determined by ¢.

Theorem 8.18. The map ®: P — A* in (8.17) is a GL(V)—equivariant local diffeomorphism, it
restricts to a diffeomorphism onto its image on each connected component of P, and its derivative at

¢ € P is given by
(8.19) dO(¢)n = 4 (%7[1(77) + 1m7(n) — 727 (1))

forn € A3. Heremy: A3 — A‘Z’l denotes the projection associated to the orthogonal splitting A> =
A ® A} @ A, in Theorem 8.5 determined by §.

Proof. That P has two connected components distinguished by the orientation of V follows from
the fact that GL(V') has two connected components. That the restriction of ® to each connected
component of P is bijective follows from Theorem 4.31 and that it is a diffeomorphism then follows
from equation (8.19) and the inverse function theorem.

Thus it remains to prove (8.19). Since © is GL(V)-equivariant, it satisfies

(8.20) 0(g"¢) = g°0(¢)

for ¢ € P and g € GL(V). Fix a nondegenerate 3—form ¢ € P, denote by ¢ := ©(¢) = *4¢ its
coassociative calibration, and differentiate equation (8.20) at g = 1 in the direction A € End(V) to
obtain

(8.21) &)L ad = Lay.

Now let n € A® and denote g := 74(n) for d = 1,7,27. By Theorem 8.5 and Theorem 8.8 there
exists a real number A, a vector u € V, and a traceless symmetric endomorphism S: V' — V such
that

n = 314, n7 = 3wy, Nz = Ls¢.
Since £1¢ = 3¢ and L1y = 4, it follows from equation (8.21) that

(8.22) dO()n, = AdO(B)L1d = AL1yy = 4Af = % x5 (3A6) = % x4 1.
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Now define A, € End(V) by A,v := u X v for v € V. Then

La,¢ =31y =17, La, ¥ = #4Buu)y) = x¢n7

by (4.18) and (4.19). Hence, it follows from equation (8.21) that

(8.23) dO(P)n7 = dO(P)La, P = La, ¥ = =417

Moreover it follows from equations (8.15) and (8.21)

(8.24) dO(P)nz; = dO(P)Lsp = Lsh = — 45 Lsp = — %4 n27.

With this understood, equation (8.19) follows from (8.22), (8.23), and (8.24). This proves Theo-
rem 8.18. O

9 The group Spin(7)

Let W be an 8-dimensional real Hilbert space equipped with a positive triple cross product and let
® € A*W* be the Cayley calibration defined by (6.14). We orient W so that

OPAD>0

and denote by *: A*W* — A3"KW* the associated Hodge *—operator. Then ® is self-dual, by
Remark 6.21. Recall that, for every unit vector e € W, the subspace

V, :=et

is equipped with a cross product
UX,V:i=uXeXv

and that
D =e" X+ Ve, Pe:=1(e)®eNW*, Y :=x(e"Ad.) € AW

(see Theorem 6.15). The orientation of W is compatible with the decomposition W = (e) @& V, (see
Remark 6.21).
The group of automorphisms of ® will be denoted by

G(W,®) := {g € GL(W) : "D = ®} .
By Theorem 7.8, we have G(W,®) ¢ SO(W) and hence
GW,®)={geSOW):guxguvxXgw=gluxvxw)Yu,v,weW}.

For the standard structure ®; on R® in Example 5.32 we denote the structure group by Spin(7) :=
G(R8, ®). By Theorem 7.12, the group G(W, ®) is isomorphic to Spin(7) for every positive Cayley-
form on an 8-dimensional vector space.
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Theorem 9.1. The group G(W, ®) is a 21-dimensional simple, connected, simply connected Lie group.
It acts transitively on the unit tangent bundle of the unit sphere and, for every unit vector e € W, the
isotropy subgroup G, := {g € G(W,®) : ge = e} is isomorphic to Gy. Thus there is a fibration

Gy = Spin(7) — S”.

Proof. The isotropy subgroup G, is obviously isomorphic to G(V,, ¢.) and hence to G,. We prove
that G(W, @) acts transitively on the unit sphere. Let u,v € W be two unit vectors and choose a
unit vector e € W which is orthogonal to u and v. By Theorem 8.1, the isotropy subgroup G, acts
transitively on the unit sphere in V,. Hence, there is an element g € G, such that gu = v. That
G(W, ®) acts transitively on the set of pairs of orthonormal vectors now follows immediately from
Theorem 8.1. In particular, there is a fibration G; < Spin(7) — S”. It follows from the homotopy
exact sequence of this fibration and Theorem 8.1 that Spin(7) is connected and simply connected,
and that 75(Spin(7)) = Z. Hence, Spin(7) is simple. This proves Theorem 9.1. |

Lemma 9.2. Abbreviate
G:=G(W,d), g := Lie(G) C so(W).

The homomorphism p: G(W,®) — SO(g") is a nontrivial double cover. Hence, Spin(7) is isomorphic
to the universal cover of SO(7).

Proof. Define
I:={¢eg:[so(W)]Ca}.
If £ € Tand y € g, then [[€, 7], = ~[[n, {1, €] - [[, €], n] € g for all { € so(W), and so [¢,7] € I.

Thus I is an ideal in g. Since so(W) is simple, we have I C g. Since g is simple, we have I = {0}.
This implies im ad(¢) ¢ g for 0 # ¢ € g. Since ad(£): so(W) — so(W) is skew-adjoint, this
implies g* ¢ ker ad(¢) for 0 # ¢ € g. This means that the infinitesimal adjoint action defines an
isomorphism g — so(g"). Hence, the adjoint action gives rise to a covering map G — SO(g™"). Since
G is connected and simply connected, this implies that G is the universal cover of SO(g*) = SO(7)
and this proves Lemma 9.2. O

We examine the action of the group G(W, ®) on the space
S = {(u, v,w,x) eW | U, v, w,u X v X w,Xx are orthonormal} .

The space & is a bundle of 3—spheres over a bundle of 5-spheres over a bundle of 6-spheres over
a 7-sphere. Hence, it is a compact connected simply connected 21-dimensional manifold.

Theorem 9.3. The group G(W, ®) acts freely and transitively on §.

Proof. Since Spin(7) acts transitively on S’ with isotropy subgroup G, the result follows immedi-
ately from Theorem 8.2. O
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Corollary 9.4. The group G(W,®) acts transitively on the space of Cayley subspaces of W.
Proof. This follows directly from Lemma 6.25 and Theorem 9.3. O
Remark 9.5. For each Cayley subspace H C W choose the orientation such that

voly = ®|y

is a positive volume form and denote by A*H* the space of self-dual 2-forms (as in Remark 4.28),
by g : W — H the orthogonal projection, and by

Gy = {g € GW,®) : gH = H}

the isotropy subgroup. Fix a Cayley subspace H C W. Then there is a unique orientation preserving
Gp-equivariant isometric isomorphism

Ty : AYH* — AT(HY) .
It is given by
(9.6) THo = =1 (+(® A 7};0)) |5 forw € ATH*
and its inverse is (Tgy)™' = Tyr. If w1, w2, w3 is a standard basis of ATH* and 7; € AT(HY)* is
defined by 7; := Thw; for i = 1,2, 3, then the Cayley calibration ® can be expressed in the form

3

(9.7) ® = mvoly + 7y, voly: — Z Tp; N T, T
i=1

To see this, choose a standard basis of W as in Example 7.3 such that the vectors e, e1, e, e3 form
a basis of H, the vectors ey, es, e, e; form a basis of H*, and

;= + 6B, = e el s =e® 42

=P+, =6, 1=t 4 6%,

That such a basis exists follows from Theorem 7.12 and Theorem 9.3. It follows also from The-
orem 9.3 that a pair (h,h’) € SO(H) X SO(H*) belongs to the image of the homomorphism
Gy — SO(H) x SO(H") if and only if the induced automorphisms of A"H* and A*(H™*)* are
conjugate under Ty. Hence the map

Gr — SO(H) Xsoa+n+) SO(H™) : g = [glr, glu-]
is a Lie group isomorphism. Hence, dim Gy = 9 and so the Cayley Grassmannian
# ={H Cc W : H is a Cayley subspace},

which is diffeomorphic to the homogeneous space G(W, ®)/Gy, has dimension 12.
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Theorem 9.8. There are orthogonal splittings

ANW* = A2 AL,

NW* = A & Al,

AW = AT @ AT ® Ay @ A,
where dimA’;l =d and

A= {w e NW* : %(® A w) = 30}
={u" AV — u)i(v)® :u,v € W},
A% = {a)§ & e g}
= {a) e N*W* : %(d A w) = —a)}
= {a) e A*W* : (w, u)i(v)®) = w(u,v) Yu,v € W} ,
A} = {u)d:ue W},
Al ={we PW" : ®Aw =0},
A} = (@),
A7 = {Ly®: & € so(W)},
A§7 = {w€A4W* tx0 =0, o AP =0, a)/\LgCI):Oerso(W)},
A§5 = {a) e AMW* :xw = —w} .
Here g := Lie(G(W, ®)) and, for £ € so(W), the 4—form L;® € A*W* and the 2—form w; € A*W*

are defined by Ly ® := %L:O exp(t&)*® and wg = (-, &-). Each of the spaces A’; is an irreducible
representation of G(W, ®).

Proof. By Theorem 9.1, G := G(W, ®) is simple and so the action of G on g by conjugation is
irreducible. Hence, the 21-dimensional subspace A3, must be contained in an eigenspace of the
operator w — x(® A w) on A’W*. We prove that the eigenvalue is —1. To see this, we choose a
unit vector e € W and an element & € g with £ée = 0. Let

V, :=e*

and denote by t,: V, = W and n.: W — V, the inclusion and orthogonal projection and by
xo: AKV¥ — A77FV* the Hodge *—operator on the subspace. Then

#(e" AT, ae) = T %e Qe Ya, € AkVe*.
Moreover, the alternating forms
Pe = 1,(1(e)D), Ve = 1,®

are the associative and coassociative calibrations of V.. Since £e = 0, we have ws = 7,1, and,
by Theorem 8.5,

Ve A Lywg = 0, te(Pe N lpwe) = 1,0 .
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Since ® = e* A 7w, e + 7, e, this gives
(O A wg) = #((€" AL e + m0Ye) A T 1pwg)
= *(e* AT, (d)e A l:a)g)) + *7T, (I//e A ‘:ws‘*)
= 7T, % (¢e A f;a)ér) = —ﬂ;‘lzwg = —wg.

By Lemma 9.2 the adjoint action of G on g* C so(W) is irreducible, and g* is mapped under & — w;
onto the orthogonal complement of A3 . Hence, the 7-dimensional orthogonal complement of A3,
is also contained in an eigenspace of the operator w — *(® A ). Since this operator is self-adjoint
and has trace zero, its eigenvalue on the orthogonal complement of A3 must be 3 and therefore
this orthogonal complement is equal to AZ. It follows that the orthogonal projection of w € A*W*
onto A? is given by m7(w) = i (w + *(® A w)) . Hence, for every nonzero vector e € W, we have

Al = {e* Au' —e)(u)d:u e el} ,
AL = {w e A*W* : (w, ie)i(u)®) = w(e,u)Vu € eL} .

This proves the decomposition result for AZW*.

We verify the decomposition of AW*. For u € W and w € A’W* we have the equation
WADPAw=-w A *1(u)d.

Hence, ® A w = 0 if and only if w is orthogonal to «(u)® for all u € W. This shows that Azg is
the orthogonal complement of A}. Since @ is nondegenerate, we have dim A} = 8 and, since
dim ASW* = 56, it follows that dim Ais = 48.

We verify the decomposition of A*W*. The 4-form g*® is self-dual for every g € G = G(W, ®),
because @ is self-dual and G ¢ SO(W). This implies that £® is self-dual for every ¢ € g = Lie(G).
Since SO(W) has dimension 28 and the isotropy subgroup G of ® has dimension 21, it follows that
the tangent space A3 to the orbit of ® under the action of G has dimension 7. As A} has dimension
1 and the space of self-dual 4-forms has dimension 35, the orthogonal complement of A & A% in
the space of self-dual 4-forms has dimension 27. This proves the dimension and decomposition
statements.

That the action of Gon A3, = gis irreducible follows from the fact that G is simple. Irreducibility
of the action on Af is obvious. For A} = W it follows from the fact that G acts transitively on the
unit sphere in W, and for A2 = g* = A} it follows from the fact that the istropy subgroup G, of a
unit vector e € W acts transitively on the unit sphere in V, = e*. For A}, A3, and A3, we refer
to [Bry87]. This proves Theorem 9.8. O

Corollary 9.9. Foru,v € W denote w,, o, := ((v)i(u)® = &(u,v,-,-). Then, for allu,v,x,y € W we
have

(9.10) #(PAUAVY) = Wy o, # (DA wy,p) =3u" AV + 20y, 0,

(9.11) (@u,0, 0x,y) = 3((wx) (v, y) = (W, y) (v, x)) + 20(u, v, X, 1),

Wy, N Ox,y AP

(9.12) = 6(<u,x)(v, y) — (u, y){v, x}) + 70(u, v, x, y).

vol
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Proof. The first equation in (9.10) is a general statement about the Hodge *—operator in any
dimension. Moreover, by Theorem 9.8, the 2—form u* A v* + w,_,, is an eigenvector of the operator
w > #(® A w) with eigenvalue 3. Hence, the second equation in (9.10) follows from the first.
To prove (9.11), take the inner product of the second equation in (9.10) with x* A y* and use the
identities

(9.13) (Wu, 0, X" ANY*) = D(u, v, x, ),
(9-14) (W' AV X" A Y)Y = (u,x) (0, ) — (U, y)(v, x),

and the fact that the operator w +— *(® A w) is self-adjoint. To prove (9.12), we observe that

Wy, N Ox,y AP
= <C‘)u,v7 #(D A wx,y))
vol

= (@u,0, 35" AN Y+ 204,y)
= 6(<u,x) (v,y) — (u, y){v, x}) + 70(u, v, x, y),

where the second equation follows from (9.10) and the last follows from (9.11) and (9.14). This
proves Corollary 9.9. O

10 Spin structures

This section explains how a cross products in dimension seven, respectively a triple cross products
in dimension eight, gives rise to a spin structure and a unit spinor and how, conversely, the
cross product or triple cross product can be recovered from these data. We begin the discussion
with spin structures and triple cross products in Section 10.1 and then move on to cross products
in Section 10.2.

10.1 Spin structures and triple cross products

Let W be an 8-dimensional oriented real Hilbert space. A spin structure on W is a pair of
8—dimensional real Hilbert spaces S* equipped with a vector space homomorphism y: W —
Hom(S*, S7) that satisfies the condition

(10.1) y()y(w) = |ul*1

for all u € W (see [Salgg, Proposition 4.13, Definition 4.32, Example 4.48]). The sign in S* is
determined by the condition

(10.2) y(e7)"y(es) - - - y(e1) y(eo) = 15+

for some, and hence every, positively oriented orthonormal basis e, ...,e; of W (see [Salgo,
page 132]). More precisely, consider the 16-dimensional real Hilbert space S := ST @ S~ and define
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the homomorphism I': W — End(S) by

-y(w)* 0

Then equation (10.1) guarantees that I' extends uniquely to an algebra isomorphism from the
Clifford algebra C£(W) to End(S), still denoted by I'. The complexification of S gives rise an
algebra isomorphism I'“: C£¢(W) — End(S€) from the complexified Clifford algebra C£¢(W) :=
C{(W) ®r C to the complex endomorphisms of S¢ := S ®g C (see [Salgg, Proposition 4.33]).

T'(u) = ( 0 y(u)) foruew.

Theorem 10.3. Let W be an oriented 8—dimensional real Hilbert space and abbreviate AF .= AKW*
fork=0,1,...,8.

1. Suppose W is equipped with a positive triple cross product (6.2), let ® € A* be the Cayley
calibration defined by (6.14), and assume that ® A ® > 0. Define the homomorphismy: W —
Hom(S*,S7) by

(10.4) STi=A"@ A2, S™ = Al
and
(10.5) YA, ) = Au™ + 2i(u)w

forue W, A €R, andw € A% Theny is a spin structure on W, i.e., it satisfies (10.1) and (10.2).
Moreover, the space St = A° @ A% of positive spinors contains a canonical unit vector s = (1, 0)
and the triple cross product can be recovered from the spin structure and the unit spinor via the
formula

y(uxovxws = (v, w)yws = (w, )y (v)s + (u, v)y(w)s

(10.6) .
— Y@y (@) y(w)s

foru,v,w e W.

2. Lety: W — Hom(S*,S57) be a spin structure and let s € S* be a unit vector. Then equa-
tion (10.6) defines a positive triple cross product on W and the associated Cayley calibration @
satisfies ® A ® > 0. Since any two spin structures on W are isomorphic, this shows that there is
a one-to-one correspondence between positive unit spinors and positive triple cross products on
W that are compatible with the inner product and orientation.

Proof. See page 69. O

Assume W is equipped with a positive triple cross product (6.2) and that its Cayley calibration
® € A*W* in (6.14) satisfies @ A @ > 0. Recall that, for every unit vector e € W, there is a normed
algebra structure on W, defined by (6.19). This normed algebra structure can be recovered from an
intrinsic product map

m: WxW — Ao A%
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(which does not depend on e) and an isomorphism y(e): A° & A2 — A' (which does depend on e).
The product map is given by

(10.7) m(u,v) = ((u,0), (U A" + wyo))

for u,v € W and the isomorphism y(e) is given by (10.5) with u replaced by e. Here w,, o, := (v)i(u)®
as in Corollary 9.9.

Lemma 10.8. LetIyy: W — W™ be the isomorphism induced by the inner product, so that Iy (u) =
(u,-y = u* foru € W. Lety: W — Hom(S",S7) and m: W x W — S* be defined by (10.5)
and (10.7). Then, for allu,v,e € W, we have

(10.9) I;Vl(y(e)m(u, v)) = (u,ve +{u,e)v — (v,e)u + uxXexuo,
(10.10) Im(u, v)| = |ul|v], ly ()L, w)* = le® (141> + |o]?) .

Proof. Equation (10.9) follows directly from the definitions. Moreover, it follows from (9.11) that
Im(u,v)|* = (w,0)* + {|u" AV P + lowol* = (u,0)? + |u A 0] = |uf*|o]”.

This proves the first equation in (10.10). To prove the second equation in (10.10) we observe that
y(e)m(e,v) = v and, hence, |y(e)m(e,v)| = |v| = |m(e,v)| whenever |e|] = 1. Since the map
W — A ® A%: v+ m(e,v) is bijective, this proves Lemma 10.8. O

Remark 10.11. If we fix a unit vector e € W and denote 0 := 2{e, v)e — v, then the product in (6.19)
is given by
uo = —(u,v)e + (u,e)v + (v,e)u+uxXexv = I;Vl(y(e)m(u, 0))

foru,v e W.

The nextlemma shows that the linear map y(u): A° & A2 — A'isdual to themap m(u,-): W —
Ao A; for every u € W and that it satisfies equation (10.1).

Lemma 10.12. Lety: W — Hom(S*,S™) be the homomorphism in (10.4) and (2.21). Then y satis-
fies (10.1) and

(10.13) y@)v" = m(u,v) = ((u,0), $(U" AV + @y 0))
forallu,v e W.
Proof. Forue W,1eR, v € A2 andv e W we compute

@A, w),v") = (Au” + 2Uu)w, v"*)
= Mu,v) + 2{w,u* A V")
= Nu,v) + %(w, Wy + U AV,
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The last equation follows from the fact that
m(u* Av*) = i(u* AV" + Wy o).

This proves (10.13). With this understood, the formula y (u)*y(u) = |u|*1 follows directly from (10.10).
This proves Lemma 10.12. O

Combining the product map m with the triple cross product we obtain an alternating multi-
linear map 7: W* — A° & A2 defined by

(x,u,v,w) = %(m(u XvXw,x)—mvXwXx,u)
(10.14)
+m(w><x><u,v)—m(x><u><v,w)).

This map corresponds to the four-fold cross product (see Definition 5.33) and has the following
properties (see Theorem 5.35).

Lemma 10.15. Let y : W* — AZ denote the second component of t. Then, for allu,v,w,x € W, we
have

(x, u, v, w) = (P(x, u, v, w), y(x,u,v,w)),

O(x, u, v, W) + | y(x,u, 0, w2 =[x AuAvAwl

Proof. That the first component of 7 is equal to ® follows directly from the definitions. Moreover,
for u,v,w,x € W, we have

2x(xc, u,0,w) = (U X VX W) AX" + Ouxoxw,x
—(OXWXX)" AU — Ooxwxx.u
(10.16) . .
+(WXxXu)" AV + Owxxxu,v

—(xXuX0)" AW — Oxxuxv,w-

We claim that the four rows on the right agree whenever u, v, w, x are pairwise orthogonal. Under
this assumption the first two rows remain unchanged if we add to x a multiple of u X v X w. Thus
we may assume that x is orthogonal to u, v, w, and u X v X w. By Theorem 9.3, we may therefore
assume that W = R® with the standard triple cross product and

u = ep, v =eq, W = €y, X = é4.

In this case a direct computation proves that the first two rows agree. Thus we have proved that,
if u,v,w,x € W are pairwise orthogonal, then

(x,u,v,w) = m(u X v X w, x).
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In this case it follows from (10.10) that

lT(x, u, v, w)| = [m(u X v X w,x)|
= |x||u X v X w|
= |x|[ul[v]|w]
=|lxAuAvAw|.

Since 7 is alternating, this proves Lemma 10.15. |

Lemma 10.17. Lety: W — Hom(S",S™) be the homomorphism in (10.4) and (10.5). Then y satis-
fies (10.2) and (10.6).

Proof. 1t follows from (10.1) that (y(u)s, y(v)s) = (u, v) for all u,v € W. Hence, equation (10.6) is
equivalent to

O(x,u,v,w) = {x,u){v,w) — {x, v){w,u) + (x, w)(u,v)

(10.18) , «
—(y(W)y(x)s, y(v)"y(w)s)

for all x,u,v,w € W. Since s = (1,0) € ST = A’ @ A%, we have

Y@ y(x)s = y(w)'x* = ((u,x), 3(u" A X" + wy,x))
for all u, x € W by Lemma 10.12. Hence,

(r@)y)s, y(v)y(w)s)
= {u, x){v, w) + %(u* AX" + Wy x, U AW+ 0pap)
= (u, x)(0, W) + (1, 0)(x, W) — (1, w)(x, 0) + B(u, x, v, W).
Here the last equation follows from Corollary 9.9. This shows that the homomorphism y satis-
fies (10.18) and hence also (10.6).
We prove that y satisfies (10.2). Choose an orthonormal basis ey, . . ., e; of W in which ® has
the standard form of Example 7.3. Such a basis exists by Theorem 7.12 because ® is a positive

Cayley form, and it is positive because ® A ® > 0. Moreover, for any quadruple of integers
0 <i<j<k<{<7,the following are equivalent.

(a) The term +e'/*¢ appears in the standard basis.
(b) cb(eia €j, €k, 6[) = =1
(c) ex X ej X e = *ep.

(d) —y(ex)y(e))"y(ei)s = £y (ec)s.
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Here the equivalence of ((a)) and ((b)) is obvious, the equivalence of ((b)) and ((c)) follows from
the fact that
D(ej, €j, e, er) = Dler, ex, ej, e;) = (ex X ej X e;, e¢)

by (7.2), and the equivalence of ((c)) and ((d)) follows from equation (10.6). Examining the relevant
terms in Example 7.3 we find that

y(e2)y(e1)y(eo)s = —y(es)s,

hence
y(ea)y(es)y(e2)y(e1) y(e0)s = —y(ea)s,
hence
y(es)y(es)"y(ea)y(es) y(ez2)y(er)y (eo)s = —y(es)y(es)"y(ea)s = y(er)s,
and hence
y(e7)"y(es)y(es)"y (ea)y(es)"y (e2)y(e1) "y (eo)s = s.
Hence, y satisfies (10.2) and this proves Lemma 10.17. O

Proof of Theorem 10.3. Part (1) follows from Lemma 10.12 and Lemma 10.17. To prove part (2) as-
sumey: W — Hom(S*, S7)is a spin structure, lets € S* be a unit vector, and define the multilinear
map

(10.19) WP S W: (o,w)— uXoxw

by (10.6). Then u X v X w = 0 whenever two of the three vectors agree. Hence, it suffices to
verify (6.3) and (6.4) under the assumption that u, v, w are pairwise orthogonal. In this case we
compute

(uxovXxw,u) = (y(uxovxw)s,yu)s)
= —(y(Wy @)y (w)s, y(u)s)
= —ul*(y(0) y(w)s, s)
= —|ul*(v,w) = 0.

and

uxovxw?=ly(uxovxwsl
= ly@y(0) y(w)s|*
= ul*lof*|w|*

=lurvAw?
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This shows that the map (10.19) is a triple cross product. To prove that it is positive, choose a
quadruple of pairwise orthogonal vectors e, u, v, w € W such that w is also orthogonal to e X u X v.
Then
ylexux(exovxw))s=—yle)y(u)ylexovxw)s

= y(e)yw)y(e)y(v)y(w)s

= —y(e)y(e)yWy () y(w)s

= ~lel’y Wy () y(w)s

= le]*y(u X v X W)s.
Here the first, second, and fifth equalities follow from (10.6) and the third and fourth equalities
follow from (10.1). Thus we have proved that the triple cross product (10.19) is positive. That the

associated Cayley calibration ® satisfies ® A & > 0 follows by using a standard basis and reversing
the argument in the proof of Lemma 10.17. This proves Theorem 10.3. O

10.2 Spin structures and cross products

Let V be a 7-dimensional oriented real Hilbert space. A spin structure on V is an 8-dimensional
real Hilbert space S equipped with a vector space homomorphism y : V' — End(S) that satisfies
the conditions

(10.20) y@ +y@=0  y@yw = |u1

for all u € V (see [Salgg, Definition 4.32]) and

(10.21) y(er)y(ee) - --y(er) = —1.

for some, and hence every, positive orthonormal basis ey, ..., e; of V. Equation (10.20) guar-

antees that the linear map y: V' — End(S) extends uniquely to an algebra homomorphism
y: C€(V) — End(S) (see [Salgg, Proposition 4.33]). It follows from (10.21) that the kernel of
this extended homomorphism is given by {x € C{(V) : ex = x}, where ¢ := e;---e; € Cl7(V)
for a positive orthonormal basis ey, . . ., e; of V (see [Salgg, Proposition 3.34]). Since ¢ is an odd
element of C£(V), this implies that the restrictions of y to both C£V(V) and C£°%(V) are injective.
Since dim C£¢V(V) = dim C£°%(V) = dimEnd(S) = 64, it follows that y restricts to an algebra
isomorphism from C£¢¥(V) to End(S) and to a vector space isomorphism from C£°%(V) to End(S).

Theorem 10.22. LetV be an oriented 7-dimensional real Hilbert space.
1. Suppose V is equipped with a cross product and define the homomorphism y: V — End(S) by
(10.23) S:=RxV, y(w)(A,v) = (—(u,v), Au + u X v)

for A € Randu,v € V. Theny is a spin structure on V, i.e., it satisfies (10.20) and (10.21).
Moreover, the space S = R X V contains a canonical unit vector s = (1, 0) and the cross product
can be recovered from the spin structure and the unit spinor via the formula

(10.24) y(u xv)s = y(uy(v)s + (u,v)s foru,v eV.
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2. Lety: V — End(S) be a spin structure and let s € S be a unit vector. Then equation (10.24)
defines a cross product on'V that is compatible with the inner product and orientation. Since any
two spin structures on V are isomorphic, this shows that there is a one-to-one correspondence
between unit spinors and cross products on V that are compatible with the inner product and
orientation.

Proof. We prove part (1). Thus assume V is equipped with a cross product that is compatible
with the inner product and orientation, and let y: V' — End(S) be given by (10.23). Then, for
u,v,w € Vand A, u € R, we have

(4, 0), y (@), w)) = plu, v) = Au, w) + $p(v, u, w).

This expression is skew-symmetric in (A, v) and (y, w) and so y(u) is skew-adjoint. Moreover, for
u,v,w € Vand u € R, we have

YWy (©)(p, w) + (u, v)(p, w)

= (—(u, pv + v X W), —(U, W)y + u X (pv + v X W)) + {u, v)(, w)

= (—(uXxov,w), p(uXv)+uXx@xXw)— (v, w)u+ (u,v)w)

=y(u xv)(p,w)+ (0, —(u X v)Xw— (v, w)u + (U, w)v)
+(0,—(v X w) X u — {u, w)v + (u, v)w)

= y(u X 0)(, ) — 200, [u, 0, w]).

Here the last equation follows from (4.1). This proves (10.20) by taking v = —u and (10.24) by
taking p = 1 and w = 0. For the proof of (10.21) it is convenient to use the standard basis for the
standard cross product on V = R” in Example 2.15. The left hand side of (10.21) is independent
of the choice of the positive orthonormal basis and we know from general principles that the
composition y(ey) - - - y(e;) must equal +1 (see [Salgg, Prop 4.34]). The sign can thus be determined
by evaluating the composition of the y(e;) on a single nonzero vector. We leave the verification to
the reader. This proves part (1).

We prove part (2). Thus assume that y: V — End(S) is a spin structure compatible with the
orientation and let s € S be a unit vector. Then the map

(10.25) RXV —S: (4,v) > E(4,0):=As + y(v)s

is an isometric isomorphism, because |As +y(v)s|? = |A|2 + |v|? by (10.20) and both spaces have the

same dimension. For u, v € V the first coordinate of =71y (u)y (v)s is (s, y(u)y(v)s) = —(u,v) and so
the second coordinate is the vector u X v € V that satisfies (10.24). The map VXV — V: (u,v)
u X v is obviously bilinear and it is skew symmetric because y(u)y(v) + y(v)y(u) = —2{u,v)1
by (10.20). It satisfies (2.3) and (2.10) because

(uux0) = (y)s, y(u X v)s) = (y(s, y@y()s + (,v)s) = 0,
y(ux (ux0)s = y@y(ux 0)s = y@)(y@y©)s + (u,0)s)

=y ((u,v)u - |u|zv)s.
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forallu, v € V. Hence, it is a cross product by Lemma 2.9. That it is compatible with the orientation
can be proved by choosing a standard basis as in Example 2.15. This proves Theorem 10.22. O

We close this section with some useful identities.

Lemma 10.26. Fix a spin structure y: V. — End(S) that is compatible with the orientation and a
unit vectors € S, let VXV — V: (u,v) — u X v be the cross product determined by (10.24), and let
=: RXV — S be the isomorphism in (10.25). Then the following hold:

1. The spin structure y is isomorphic to the spin structure in (10.23) via =, i.e., for all A € R and
allu,v € V, we have

(10.27) EYWEWQ, v) = (—(u,v), A+ u X v)

2. Forallu,v,w € V we have

y([u, 0, w)s + $p(u, v, w)s + y(w)y (v)y (w)s

(10.28)
= —(©, w)y(uws + (w,w)y(v)s — (u, v)y(w)s.

3. The associative calibration ¢ € A3V* is given by

(10.29) P(u, v, w) = =(s, y W)y (v)y (w)s)

and the coassociative calibration \y = x¢ € A*V* is given by

Y(u,v,w,x) = =(s,y(@)y @)y (w)y(x)s)

(10.30) + (v, w){u, x) — (w,u){v,x) + (u, v){w, x).

Proof. Part (1) follows from (10.24) by direct calculation. By (1) the second displayed formula in
the proof of Theorem 10.22 with y = 0 can be expressed as

YWy @)y (w)s + (u, v)y(w)s
= y(u xv)y(w)s — 2y([u, v, w])s
= —2(u X v,w)s — 2y([u, v, w])s — y(w)y(u X v)s
= —2¢(u, v, w)s = 2y([u, v, w])s — y(W)y Wy (v)s — (u, v)y(w)s
= —2¢(u,v, w)s — 2y([u, v, w])s
+y@y(w)y(v)s + 2{w, w)y(v)s — (u, v)y(w)s
= =2¢(u,v, w)s — 2y([u, v, w])s
— Y@y @)y(w)s — 2¢v, w)y(u)s + 2(w, u)y (v)s — (u, v)y(w)s

for all u, v, w € V and this proves (2). Part (3) follows from (2) by taking the inner product with s,
respectively with y(x)s (see Lemma 4.8). This proves Lemma 10.26. O
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11 Octonions and complex linear algebra

Let W be a 2n—-dimensional real vector space. An SU(n)-structure on W is a triple (w, J, 6)
consisting of a nondegenerate 2-form w € A2W*, an w-compatible complex structure J: W — W
(so that (-, ) := w(, J-) is an inner product), and a complex multi-linear map §: W" — C which
has norm 2"/ with respect to the metric determined by w and J. The archetypal example is
W = C" with the standard symplectic form

w = Z dx; A dyj,
J

the standard complex structure J := i, and the standard (n, 0)-form
0:=dz; A--- Ndz,.

In this section we examine the relation between SU(3)-structures and cross products and between
SU(4)-structures and triple cross products. We also explain the decompositions of Theorem 8.5
and Theorem 9.8 in this setting.

Theorem 11.1. Let W be a 6—dimensional real vector space equipped with an SU(3)—-structure (v, ], 6).
Then the space V := R @ W carries a natural cross product defined by

(11.2) v X w = (w(vg, wr), vgJw; — woJur + 1 Xg Wy)

foru = (up,u1),v = (vy,v1) € R® W, where vy Xg wy € V is defined by (uy,v; Xg wy) =
Re O0(uq,v1, wy) for allu; € W. The associative calibration of this cross product is

(11.3) $:=e’ Aw+Reb € A°V*
and the coassociative calibration is
(11.4) Yyi=xp=1orw-—e" AImf e A'V".
Moreover, the subspaces Al; c A*V* in Theorem 8.5 are given by
A2 =Row® { Au" —(u)Im0 :u € W},
Ay ={r-e"Axw(t AReO): T € A*W*, 1 Aw A w=0},
A=R-ImO0& {u" Aw—e’ Au(u)Rel:ucW},
A}, =R (3Red — 4€’ A w)
@{eo/\r:TGA“W*, r/\a)/\a)zo}

& {f e AW+ AVW* : BAw =0}
EB{u*/\w+eO/\t(u)Re0:u€W}.
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Proof. For v,w € W we define a,, ., € A'W* by ay, ,, := Re 0(-, v, w). Then |ay, | = [0(u, v, w)| =
|v||w| whenever u, Ju, v, Ju, w, Jw are pairwise orthogonal and |u| = 1. This implies

(11.5) |oto, wl? + (v, W)* + (0, w)? = [vf*|w]?

for all v,w € W. (Add to w a suitable linear combination of v and Jv.) It follows from (11.5) by
direct computation that the formula (11.2) defines a cross product on R X W. By (11.2) and (11.3), we
have ¢(u, v, w) = (u, v X w) so that ¢ is the associative calibration of (11.2) as claimed. That ¢ is
compatible with the orientation of R @ W follows from the fact that «(ej)¢p = w and w ARe8 =0
so that 1(eg)¢ A 1(eg)p A ¢ = e® A w* = 6vol. The formula (11.4) for i := *¢ follows from the fact
that w A 6 = 0 and Im 0 = *Re 0 so that Re § A Im 8 = 4volyy,. It remains to examine the subspaces
AZ c A*V* introduced in Theorem 8.5.

The formula for A2 follows directly from the formula for ¢ in (11.3) and the fact that A2 consists
of all 2-forms «(v)¢ for v € R ® W. With v = (1, 0) we obtain 1(v)¢ = w and with v = (0, Ju) we
obtain

()¢ = = A 1(Ju)w + (Ju)Re O = €® A u* — 1(u)Im 6.

Similarly, the formula for A? follows directly from the formula for ¢ in (11.3) and the fact that A
consists of all 3—forms i(v)y for v € R ® W. With v = (-1, 0) we obtain «(v)) = Im 8 and with
v = (0, —Ju) we obtain

W) = —((Ju)w) A o — e A (Ju)Im 0 = u* A w — e A i(u)Re 6.

To prove the formula for A2, we choose @ € A'W* and 7 € A*W*. Then 7 + €’ A € A?, if and
only if (z + €® A a) A = 0. By (11.4), we have

(eo/\a+r)/\¢=(eo/\a+r)/\(%a)/\a)—eo/\lm0)

=eO/\(%wAwAa—r/\Im@)%—%rAwAw.

The expression on the right vanishes if and only if t Aw Aw =0and w A w A @ = 2Im 6 A 7. Since
ao] = % sy (WA wAa), the last equation is equivalent to @ = — (¥ (Im 0 A 7))o J = —xy (Re OAT).
To prove the formula for A3, we choose 7 € A’W* and § € A*’W*. Then

(B+e®At)Ap=e"A(r AReO—BAw)+ B ARe0,
B+ Ar)Ay=eA(3tA0A0+BAIMO).

Both terms vanish simultaneously if and only if
1
TARef=pFAw, PAReO=0, FAImO= —Er/\a)/\a).

These equations hold in the following four cases.

(a) p=3ARef and r = —4A0w with A € R.
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(b) B=0and 7 € AV'W* witht Aw A w=0.
(c) BeAM2W* + A2 'W* with fAw=0and 7 = 0.
(d) p=u"Awand7 = (u)Re § withu e W.
In case ((d)) this follows from («(u)Re ) A Ref = 2 * (Ju)* = u* A @ A w. The subspaces
determined by these conditions are pairwise orthogonal and have dimensions 1 in case (((2)), 8 in

case ((b)), 12 in case ((c)), and 6 in case ((d)). Thus, for dimensional reasons, their direct sum is the
space A§7. This proves Theorem 11.1. m|

Theorem 11.6. Let W be an 8—dimensional real vector space equipped with an SU(4)-structure
(Q, ], ©). Then the alternating multi-linear map

®:=1QAQ+Re® € A'W*

is a positive Cayley calibration, compatible with the complex orientation and the inner product.
Moreover, in the notation of Theorem 9.8, we have

A§=RQ®{T€A2’O+AO’2:*(Re@/\r)zZT},
Ay={reA:tA@®=0}o{re A* + A x(Re® AT) = 21}

Proof. We prove that ® is compatible with the inner product (-, ) := Q(:, J-) and the complex
orientation on W. The associated volume form is iQ‘l. Hence, by Lemma 7.4, we must show that

(11.7) Wyo N Oy AND = }Llu Avl2Qt
for all u,v € W, where
Wy, v = O)(u)® = Q(u, v)Q — (u)Q A (v)Q + (v)i(u)Re O.
To see this, we observe that
(11.8) 1(0)w)Re © A 1(w)Q A 1(0)Q A Q2 = ((v)(u)Re ©)* ARe © = 0.

If v = Ju, then (11.8) follows from the fact that «(u)Q A 1(Ju)Q is a (1, 1)-form and :(Ju)(u)Re © = 0.
If v is orthogonal to u and Ju, then (11.8) follows from the explicit formulas in Remark 11.9 below.
The general case follows from the special cases by adding to v a linear combination of u and Ju.
Using (11.8) and the identity i(u)Q A (0)Q A Q@ = 1Q(u,v)Q* we obtain
Oyo N Oy NP = %Q(u, )20 + %L(v)l(u)Re O A 1(v)(u)Re ® A Q2
— Q(u, v)i(w)Q A 1(v)Q A Q3
= 2i(v) u)Re O A 1(u)Q A 1(v)Q ARe®
= iQ(u, )20 + %t(v)t(u)Re O A 1(v)(u)Re ® A Q2
= 2i(v) u)Re O A 1(u)Q A 1(v)Q ARe ©.
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One can now verify equation (11.7) by first considering the case v = Ju and using «(Ju)i(u)Re © = 0
(here the last two terms on the right vanish). Next one can verify (11.7) in the case where v is
orthogonal to u and Ju by using the SU(4)-symmetry and the explicit formulas in Remark 11.9
below (here the first term on the right vanishes). Finally, one can reduce the general case to the
special cases by adding to v a linear combination of u and Ju.

Now recall from Theorem 9.8 that, for every 7 € A2W*, we have

TGAg — *(® A1) =31,

T € A} = #(DAT)=-T.

Since Re® A Q = 0, we have
#(PAQ) =1%(QAQAQ)=3Q

and, hence, RQ C A%. Moreover, A§1 is the image of the Lie algebra g of G(W, ®) under the
isomorphism
so(W) = A*W*: & > o

givenby wg(u, v) := (u, £v). The image of su(W) under this inclusion is the subspace {r € AM'W* : £ A Q° = 0}
and, since SU(W) c G(W, ®), this space is contained in AZ,. By considering the standard structure
on C* we obtain

«(QAQAT)=21

for r € A>% + A%2, Hence,
*(CD/\T):%*(Q/\Q/\T)+*(R€@/\T):T+*(Re®/\1’).

for € A*° + A%2. Since the operator 7 > *(Re® A 7) has eigenvalues +2 on the subspace
A% + A"? the result follows. O

Remark 11.9. If (Q, ], ®) is the standard SU(4)-structure on W = C* with coordinates (x; +
iy1,...,%4 + iyq), then

Re® =dx; Adxy Adxs Adxy +dy; Adys Adys A dy,
—dxy ANdxy ANdys Adys —dy; A dys A dxs A dxy
—dx1 Adyz Adxs Adys —dyy Adxs Adys A dxy
—dx1 Adyz Adys Adxg — dyy Adxy A dxs Adyy

and

%Q/\QIdxl/\dyl/\dXz/\dy2+dX3/\dy3/\dX4/\dy4
+ dX1 A dyl A dX3 A dy3 + dXz A dyz A dX4 A dy4
+ dX1 A dyl A dX4 A dy4 + d.X'Z A dyg A dX3 A dy3

76



These forms are self-dual. The first assertion in Theorem 11.6 also follows from the fact that the
isomorphism R® — C* which sends ey, .. ., e; to

a/axl, a/ayl, 6/(93(2, 8/6y2, (9/6x3, —6/6y3, —6/6X4, 6/8y4
pulls back @ to the standard form @, in Example 5.32.

Theorem 11.10. Let V be a 7-dimensional real Hilbert space equipped with a cross product and
its induced orientation. Let ¢ € A3V* be the associative calibration and {y = xy$ € A*V* the
coassociative calibration. Denote W := R ® V and define ® € A*W* by

d:=e Ap+1.
Then ® is a positive Cayley-form on W and, in the notation of Theorem 8.5 and Theorem 9.8, we have

AW = {eo Axy(WAT)+37:T € AgV*} ,

AW ={" Axy(Y AT)—T:T € APV},

AW* =Rp & {t(u)r,b " Au)p:ue V} ,

AW =N,V e { Ar:t e A}V ) o {3uwy +4e* Aw)p:u eV},
Aw* = {eo/\l(u)l//—u*/\gb:ueV},

ApW* ={e" AB+=yvf:fen),V},

AW* ={e" ANB—=yf:feNV*}.

Proof. By Theorem 5.4, W is a normed algebra with product (5.6). Hence, by Theorem 5.20, W
carries a triple cross product (5.26) and ® is the associated Cayley calibration. By Theorem 7.8,
® is a Cayley form. By (5.24) the triple cross product on W satisfies (6.11) with ¢ = +1 and so is
positive (Definition 6.12). Thus, by Theorem 7.12, ® is positive.

Recall that, by Theorem 9.8, A2ZW* and AZ W* are the eigenspaces of the operator sy (® A -)
with eigenvalues 3 and —1 and, by Theorem 8.5, AZV* and A2, V* are the eigenspaces of the operator
xy (¢ A -) with eigenvalues 2 and —1. With @ € A'V* and 7 € A’V* we have

sw (@A (" Aa+7))=+w (A (Y Aa+dAT)+Y A7)
e Ay AT) +xv(p AT) + v (Y A @)

and, hence,

*V(¢ A T) = 3(1,

e ANa+1eNW =
xy(P A7)+ xy (¥ A ) =3r.

Since #y (¥ A *y (¥ A 7)) = T + *y(P A 1), by equation (4.61) in Lemma 4.38, we deduce that
Na+rT e A%W* if and only if *y (¢ A 7) = 27 and 3a = *y (¥ A 7). This proves the formula
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for A2W*. Likewise, we have e’ A a + 7 € A5, W* if and only if @ = — *y ( A 7). In this case the
second equation #y (¢ A 7) + *y (¥ A @) = —7 is automatically satisfied.

The formula for the subspace A3W* follows from the fact that it consists of all 3—forms of the
form 1(u)® for u € W (see Theorem 9.8). Now let 7 € A’V* and € A*V*. Thene’ A7+ € Aigw*
if and only if

0=0A("AT+B) =" AN@PAB+YATD)+Y AP

(see again Theorem 9.8). Hence,

A AT =0,
e AT+ B eNLW = prpry AT
YAp=0.
These conditions are satisfied in the following three cases.
(a) f=0and § A7 =0 (or equivalently 7 € A2, V*).
(b) r=0andp A f=0andy A S =0 (or equivalently § € A V*).
(c) p=3uw)y and 7 = 4(u)p withu € V.

In the case ((a)) this follows from the equations ¥ A 1(u)y = 0 and

(11.11) 30 A + 4 A (u)p =0

for u € V. This last identity can be verified by direct computation using the standard structure on
V = R7 with

Bo = €12 — 15 _ Q167 _ 26 4 25T 347 _ 356 g
Yo = —el47 _ o126 4 (1346 _ (1357 _ 2345 _ 2367 4 4567
and u := e; (see the proof of Lemma 4.8). In this case
W)y = B — e%5 — 7, )y = —eH7 — 256 4 346 _ 357

and so
Yo A i(u)py = 347, o A l(u)iy = —d4e?H567.

This proves (11.11). The subspaces determined by the above conditions are pairwise orthogonal and
have dimensions 14 in case ((a)), 27 in case ((b)), and 7 in case ((c)). Thus, for dimensional reasons,
their direct sum is A3, W*.
Now AIW* is the tangent space of the SO(W)-orbit of ®. For u € V define the endomorphism
Ay, € 50(V) by Ay,v := u X v. Then, by Remark 4.16, we have £ 4,¢ = 3u(u)y and L4, = =3u” A ¢.
Hence
e Ay —ut A e AIW?
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for all u € V. Since A‘;W* has dimension 7, each element of A‘;W* has this form.
Next we recall that A3, W* is contained in the subspace of self-dual 4-forms, and every self-dual
4—form can be written as e® A  + xy 8 with B € A3V*. By Theorem 9.8 we have

0 % 4w
e AP +xyfeNyW B A sy () = #y A sy(u* A @) Vu,

— YAP=0, pAP=0
= BeA}V".

{ﬁ/\ wo+xvf Axyy =0,

Here the last equivalence follows from Theorem 8.5. This proves the formula for A3, W*. The
formula for A3, W* follows from the fact that this subspace consists of the anti-self-dual 4-forms.
This proves Theorem 11.10. O

12 Donaldson-Thomas theory

The motivation for the discussion in these notes came from our attempt to understand Riemannian
manifolds with special holonomy in dimensions six, seven, and eight [Bry87; HL82; Joyoo] and
the basic setting of Donaldson-Thomas theory on such manifolds [DT98; DS11].

121 Manifolds with special holonomy

Definition 12.1. Let Y be a smooth 7-manifold and X a smooth 8—manifold. A G,—structure on Y
is a nondegenerate 3—form ¢ € Q*(Y); in this case the pair (Y, ¢) is called an almost G,—manifold.
An Spin(7)-structure on X is a 4—form ® € Q*(X) which restricts to a positive Cayley-form on
each tangent space; in this case the pair (X, ®) is called an almost Spin(7)-manifold.

Remark 12.2. An almost G,—manifold (Y, ¢) admits a unique Riemannian metric and a unique
orientation that, on each tangent space, are compatible with the nondegenerate 3—form ¢ as in
Definition 3.1 (see Theorem 3.2). Thus each tangent space of Y carries a cross product

T,YxT,Y - T,Y: (u,v) » uxvo
such that
P(u, v, w) = (u X v, w)

for all u,v, w € T, Y. Moreover, Theorem 8.5 gives rise to a natural splitting of the space QF(Y) of
k—forms on Y for each k.

Remark 12.3. An almost Spin(7)-manifold (X, ®) admits a unique Riemannian metric that, on
each tangent space, is compatible with the Cayley-form @ as in Definition 7.1 (see Theorem 7.8).
Moreover, the positivity hypothesis asserts that the 8—forms

OAD, () w)® A (o) (u)d A O
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induce the same orientation whenever u, v € T, X are linearly independent (see Definition 7.11).
Thus each tangent space of X carries a positive triple cross product

T X X T X X T X > Ty X: (u,0,w) > uXvXw

such that
(¢, u,v,w) = (E,u X v X W)

for all &, u, v, w € T, X. Moreover, Theorem 9.8 gives rise to a natural splitting of the space Qk(X)
of k—forms on X for each k.

Every spin 7-manifold admits a G,-structure [L.M89, Theorem 10.6]; concrete examples are S’
(considered as unit sphere in the octonions), S! X Z where Z is a Calabi—Yau 3-fold and various
resolutions of T7/T where T is an appropriate finite group, see [Joyoo]. A spin 8-manifold X
admits a Spin(7)-structure if and only if either y($¥) = 0 or y($7) = 0 [LM89, Theorem 10.7];
concrete examples can be obtained from almost G,—manifolds, Calabi—Yau 4-folds and various
resolutions of T%T.

Definition 12.4. An almost Go—manifold (Y, ¢) is called a G,—manifold if ¢ is harmonic with
respect to the Riemannian metric in Remark 12.2 and we say that ¢ is torsion-free. An almost
Spin(7)-manifold (X, ®) is called a Spin(7)-manifold if ® is closed (and, hence, harmonic with
respect to the Riemannian metric in Remark 12.3) and we say that ® is torsion-free.

Remark 12.5. Let (Y, ¢) be an almost Gz—manifold equipped with the metric of Remark 12.2. Then
¢ is harmonic if and only if ¢ is parallel with respect to the Levi-Civita connection and hence is
preserved by parallel transport. It follows that the holonomy of a G,—manifold is contained in
the group G, [FG82]. It also follows that the splitting of Theorem 8.5 is preserved by the Hodge
Laplace operator and hence passes on to the de Rham cohomology. Exactly the same holds for an
almost Spin(7)-manifold (X, ®) equipped with the metric of Remark 12.3. The 4-form ® is closed
(and hence harmonic) if and only if it is parallel with respect to the Levi-Civita connection [Bry87].
Thus the holonomy of a Spin(7) manifold is contained in Spin(7) and the splitting of its spaces of
differential forms in Theorem 9.8 descends to the de Rham cohomology.

Remark 12.6 (Construction methods). Examples of manifolds with torsion-free G,- or Spin(7)-
structures are much harder to construct. There are however a number of construction techniques
(all based on gluing methods): Joyce’s generalized Kummer construction for G;— and Spin(7)-
manifolds [Joy96b; Joyg6e; Joyg6a; Joyoo] based on resolving orbifolds of the form T7/T and
T3/T; a method of Joyce’s for constructing Spin(7)-manifolds from real singular Calabi-Yau 4-
folds [Joy99]; and the twisted connected sum construction invented by Donaldson, pioneered
by Kovalev [Kovos], and extended and improved by Kovalev-Lee [KL11] and Corti-Haskins-
Nordstréom-Pacini [CHNP13; CHNP15].

12.2 The gauge theory picture

We close these notes with a brief review of certain partial differential equations arising in
Donaldson-Thomas theory [DT98]. We first discuss the gauge theoretic setting. Let (Y, ¢) be
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a Gp—manifold with coassociative calibration ¢ := *¢ and E — Y a G-bundle with compact
semi-simple structure group G. In [DT98] Donaldson and Thomas introduce a G,—Chern—Simons
functional

esY: J(E) >R

on the space of connections on E. The functional depends on the choice of a reference connection
Aj € d(E) satisfying Fa, A = 0 and is given by

" 1 1
(12.7) C8Y(Ag + a) := > (dAOa/\a)+§(a/\[a/\a]) AY

Y
for a € Q!(Y,End(E)). The differential of C8 has the form
5C8Y(A)a = / (Faha) Ay
N

for A € A (E) and a € T4/ (E) = Q'(Y,End(E)). Thus a connection A is a critical point of CSY if
and only if
(12.8) Fany =0.

By Theorem 8.5 this is equivalent to the equation #(F4 A ¢) = —F4 and hence to 77(F4) = 0. A
connection A that satisfies equation (12.8) is called a G,—instanton. As in the case of flat connections
on 3-manifolds equation (12.8) becomes elliptic with index zero after augmenting by a suitable
gauge fixing condition (which we do not elaborate on here). The negative gradient flow lines of the
G,-Chern-Simons functional are the 1-parameter families of connections R — /(E): t — A(t)
satisfying the partial differential equation

(12.9) 0;A=—x(Fa ANY),

where F4 = F4(;) is understood as the curvature of the connection A(t) € & (E) for a fixed value
of t. For the study of the solutions of (12.9) it is interesting to observe that, by equation (4.61) in
Lemma 4.38, every connection A on Y satisfies the energy identity

/lFAlzvoly = /lFA A Y|*voly — /(FA AF) A ¢.
Y Y Y

A smooth solution of (12.9) can also be thought of as connection A on the pullback bundle E
of E over R X Y. The curvature of this connection is given by

Fpo = Fa+dt ANO0;A=Fq—dt A(Fg AY).
Hence, it follows from Theorem 9.8 and Theorem 11.10 that Fa satisfies

(12.10) # (FA A ®) = —Fa
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or, equivalently, 77(F5) = 0. Conversely, a connection on E satisfying equation (12.10) can be
transformed into temporal gauge and hence corresponds to a solution of (12.9). It is interesting
to observe that equation (12.10) makes sense over any Spin(7)-manifold. Solutions of (12.10) are
called Spin(7)-instantons. This discussion is completely analogous to Floer-Donaldson theory
in 3 + 1 dimensions. The hope is that one can construct an analogous quantum field theory in
dimension 7 + 1. Moreover, as is apparent from Theorem 11.1 and Theorem 11.6, this theory will
interact with theories in complex dimensions 3 and 4. The ideas for the real and complex versions
of this theory are outlined in [DT98; DS11].

Remark 12.11. For construction methods and concrete examples of G;—instantons and Spin(7)-
instantons we refer to [Wal13; SWi5; Wali6b] and [Taniz; Wali6a].

12.3 The submanifold picture

There is an analogue of the G,—Chern-Simons functional on the space of 3—dimensional submani-
folds of Y, whose critical points are the associative submanifolds of Y and whose gradient flow
lines are Cayley submanifolds of R X Y [DT98]. This is the submanifold part of the conjectural
Donaldson-Thomas field theory.

More precisely, let (Y, ¢) be a Go—manifold with coassociative calibration ¢/ = #¢ and let S be
a compact oriented 3—manifold without boundary. Denote by # the space of smooth embeddings
f: S — Y such that f*¢ vanishes nowhere. Then the group & := Diff*(S) of orientation
preserving diffeomorphism of S acts on & by composition. The quotient space

S =F|%

can be identified with the space of oriented 3—dimensional submanifolds of Y that are diffeomor-
phic to S and have the property that the restriction of ¢ to each tangent space is nonzero; the
identification sends the equivalence class [ f] of an element f € & to its image f(S).

Given f € & the tangent space of § at [ f] can be identified with the quotient

Q°(S, f*TY)
{df o & : & € Vect(S)}

Ifg € ¥ is an orientation preserving diffeomorphism of S, then g* f := fogis another representative
of the equivalence class [ /] and the two quotient spaces can be naturally identified via [f1~ [fogl.

Let us fix an element f, € F and denote by & the universal cover of & based at fo. Thus the
elements of & are equivalence classes of smooth maps f: [0,1] X S — Y such that f(O )= fo
and f f(t,) = : fr € F for all t. Thus we can think of f = {f;}o<;<1 as a smooth path in & starting
at fo, and two such paths are equivalent iff they are smoothly homotopic with fixed endpoints.
F — F sends f to f := f(1,-). The universal cover of & is the quotient

Iips =

<§:=9‘7/(§
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where denotes the group of smooth isotopies [0, 1] — Diff(S): t > g, starting at the identity.
Now the space F carries a natural ©—-invariant action functional &/ : % — R defined by

A(F) = - /[ LF=- / 1 | 5 oo at

This functional is well defined because ¥ is closed and it evidently descends to 8. Its differential is
the 1-form &/ on & given by

set(f == [ £ (i)
This 1-form is €—invariant in that &Qf(g*f)g*f = 5ﬂ(f)f and horizontal in that & (f)dfé =0

for & € Vect(S). Hence, </ descends to a 1-form on &.

Lemma 12.12. An element [f] = [{fi}] € F is a critical point of o if and only if the image of
f = fi: S = Y is an associative submanifold of Y (that is, each tangent space is an associative
subspace).

Proof. Wehave §(f) = 0ifand only iflﬁ(f(x), df(x)&é,df(x)n,df(x)) = 0for allf € QS, f*TY),
all x € S, and all ¢,n,{ € T,S. This means that ¢(u,v,w,-) = 0 for all ¢ € f(S) and all
u,v,w € T, f(S). By definition of the coassociative calibration  in Lemma 4.8 this means that
[u,v,w] = 0 forallu,v,w € T, f(S) where T,Y X T, Y X T,Y — T,Y: (u,v,w) = [u,v, w] denotes
the associator bracket defined by (4.1). By Definition 4.6 this means that T f(S) is an associative
subspace of T,Y for all g € f(S). This proves Lemma 12.12. O

The tangent space of & at f carries a natural L? inner product given by

(1213) oo fdre = /5 o f) £76

for fl, fz € Q°S, f*TY). This can be viewed as a ¥—invariant metric on &.

Lemma 12.14. The gradient of o/ at an element f € F with respect to the inner product (12.13) is

given by dF A dF Adf]
rad s B
grad Z(f) I

where [df Adf Adf] € Q3(S, f*TY) denotes the 3—form

TS X TS X TS — Tf(x)Y: (f’ m, g) = [df(x)'g’ df(x)’% df(x)év]

Proof. The gradient of &f at an element f € & is the vector field grad &/ (f) along f defined by

€ Q'(S, I TY),

[Cemdat(p g == [ £ (afw) = [1ar nds nag1.f
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Here the last equation follows from the identity

—lﬁ(f,u,v, w) = ¥(u, o, w,f} = ([u, v, w],f)
(see equation (4.9) in Lemma 4.8). This proves Lemma 12.14. O
We emphasize that the gradient of & at f is pointwise orthogonal to the image of df. This is

of course a consequence of the fact that the 1-form §&/ on & and the inner product on T are
g -invariant. Now a negative gradient flow line of & is a smooth map

RXS—>Y: (t,x)— u(x)

that satisfies the partial differential equation
[du;(x)er, du;(x)ez, duy(x)es] _
P(duy(x)er, dus(x)ez, dus(x)es)

for all (¢,x) € R X S and every frame ey, 5, e3 of T.S. Moreover, we require of course that u; is an
embedding for every ¢ and that u;¢ vanishes nowhere.

(12.15) Orur(x) +

Lemma 12.16. LetRX S — Y: (t,x) — u;(x) be a smooth map such that u, € F for everyt. Let
& € Vect(S) be chosen such that

(12.17) Orup(x) — duy(x)E(x) L im duy(x) V(t,x) e RxS.
Then the set
(12.18) Y= {(t,us(x)): t €R, x € S}

is a Cayley submanifold of R X Y (that is, each tangent space is a Cayley subspace) with respect to
the Cayley calibration ® := dt A ¢ + ¢ if and only if

[dut(x)el,dut(x)e2,dut(x)€3] —
P(du(x)er, dur(x)es, dus(x)es)

for every pair (t,x) € R X S and every frame ey, e;, e3 of T,.S.

(12.19) Orus(x) — dus(x) & (x) +

Proof. Fix a pair (t,x) € R X S and choose a basis ej, ez, e5 of T.S. By Theorem 5.20 (3) the triple
cross product of the three tangent vectors

(0,dur(x)er),  (0,dur(x)ez), (0, dus(x)es)

of ¥ is the pair
(¢(dut(x)€1, duy(x)ez, duy(x)es), —[dus(x)er, dus(x)es, dut(x)ea])-

Since this pair is orthogonal to the three vectors (0, du;(x)e;) and its first component is nonzero, it
follows that our pair is tangent to X if and only if it is a scalar multiple of the pair (1, d;u;(x) —
dus(x)&;(x)). This is the case if and only if (12.19) holds. Hence, it follows from Lemma 6.25
that ¥ is a Cayley submanifold of R X Y if and only if u satisfies equation (12.19). This proves
Lemma 12.16. O
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Lemma 12.16 shows that every negative gradient flow line of &/ determines a Cayley submani-
fold ¥ c R x Y via (12.18) and, conversely, every Cayley submanifold ¥ ¢ R x Y, with the property
that the projection ¥ — R is a proper submersion, can be parametrized as a negative gradient flow
line of &/ (for some S). Thus the negative gradient trajectories of &/ are solutions of an elliptic
equation, after taking account of the action of the infinite dimensional reparametrization group &.
They minimize the energy

%/ / (|6tut - dut§t|2 + )ut(]ﬁdt
—00 S
[du; A duy A du] |

i u;pdt +/ u'y.
2 /_oo/s u; ! RxS

For studying the solutions of (12.19) it will be interesting to introduce the energy density ef: S — R
of an embedding f € & via

[du; A duy A dug ]|

ud

E(u,£) :

5tut — dutgt +

det«df(x)ei, df(x)e;)i,j=1,2,3)

P(df(x)er, df (x)ez, df (x)es)?

for every x € S and every frame ey, e, e3 of T,:S. Then efoy = er o g for every (orientation
preserving) diffeomorphism g of S and so the energy

(12.20) &(f) ::/Seff*¢

is a ¥—invariant function on & . Moreover, it follows from Lemma 4.4 that

aﬁ—/‘ /f¢

If ¢ is closed, then the last term on the rlght is a topological invariant. Moreover, the first term
vanishes if and only if f is a critical point of the action functional &. Thus the critical points of &/
are also the absolute minima of the energy & (in a given homology class).

er(x) :=

12.4 Outlook: difficulties and new phenomena

These observations are the starting point of a conjectural Floer-Donaldson type theory in dimen-
sions seven and eight, as outlined in the paper by Donaldson and Thomas [DT98]. The analytical
difficulties one encounters when making this precise are formidable, including non-compactness
phenomena in codimension four [Tiaoo] and two in the gauge theory and submanifold theory
respectively. The work of Donaldson and Segal [DS11] explains that this leads to new geometric
phenomena linking the gauge theory and the submanifold theory. It is now understood that neither
the naive approach to counting G,-instantons [DS11; Wali7] nor that of counting associative sub-
manifolds [Nori3] can work on their own. There are, however, ideas of how the theories outlined
in Section 12.2 and Section 12.3 have to be combined and extended to obtain new invariants [DS11;
HWis].
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