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Abstract

This is an expository paper. Its purpose is to explain the linear algebra that underlies

Donaldson–Thomas theory and the geometry of Riemannian manifolds with holonomy in G2

and Spin(7).

1 Introduction

In these notes we give an exposition of the structures in linear algebra that underlie Donaldson–

Thomas theory [DT98; DS11] and calibrated geometry [HL82; Joy00]. No claim is made to originality.

All the results and ideas described here (except perhaps Theorem 7.8) can be found in the existing

literature, notably in the beautiful paper [HL82] by Harvey and Lawson. Perhaps these notes

might be a useful introduction for students who wish to enter the subject.

Our emphasis is on characterizing the relevant algebraic structures—such as cross products,

triple cross products, associator and coassociator brackets, associative, coassocitative, and Cayley

calibrations and subspaces—by their intrinsic properties rather than by the existence of isomor-

phisms to the standard structures on the octonions and the imaginary octonions, although both

descriptions are of course equivalent.

Section 2 deals with cross products and their associative calibrations. It contains a proof that

they exist only in dimensions 0, 1, 3, and 7. In Section 3 we discuss nondegenerate 3–forms on

7–dimensional vector spaces (associative calibrations) and explain how they give rise to unique

compatible inner products. Additional structures such as associative and coassociative subspaces

and the associator and coassociator brackets are discussed in Section 4. These structures are

relevant for understanding G2–structures on 7–manifolds and the Chern–Simons functional in

Donaldson–Thomas theory.

The corresponding Floer theory has as its counterpart in linear algebra the product with the

real line. This leads to the structure of a normed algebra which only exists in dimensions 1, 2,

4, and 8, corresponding to the reals, the complex numbers, the quaternions, and the octonions.

These structures are discussed in Section 5. Going from Floer theory to an intrinsic theory for
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Donaldson-type invariants of 8–dimensional Spin(7)–manifolds corresponds to dropping the space-

time splitting. The algebraic counterpart of this reduction is to eliminate the choice of the unit (as

well as the product). What is left of the algebraic structures is the triple cross product and its Cayley

calibration—a suitable 4–form on an 8–dimensional Hilbert space. These structures are discussed

in Section 6. Section 7 characterizes those 4–forms on 8–dimensional vector spaces (the Cayley-

forms) that give rise to (unique) compatible inner products and hence to triple cross products.

The relevant structure groups G2 (in dimension 7) and Spin(7) (in dimension 8) are discussed in

Section 8 and Section 9 with a particular emphasis on the splitting of the space of alternating

multi-linear forms into irreducible representations. In Section 10 we examine spin structures in

dimensions 7 and 8. Section 11 relates SU(3) and SU(4) structures to cross products and triple

cross products and Section 12 gives a brief introduction to the basic setting of Donaldson–Thomas

theory.

Here is a brief overview of some of the literature about the groups G2 and Spin(7). The

concept of a calibration was introduced in the article of Harvey–Lawson [HL82] which also

contains de�nitions ofG2 and Spin(7) in terms of the octonions. Humphreys [Hum78, Section 19.3]

constructs (the Lie algebra of) G2 from the Dynkin diagram and proves that this coincides with

the de�nition in terms of the octonions. The characterization of G2 and Spin(7) as the stabilisers

of certain 3– and 4–forms is due to Bonan [Bon66]. The connection between calibrations and

spinors is discussed in Harvey’s book [Har90] as well as in the article of Dadok–Harvey [DH93].

Harvey–Lawson also introduced the (multiple) cross products and the associator and coassoci-

ator brackets. The concept of a multiple cross product goes back to Eckmann [Eck43]. Building on

this work, Whitehead [Whi63] classi�ed those completely; see also Brown–Gray [BG67]. To our

best knowledge, the splitting of the exterior algebra into irreducible G2–representations is due

to Fernández–Gray [FG82, Section 3], who also emphasize the relation between G2 and the cross

product in dimension seven. This as well as the analogous result for Spin(7) can also be found in

Bryant [Bry87, Section 2].

Among many others, the more recent articles by Bryant [Bry06], Karigiannis [Kar08; Kar09;

Kar10] and Muñoz [Muñ14, Section 2] contain useful summaries of the linear algebra related to G2

and Spin(7).

2 Cross products

We assume throughout that V is a �nite dimensional real Hilbert space.

De�nition 2.1. A skew-symmetric bilinear map

(2.2) V ×V → V : (u,v) 7→ u ×v

is called a cross product if it satis�es

〈u ×v,u〉 = 〈u ×v,v〉 = 0, and(2.3)

|u ×v |2 = |u |2 |v |2 − 〈u,v〉2(2.4)
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for all u,v ∈ V .

A bilinear map (2.2) that satis�es (2.4) also satis�es u × u = 0 for all u ∈ V and, hence, is

necessarily skew-symmetric.

Theorem 2.5. V admits a cross product if and only if its dimension is either 0, 1, 3, or 7. In dimensions
0 and 1 the cross product vanishes, in dimension 3 it is unique up to sign and determined by an
orientation of V , and in dimension 7 it is unique up to orthogonal isomorphism.

Proof. See page 7. �

The proof of Theorem 2.5 is based on the next �ve lemmas.

Lemma 2.6. Let (2.2) be a skew-symmetric bilinear map. Then the following are equivalent:

1. Equation (2.3) holds for all u,v ∈ V .

2. For all u,v,w ∈ V we have

(2.7) 〈u ×v,w〉 = 〈u,v ×w〉.

3. The map ϕ : V 3 → R, de�ned by

(2.8) ϕ(u,v,w) := 〈u ×v,w〉,

is an alternating 3–form (called the associative calibration of (V ,×)).

Proof. Let (2.2) be a skew-symmetric bilinear map. Assume that it satis�es (2.3). Then, for all

u,v,w ∈ V , we have

0 = 〈v × (u +w),u +w〉

= 〈v ×w,u〉 + 〈v × u,w〉

= 〈u,v ×w〉 − 〈u ×v,w〉.

This proves (2.7).

Now assume (2.7) and let ϕ be de�ned by (2.8). Then, by skew-symmetry, we have ϕ(u,v,w) +
ϕ(v,u,w) = 0 for all u,v,w and, by (2.7), we have ϕ(u,v,w) = ϕ(v,w,u) for all u,v,w . Hence, ϕ is

an alternating 3–form. Thus we have proved that (1) implies (2) implies (3).

That (3) implies (1) is obvious. This proves Lemma 2.6. �

Lemma 2.9. Let (2.2) be a skew-symmetric bilinear map that satis�es (2.3). Then the following are
equivalent:

1. The bilinear map (2.2) satis�es (2.4).

2. If u andw are orthonormal, then |u ×w | = 1.
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3. If |u | = 1 andw is orthogonal to u, then u × (u ×w) = −w .

4. For all u,w ∈ V we have

(2.10) u × (u ×w) = 〈u,w〉u − |u |2w .

5. For all u,v,w ∈ V we have

(2.11) u × (v ×w) +v × (u ×w) = 〈u,w〉v + 〈v,w〉u − 2〈u,v〉w .

Proof. That (1) implies (2) is obvious.

We prove that (2) implies (3). Fix a vector u ∈ V with |u | = 1 and de�ne the linear map

A : V → V by Aw := u ×w . Then, by skew-symmetry and (2.7), A is skew-adjoint and, by (2.3), it

preserves the subspaceW := u⊥. Hence, the restriction of A2
toW is self-adjoint and, by (2), it

satis�es 〈w,A2w〉 = −|u ×w |2 = −|w |2 for w ∈W . Hence, the restriction of A2
toW is equal to

minus the identity. This proves that (2) implies (3).

We prove that (3) implies (4). Fix a vector u ∈ V and de�ne A : V → V by Aw := u ×w as

above. By (3) we haveA2w = −|u |2w wheneverw is orthogonal tou. SinceA2u = 0, this implies (4).

Assertion (5) follows from (4) by replacing u with u + v . To prove that (5) implies (1), set

w = v in (2.11) and take the inner product with u. Then |u ×v |2 = 〈u,u × (v ×v) +v × (u ×v)〉 =
|u |2 |v |2 − 〈u,v〉2. Here the �rst equality follows from (2.7) and the second from (2.11) with w = v .

This proves Lemma 2.9. �

Lemma 2.12. Assume dimV = 3.

1. A cross product onV determines a unique orientation such that u,v,u ×v form a positive basis
for every pair of linearly independent vectors u,v ∈ V .

2. If (2.2) is a cross product on V , then the 3–form ϕ given by (2.8) is the volume form associated
to the inner product and the orientation in (1).

3. If (2.2) is a cross product on V , then

(2.13) (u ×v) ×w = 〈u,w〉v − 〈v,w〉u

for all u,v,w ∈ V .

4. Fix an orientation on V and denote by ϕ ∈ Λ3V ∗ the associated volume form. Then (2.8)

determines a cross product on V .

Proof. Assertion (1) follows from the fact that the space of pairs of linearly independent vectors

in V is connected (whenever dimV , 2). Assertion (2) follows from the fact that, if u,v are

orthonormal, then u,v,u ×v form a positive orthonormal basis and

ϕ(u,v,u ×v) = |u ×v |2 = 1.
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We prove (3). If u and v are linearly dependent, then both sides of (2.13) vanish. Hence we may

assume that u and v are linearly independent or, equivalently, that u ×v , 0. Since (u ×v) ×w is

orthogonal to u ×v , by equation (2.7), andV has dimension 3, it follows that (u ×v) ×w must be a

linear combination of u and v . The formula (2.13) follows by taking the inner products with u and

v , and using Lemma 2.9 (5).

We prove (4). Assume that the bilinear map (2.2) is de�ned by (2.8), where ϕ is the volume

form associated to an orientation of V . Then skew-symmetry and (2.3) follow from the fact that ϕ
is a 3–form (see Lemma 2.6). If u,v are linearly independent, then by (2.8) we have

u ×v , 0

and

ϕ(u,v,u ×v) = |u ×v |2 > 0.

If u,v are orthonormal, it follows that u,v,u ×v is a positive orthogonal basis and so

ϕ(u,v,u ×v) = |u ×v |.

Combining these two identities we obtain |u × v | = 1 when u,v are orthonormal. Hence, (2.4)

follows from Lemma 2.9. This proves Lemma 2.12. �

Example 2.14. On R3
the cross product associated to the standard inner product and the standard

orientation is given by the familiar formula

u ×v =
©­«
u2v3 − u3v2

u3v1 − u1v3

u1v2 − u2v1

ª®¬ .
Example 2.15. The standard structure onR7

can be obtained from a basis of the form i, j, k, e, ei, ej, ek,

where i, j, k, e are anti-commuting generators with square minus one and ij = k. Then the cross

product is given by

(2.16) u ×v :=

©­­­­­­­­­«

u2v3 − u3v2 − u4v5 + u5v4 − u6v7 + u7v6

u3v1 − u1v3 − u4v6 + u6v4 − u7v5 + u5v7

u1v2 − u2v1 − u4v7 + u7v4 − u5v6 + u6v5

u1v5 − u5v1 + u2v6 − u6v2 + u3v7 − u7v3

−u1v4 + u4v1 − u2v7 + u7v2 + u3v6 − u6v3

u1v7 − u7v1 − u2v4 + u4v2 − u3v5 + u5v3

−u1v6 + u6v1 + u2v5 − u5v2 − u3v4 + u4v3

ª®®®®®®®®®¬
.

With

ei jk := dxi ∧ dx j ∧ dxk

the associated 3–form (2.8) is given by

(2.17) ϕ0 = e123 − e145 − e167 − e246 − e275 − e347 − e356.
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The product (2.16) is skew-symmetric and (2.7) follows from the fact that the matrix A(u) de�ned

by

A(u)v := u ×v

is skew symmetric for all u, namely,

A(u) :=

©­­­­­­­­­«

0 −u3 u2 u5 −u4 u7 −u6

u3 0 −u1 u6 −u7 −u4 u5

−u2 u1 0 u7 u6 −u5 −u4

−u5 −u6 −u7 0 u1 u2 u3

u4 u7 −u6 −u1 0 u3 −u2

−u7 u4 u5 −u2 −u3 0 u1

u6 −u5 u4 −u3 u2 −u1 0

ª®®®®®®®®®¬
.

We leave it to the reader to verify (2.4) (or equivalently |u × v | = 1 whenever u and v are

orthonormal).

See also Remark 3.6 below.

Lemma 2.18. Let V be a be a real Hilbert space and (2.2) be a cross product on V . Let ϕ ∈ Λ3V ∗ be
given by (2.8). Then the following holds:

1. Let u ∈ V be a unit vector andWu := u⊥. De�ne ωu : Wu ×Wu → R and Ju : Wu →Wu by

ωu (v,w) := 〈u,v ×w〉, Juv := u ×v

for v,w ∈Wu . Then ωu is a symplectic form onWu , Ju is a complex structure compatible with
ωu , and the associated inner product is the one inherited from V . In particular, the dimension
of V is odd.

2. Suppose dimV = 2n + 1 ≥ 3. Then there is a unique orientation of V such that the associated
volume form vol ∈ Λ2n+1V ∗ satis�es

(2.19) (ι(u)ϕ)n−1 ∧ ϕ = n!|u |n−1
vol

for every u ∈ V . In particular, n is odd.

Proof. We prove (1). By Lemma 2.6 the bilinear form ωu is skew symmetric and, by Lemma 2.9, we

have Ju ◦ Ju = −1. Moreover,

ωu (v, Juw) = 〈u ×v,u ×w〉 = −〈v,u × (u ×w)〉 = 〈v,w〉

for allv,w ∈ V . Here the �rst equation follows from the de�nition ofωu and Ju , the second follows

from (2.7), and the last from Lemma 2.9. Thus the dimension ofWu is even and so the dimension

of V is odd.
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We prove (2). The set of all bases (u,v1, . . . ,v2n) ∈ V
2n+1

, whereu has norm one andv1, . . . ,v2n
is a symplectic basis ofWu , is connected. Hence, there is a unique orientation of V with respect to

which every such basis is positive. Let vol ∈ Λ2n+1V ∗ be the associated volume form. To prove

equation (2.19) assume �rst that |u | = 1 and choose an orthonormal symplectic basis v1, . . . ,v2n
ofWu . (For example pick an orthonormal basis v1,v3, . . . ,v2n−1 of a Lagrangian subspace ofWu
and de�ne v2k := Juv2k−1 for k = 1, . . . ,n.) Now evaluate both sides of the equation on the tuple

(u,v1, . . . ,v2n). Then we obtain n! on both sides. This proves (2.19) whenever u has norm one.

The general case follows by scaling. It follows from (2.19) that n is odd since otherwise the left

hand side changes sign when we replace u by −u. This proves Lemma 2.18. �

Lemma 2.20. Let n > 1 be an odd integer andV be an oriented real Hilbert space of dimension 2n + 1

with volume form vol ∈ Λ2n+1V ∗. Let ϕ ∈ Λ3V ∗ be a 3–form and denote its isotropy group by

G := {д ∈ Aut(V ) : д∗ϕ = ϕ} .

If ϕ satis�es (2.19), then G ⊂ SO(V ).

Proof. Let д ∈ G and u ∈ V . Then it follows from (2.19) that

|дu |n−1д∗vol =
1

n!

д∗
(
(ι(дu)ϕ)n−1 ∧ ϕ

)
=

1

n!

(
(д∗ι(дu)ϕ)n−1

∧ д∗ϕ
)

=
1

n!

(ι(u)д∗ϕ)n−1

∧ д∗ϕ

=
1

n!

(ι(u)ϕ)n−1 ∧ ϕ

= |u |n−1
vol.

Hence, there is a constant c > 0 such that

д∗vol = c−1
vol, |дu |n−1 = c |u |n−1

for every u ∈ V . Since n > 1, this gives |дu | = c
1

n−1 |u | for u ∈ V and hence

д∗vol = c
2n+1

n−1 vol = c
3n
n−1д∗vol.

Thus c = 1 and this proves Lemma 2.20. �

Proof of Theorem 2.5. Assume dimV > 1, let (2.2) be a cross product on V , and de�ne ϕ : V ×V ×
V → R by (2.8). By Lemma 2.6, we have ϕ ∈ Λ3V ∗. By Lemma 2.18 (1), the dimension of V is odd.

By Lemma 2.20, we have dimV = 4n + 3 for some integer n ≥ 0. In particular dimV , 5.

We prove that dimV ≤ 7. De�ne A : V → End(V ) by A(u)v := u × v . Then it follows from

Lemma 2.9 that

A(u)u = 0, A(u)2 = uu∗ − |u |21.
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De�ne γ : V → End(R ⊕ V ) by

(2.21) γ (u) :=

(
0 −u∗

u A(u)

)
,

where u∗ : V → R denotes the linear functional v 7→ 〈u,v〉. Then

(2.22) γ (u)∗ + γ (u) = 0, γ (u)∗γ (u) = |u |21

for every u ∈ V . Here the �rst equation follows from the fact that A(u) is skew-adjoint for every u
and the last equation follows by direct calculation. This implies that γ extends to a linear map

from the Cli�ord algebra C`(V ) to End(R ⊕ V ). The restriction of this extension to the Cli�ord

algebra of any even dimensional subspace of V is injective (see, e.g. [Sal99, Proposition 4.13]).

Hence, 2
2n ≤ (2n + 2)2. This implies n ≤ 3 and so dimV = 2n + 1 ≤ 7. Thus we have proved that

the dimension of V is either 0, 1, 3, or 7. That the cross product vanishes in dimension 0 and 1

is obvious. That it is uniquely determined by the orientation of V in dimension 3 follows from

Lemma 2.12. The last assertion of Theorem 2.5 is restated and proved in Theorem 3.2 below. �

Remark 2.23. LetV be a nonzero real Hilbert space that admits a 3–formϕ whose isotropy subgroup

G is contained in SO(V ). Then

dim Aut(V ) − dimΛ3V ∗ ≤ dim G ≤ dim SO(V ).

Hence, dimV ≥ 7 as otherwise dim SO(V ) < dim Aut(V ) − dimΛ3V ∗. This gives another proof for

the nonexistence of cross products in dimension 5.

3 Associative calibrations

De�nition 3.1. Let V be a real vector space. A 3–form ϕ ∈ Λ3V ∗ is called nondegenerate if, for

every pair of linearly independent vectorsu,v ∈ V , there is a vectorw ∈ V such that ϕ(u,v,w) , 0.

An inner product on V is called compatible with ϕ if the map (2.2) de�ned by (2.8) is a cross

product.

Theorem 3.2. LetV be a 7–dimensional real vector space and ϕ,ϕ ′ ∈ Λ3V ∗. Then the following holds:

1. ϕ is nondegenerate if and only if it admits a compatible inner product.

2. The inner product in (1), if it exists, is uniquely determined by ϕ.

3. If ϕ and ϕ ′ are nondegenerate, the vectors u,v,w are orthonormal for ϕ and satisfy ϕ(u,v,w) =
0, and the vectors u ′,v ′,w ′ are orthonormal for ϕ ′ and satisfy ϕ ′(u ′,v ′,w ′) = 0, then there
exists a д ∈ Aut(V ) such that д(u) = u ′, д(v) = v ′, д(w) = w ′, and д∗ϕ ′ = ϕ.

Proof. See pages 11 and 12. �
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Remark 3.3. If dimV = 3, then ϕ ∈ Λ3V ∗ is nondegenerate if and only if it is nonzero. If ϕ , 0,

then, by Lemma 2.12, an inner product on V is compatible with ϕ if and only if ϕ is the associated

volume form with respect to some orientation, i.e., ϕ(u,v,w) = ±1 for every orthonormal basis

u,v,w of V . Thus assertion (1) of Theorem 3.2 continues to hold in dimension three.

However, assertion (2) is speci�c to dimension seven.

Lemma 3.4. Let V be a 7–dimensional real Hilbert space and ϕ ∈ Λ3V ∗. Then the following are
equivalent:

1. ϕ is compatible with the inner product.

2. There is an orientation on V such that the associated volume form vol ∈ Λ7V ∗ satis�es

(3.5) ι(u)ϕ ∧ ι(v)ϕ ∧ ϕ = 6〈u,v〉vol

for all u,v ∈ V .

Each of these conditions implies that ϕ is nondegenerate. Moreover, the orientation in (2), if it exists,
is uniquely determined by ϕ.

Remark 3.6. It is convenient to use equation (3.5) to verify that the bilinear map in Example 2.15

satis�es (2.4). In fact, it su�ces to check (3.5) for every pair of standard basis vectors. Care must

be taken. There are examples of 3–forms ϕ on V = R7
for which the quadratic form

V ×V → Λ7V ∗ : (u,v) 7→ ι(u)ϕ ∧ ι(v)ϕ ∧ ϕ

has signature (3, 4). One such example can be obtained from the 3–form ϕ0 in Example 2.15 by

changing the minus signs to plus.

Proof of Lemma 3.4. If (1) holds, then, by Lemma 2.18 (2), there is a unique orientation on V such

that the associated volume form satis�es

ι(u)ϕ ∧ ι(u)ϕ ∧ ϕ = 6|u |2vol

for every u ∈ V . Applying this identity to u +v and u −v and taking the di�erence we obtain (3.5).

Moreover, ifu,v ∈ V are linearly independent, then ϕ(u,v,u×v) = |u×v |2 = |u |2 |v |2− 〈u,v〉2 , 0.

Hence, ϕ is nondegenerate. This shows that (1) implies (2) and nondegeneracy.

Conversely, assume (2). We prove thatϕ is nondegenerate. Letu,v ∈ V be linearly independent.

Then u , 0 and, hence, by (3.5), the 7–form

σ := ι(u)ϕ ∧ ι(u)ϕ ∧ ϕ = 6|u |2vol ∈ Λ7V ∗

is nonzero. Choose a basis v1, . . . ,v7 of V with v1 = u and v2 = v . Evaluating σ on this basis we

obtain that one of the terms ϕ(u,v,vj ) with j ≥ 3 must be nonzero. Hence, ϕ is nondegenerate as

claimed.
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Now de�ne the bilinear mapV ×V → V : (u,v) 7→ u ×v by (2.8). This map is skew-symmetric

and, by Lemma 2.6, it satis�es (2.3). We must prove that it also satis�es (2.4). By Lemma 2.9, it

su�ces to show

(3.7) |u | = 1, 〈u,v〉 = 0 =⇒ |u ×v | = |v |.

We prove this in �ve steps. Throughout we �x a unit vector u ∈ V .

Step 1. De�ne the linear map A : V → V by Av := u × v . Then A is skew-adjoint and its kernel is
spanned by u.

That A is skew-adjoint follows from the identity 〈Av,w〉 = ϕ(u,v,w). That its kernel is

spanned by u follows from the fact that ϕ is nondegenerate.

Step 2. Let A be as in Step 1. Then there are positive constants λ1, λ2, λ3 and an orthonormal basis
v1,w1,v2,w2,v3,w3 of u⊥ such that Avj = λjw j and Aw j = −λjvj for j = 1, 2, 3.

By Step 1, there is a constant λ > 0 and a vector v ∈ u⊥ such that

A2v = −λ2v, |v | = 1.

Denote w := λ−1Av . Then Av = λw , Aw = −λv , w is orthogonal to v , and

|w |2 = λ−2〈Av,Av〉 = −λ−2〈v,A2v〉 = |v |2 = 1.

Moreover, the orthogonal complement of u,v,w is invariant under A. Hence, Step 2 follows by

induction.

Step 3. Let λi be as in Step 2. Then λ1λ2λ3 = 1.

Let A be as in Step 1, denoteW := u⊥, and de�ne ω : W ×W → R by

ω(v,w) := 〈Av,w〉 = ϕ(u,v,w)

forv,w ∈W . Then, by Step 1,ω ∈ Λ2W ∗ is a symplectic form. Moreover,ω(vi ,wi ) = 〈Avi ,wi 〉 = λi
for i = 1, 2, 3 while ω(vi ,w j ) = 0 for i , j and ω(vi ,vj ) = ω(wi ,w j ) = 0 for all i and j. Hence,

λ1λ2λ3 =
1

6

ω3(v1,w1,v2,w2,v3,w3)

= vol(u,v1,w1,v2,w2,v3,w3).

Here the �rst equation follows from Step 2 and the de�nition of ω and the second equation follows

from (3.5) with u = v and |u | = 1. Since the vectors u,v1,w1,v2,w2,v3,w3 form an orthonormal

basis of V , the last expression must be plus or minus one. Since it is positive, Step 3 follows.
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Step 4. De�ne

(3.8) G := {д ∈ Aut(V ) : д∗ϕ = ϕ} , H := {д ∈ G : дu = u} .

Then dim G ≥ 14 and dim H ≥ 8

Since dim Aut(V ) = 49 and dimΛ3V ∗ = 35, the isotropy subgroup G of ϕ has dimension at least

14. Moreover, by Lemma 2.20, G acts on the sphere S := {v ∈ V : |v | = 1} which has dimension 6.

Thus the isotropy subgroup H ofu under this action has dimension dim H ≥ dim G − dim S ≥ 14 − 6 = 8.

This proves Step 4.

Step 5. Let λi be as in Step 2. Then λ1 = λ2 = λ3 = 1.

By de�nition of A in Step 1 and H in Step 4, we have 〈Aдv,дw〉 = 〈Av,w〉 for all д ∈ H and all

v,w ∈ V . Moreover, H ⊂ SO(V ), by Lemma 2.20. Hence,

(3.9) д ∈ H =⇒ дA = Aд.

Now suppose that the eigenvalues λ1, λ2, λ3 are not all equal. Without loss of generality, we may as-

sume λ1 < {λ2, λ3}. Then, by (3.9), the subspacesW1 := span{v1,w1} andW23 := span{v2,w2,v3,w3}

are preserved by each element д ∈ H. Thus H ⊂ O(W1) × O(W23). Since dim O(W1) = 1 and

dim O(W23) = 6, this implies dim H ≤ 7 in contradiction to Step 4. Thus we have proved that

λ1 = λ2 = λ3 and, by Step 3, this implies λj = 1 for every j. This proves Step 5.

By Step 2 and Step 5 we haveA2v = −v for everyv ∈ u⊥. Hence, by Step 1, |Av |2 = −〈v,A2v〉 =
|v |2 for every v ∈ u⊥. By de�nition of A, this proves (3.7) and Lemma 3.4. �

Proof of Theorem 3.2 (1) and (2). The “if” part of (1) is the last assertion made in Lemma 3.4. To

prove (2) and the “only if” part of (1) we assume that ϕ is nondegenerate. Then, for every nonzero

vector u ∈ V , the restriction of the 2–form ι(u)ϕ ∈ Λ2V ∗ to u⊥ is a symplectic form. Namely, if

v ∈ u⊥ is nonzero, then u,v are linearly independent and hence there is a vector w ∈ V such that

ϕ(u,v,w) , 0; the vector w can be chosen orthogonal to u.

This implies that the restriction of the 6–form (ι(u)ϕ)3 ∈ Λ6V ∗ to u⊥ is nonzero for every

nonzero vector u ∈ V . Hence, the 7–form ι(u)ϕ ∧ ι(u)ϕ ∧ ϕ ∈ Λ7V ∗ is nonzero for every nonzero

vectoru ∈ V . SinceV \{0} is connected, there is a unique orientation ofV such that ι(u)ϕ∧ι(u)ϕ∧ϕ
is a positive volume form on V for every u ∈ V \{0}. Fix a volume form σ ∈ Λ7V ∗ compatible with

this orientation. Then the bilinear form

V ×V → R : (u,v) 7→
ι(u)ϕ ∧ ι(v)ϕ ∧ ϕ

σ
=: д(u,v)

is an inner product. De�ne µ > 0 by σ = µvolд . Replacing σ by σ̃ := λ2σ we get

д̃ = λ−2д, volд̃ = λ
−7

volд .

Thus

σ̃ = λ2σ = λ2µvolд = λ
9µvolд̃ .
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With λ := (6/µ)1/9 we get σ̃ = 6volд̃ .

Thus we have proved that there is a unique orientation and inner product on V such that

ϕ satis�es (3.5). Hence the assertion follows from Lemma 3.4. This proves parts (1) and (2)

of Theorem 3.2. �

Remark 3.10. Let V ,W be n-dimensional real vector spaces. Then the determinant of a linear map

A : V →W is an element detA ∈ ΛnV ∗ ⊗ ΛnW . In particular, ifV is equipped with an orientation

and an inner product д ∈ S2V ∗, and iд : V → V ∗ denotes the isomorphism de�ned by iдv := д(v, ·),
then det iд ∈ (Λ

nV ∗)2 and the volume form volд associated to д is

volд =

√
det iд .

Here the orientation is needed to determine the sign of the square root.

If V is 7–dimensional and ϕ ∈ Λ3V ∗ is nondegenerate, then the formula

G(u,v) :=
1

6

i(u)ϕ ∧ i(v)ϕ ∧ ϕ for u,v ∈ V

de�nes a symmetric bilinear form G : V ×V → Λ7V ∗ and iG : V → V ∗ ⊗ Λ7V ∗ is an isomorphism

(see second paragraph in the proof of Lemma 3.4). The determinant of iG is an element of (Λ7V ∗)9

and (det iG )
1/9

can be de�ned without an orientation onV . If an inner product д and an orientation

on V are such that (3.5) holds, then

volд = (det(iG ))
1/9

and д =
G

volд
.

Conversely, with this choice of inner product and orientation, (3.5) holds. This observation is due

to Hitchin [Hit01, Section 8.3].

Lemma 3.11. Let V be a 7–dimensional real Hilbert space equipped with a cross product V ×V →
V : (u,v) → u ×v . If u and v are orthonormal andw := u ×v , then v ×w = u andw × u = v .

Proof. This follows immediately from equation (2.11) in Lemma 2.9. �

Proof of Theorem 3.2 (3). Let ϕ0 : R7×R7×R7 → R be the 3–form in Example 2.15 and let ϕ ∈ Λ3V ∗

be a nondegenerate 3–form. Let V be equipped with the compatible inner product of Theorem 3.2

and denote by V × V → V : (u,v) 7→ u × v the associated cross product. Let e1, e2 ∈ V be

orthonormal and de�ne

e3 := e1 × e2.

Let e4 ∈ V be any unit vector orthogonal to e1, e2, e3 and de�ne

e5 := −e1 × e4.

12



Then e5 has norm one and is orthogonal to e1, e2, e3, e4. For e1 and e4 this follows from the de�nition

and (2.7). For e3 we observe

〈e3, e5〉 = −〈e1 × e2, e1 × e4〉 = 〈e2, e1 × (e1 × e4)〉 = −〈e2, e4〉 = 0.

Here the last but one equation follows from Lemma 2.9. For e2 the argument is similar; since

e2 = e3 × e1, by Lemma 3.11, and 〈e3, e4〉 = 0, we obtain 〈e2, e5〉 = 0. Now let e6 be a unit vector

orthogonal to e1, . . . , e5 and de�ne

e7 := −e1 × e6.

As before we have that e7 has norm one and is orthogonal to e1, . . . , e6. Thus the vectors e1, . . . , e7

form an orthonormal basis ofV and it follows from Lemma 3.11 that they satisfy the same relations

as the standard basis of R7
in Example 2.15. Hence, the map

R7
д
−→ V : x = (x1, . . . ,x7) 7→

7∑
i=1

xiei

is a Hilbert space isometry and it satis�es д∗ϕ = ϕ0. This proves Theorem 3.2 (and the last assertion

of Theorem 2.5). �

4 The associator and coassociator brackets

We assume throughout thatV is a 7–dimensional real Hilbert space, that ϕ ∈ Λ3V ∗ is a nondegener-

ate 3–form compatible with the inner product, and (2.2) is the cross product given by (2.8). It follows

from (2.11) that the expression (u×v)×w is alternating on any triple of pairwise orthogonal vectors

u,v,w ∈ V . Hence, it extends uniquely to an alternating 3–form V 3 → V : (u,v,w) 7→ [u,v,w]
called the associator bracket. An explicit formula for this 3–form is

(4.1) [u,v,w] := (u ×v) ×w + 〈v,w〉u − 〈u,w〉v .

The associator bracket can also be expressed in the form

(4.2) [u,v,w] =
1

3

(
(u ×v) ×w + (v ×w) × u + (w × u) ×v

)
.

Remark 4.3. IfV is any Hilbert space with a skew-symmetric bilinear form (2.2), then the associator

bracket (4.1) is alternating i� (2.11) holds. Indeed, skew-symmetry of the associator bracket in the

�rst two arguments is obvious, and the identity

[u,v,w] + [u,w,v] = w × (v × u) +v × (w × u)

− 〈u,w〉v − 〈u,v〉w + 2〈v,w〉u

shows that skew-symmetry in the last two arguments is equivalent to (2.11). By Lemma 2.12, the

associator bracket vanishes in dimension three.
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The square of the volume of the 3–dimensional parallelepiped spanned by u,v,w ∈ V will be

denoted by

|u ∧v ∧w |2 := det

©­«
|u |2 〈u,v〉 〈u,w〉
〈v,u〉 |v |2 〈v,w〉
〈w,u〉 〈w,v〉 |w |2

ª®¬ .
Lemma 4.4. For all u,v,w ∈ V we have

(4.5) ϕ(u,v,w)2 + |[u,v,w]|2 = |u ∧v ∧w |2.

Proof. If w is orthogonal to u and v , then we have

|[u,v,w]|2 = |(u ×v) ×w |2

= |u ×v |2 |w |2 − 〈u,v ×w〉2

= |u ∧v ∧w |2 − ϕ(u,v,w)2.

Here the �rst equation follows from the de�nition of the associator bracket and orthogonality, the

second equation follows from (2.4), and the last equation follows from (2.4) and orthogonality, as

well as (2.8). The general case can be reduced to the orthogonal case by Gram–Schmidt. �

De�nition 4.6. A 3–dimensional subspace Λ ⊂ V is called associative the associator bracket

vanishes on Λ, i.e.,

[u,v,w] = 0 for all u,v,w ∈ Λ.

Lemma 4.7. Let Λ ⊂ V be a 3–dimensional linear subspace. Then the following are equivalent:

1. Λ is associative.

2. If u,v,w is an orthonormal basis of Λ, then ϕ(u,v,w) = ±1.

3. If u,v ∈ Λ, then u ×v ∈ Λ.

4. If u ∈ Λ⊥ and v ∈ Λ, then u ×v ∈ Λ⊥.

5. If u,v ∈ Λ⊥, then u ×v ∈ Λ.

Moreover, if u,v ∈ V are linearly independent, then the subspace spanned by the vectors u,v,u ×v is
associative.

Proof. That (1) is equivalent to (2) follows from Lemma 4.4.

We prove that (1) is equivalent to (3). That the associator bracket vanishes on a 3–dimensional

subspace that is invariant under the cross product follows from Lemma 2.12 (3). Conversely suppose

that the associator bracket vanishes on Λ. Let u,v ∈ Λ be linearly independent and let w ∈ Λ be a

nonzero vector orthogonal to u and v . Then, by Lemma 4.4, we have

〈u ×v,w〉2 = ϕ(u,v,w)2 = |u ∧v ∧w |2 = |u ×v |2 |w |2

14



and hence u ×v is a real multipe of w . Thus u ×v ∈ Λ.

We prove that (3) is equivalent to (4). First assume (3) and let u ∈ Λ, v ∈ Λ⊥. Then, by (3),

we have w × u ∈ Λ for every w ∈ Λ. Hence, 〈w,u × v〉 = 〈w × u,v〉 = 0 for every w ∈ Λ and so

u ×v ∈ Λ⊥. Conversely assume (4) and let u,v ∈ Λ. Then, by (3), we have w × u ∈ Λ⊥ for every

w ∈ Λ⊥. Hence, 〈w,u × v〉 = 〈w × u,v〉 = 0 for every w ∈ Λ⊥. This implies u × v ∈ Λ. Thus we

have proved that (3) is equivalent to (4).

We prove that (4) is equivalent to (5). Fix a unit vector u ∈ Λ⊥ and de�ne the endomorphism

J : u⊥ → u⊥ by Jv := u ×v . By Lemma 2.9 this is an isomorphism with inverse −J . Condition (4)

asserts that J maps Λ to Λ⊥ ∩ u⊥ while condition (5) asserts that J maps Λ⊥ ∩ u⊥ to Λ. Since both

are 3–dimensional subspaces of u⊥, these two assertions are equivalent. This proves that (4) is

equivalent to (5).

If u and v are linearly independent, then u ×v , 0, by (2.4), and u ×v is orthogonal to u and v ,

by (2.3). Hence, the subspace Λ spanned by u,v,u ×v is 3–dimensional. That it is invariant under

the cross product follows from assertion (4) in Lemma 2.9. Hence, Λ is associative, and this proves

Lemma 4.7. �

Lemma 4.8. The mapψ : V 4 → R de�ned by

ψ (u,v,w,x) := 〈[u,v,w],x〉

=
1

3

(
ϕ(u ×v,w,x) + ϕ(v ×w,u,x) + ϕ(w × u,v,x)

)
(4.9)

is an alternating 4–form (the coassociative calibration of (V ,ϕ)). Moreover, it is given byψ = ∗ϕ,
where ∗ : ΛkV ∗ → Λ7−kV ∗ denotes the Hodge ∗–operator associated to the inner product and the
orientation in Lemma 3.4.

Proof. See page 16. �

Remark 4.10. By Lemma 4.7 and Lemma 4.8 the associator bracket [u,v,w] is orthogonal to the

vectors u,v,w,v ×w,w × u,u × v . Second, these six vectors are linearly independent if only if

[u,v,w] , 0. (Make them pairwise orthogonal by adding to v a real multiple of u and to w a linear

combination of u,v,u ×v . Then their span and [u,v,w] remain unchanged.) Third, if [u,v,w] , 0

then the vectors u,v,w,v ×w,w × u,u ×v, [u,v,w] form a positive basis of V .

Remark 4.11. The standard associative calibration on R7
is

(4.12) ϕ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356

(see Example 2.15). The corresponding coassociative calibration is

(4.13) ψ0 = −e
1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567.

Remark 4.14. Let V → V ∗ : u 7→ u∗ := 〈u, ·〉 be the isomorphism induced by the inner product.

Then, for α ∈ ΛkV ∗ and u ∈ V , we have

(4.15) ∗ ι(u)α = (−1)k−1u∗ ∧ ∗α .

This holds on any �nite dimensional oriented Hilbert space.
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Remark 4.16. Throughout we use the notation

(4.17) (LAα)(v1, . . . ,vk ) := α(Av1,v2, . . . ,vk ) + · · · + α(v1, . . . ,vk−1,Avk )

for the in�nitesimal action of A ∈ End(V ) on a k–form α ∈ ΛkV ∗. For u ∈ V denote by Au ∈ so(V )
the skew-adjoint endomorphism Auv := u ×v . Then equation (4.9) can be expressed in the form

(4.18) LAuϕ = 3ι(u)ψ .

Sinceψ = ∗ϕ, we have LAψ = ∗LAϕ for all A ∈ so(V ). Hence, it follows from equation (4.15) that

(4.19) LAuψ = ∗(3ι(u)ψ ) = −3u∗ ∧ ϕ .

Proof of Lemma 4.8. It follows from Remark 4.3 thatψ is alternating in the �rst three arguments.

To prove thatψ ∈ Λ4V ∗ we compute

ψ (u,v,w,x) = 〈(u ×v) ×w + 〈v,w〉u − 〈u,w〉v,x〉

= 〈u ×v,w × x〉 + 〈v,w〉〈u,x〉 − 〈u,w〉〈v,x〉.
(4.20)

Here the �rst equation follows from the de�nition ofψ in (4.9) and the de�nition of the associator

bracket in (4.1). Swapping x and w as well as u and v in (4.20) gives the same expression. Thus

ψ (u,v,w,x) = ψ (v,u,x ,w) = −ψ (u,v,x ,w).

This shows thatψ ∈ Λ4V ∗ as claimed. To prove the second assertion we observe the following.

Proposition 4.21. If u,v,w,x are orthonormal and u ×v = w × x , thenψ (u,v,w,x) = 1.

This follows directly from the de�nition ofψ and of the associator bracket in (4.1) and (4.9).

Now, by Theorem 3.2, we can restrict attention to the standard structures on R7
. Thus ϕ = ϕ0 is

given by (4.12) and this 3–form is compatible with the standard inner product on R7
. We have the

product rule ei × ej = ek whenever the term ei jk or one of its cyclic permutations shows up in this

sum, and the claim shows that we have a summand εei jk` inψ = ψ0 whenever ei × ej = εek × e`
with ε ∈ {±1}. Hence, ψ0 is given by (4.13). Term by term inspection shows that ψ0 = ∗ϕ0. This

proves Lemma 4.8. �

Lemma 4.22. For all u,v,w,x ∈ V we have

[u,v,w,x] := ϕ(u,v,w)x − ϕ(x ,u,v)w + ϕ(w,x ,u)v − ϕ(v,w,x)u

=
1

3

(
−[u,v,w] × x + [x ,u,v] ×w − [w,x ,u] ×v + [v,w,x] × u

)
.

(4.23)

The resulting multi-linear map

V 4 → V : (u,v,w,x) 7→ [u,v,w,x]

is alternating and is called the coassociator bracket on V .
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Proof. De�ne the alternating multi-linear map τ : V 4 → V by

τ (u,v,w,x) := 3

(
ϕ(u,v,w)x − ϕ(x ,u,v)w + ϕ(w,x ,u)v − ϕ(v,w,x)u

)
+ [u,v,w] × x − [x ,u,v] ×w + [w,x ,u] ×v − [v,w,x] × u .

We must prove that τ vanishes. The proof has three steps.

Step 1. τ (u,v,w,x) is orthogonal to u,v,w,x for all u,v,w,x ∈ V .

It su�ces to assume that u,v,w,x are pairwise orthogonal. Then we have

[u,v,w] = (u ×v) ×w

and similarly for [x ,v,w] etc. Hence,

〈τ (u,v,w,x),x〉 = 3|x |2ϕ(u,v,w) − 〈[u,v,x],w × x〉

− 〈[w,u,x],v × x〉 − 〈[v,w,x],u × x〉

= 3|x |2ϕ(u,v,w) − 〈(u ×v) × x ,w × x〉

− 〈(w × u) × x ,v × x〉 − 〈(v ×w) × x ,u × x〉

= 0.

Here the last step uses the identity (2.7) and the fact that x × (u × x) = |x |2u whenever u is

orthogonal to x . Thus τ (u,v,w,x) is orthogonal to x . Since τ is alternating, this proves Step 1.

Step 2. τ (u,v,u ×v,x) = 0 for all u,v,x ∈ V .

It su�ces to assume that u,v are orthonormal and that x is orthogonal to u, v , and w := u ×v .

Then v ×w = u, w × u = v , ϕ(u,v,w) = 1, and ϕ(x ,v,w) = ϕ(x ,w,u) = ϕ(x ,u,v) = 0. Moreover,

[u,v,w] = 0 and

[x ,v,w] = [v,w,x] = (v ×w) × x = u × x , [x ,v,w] × u = x ,

and similarly [x ,w,u] ×v = [x ,u,v] ×w = x . This implies that τ (u,v,w,x) = 0.

Step 3. τ (u,v,w,x) = 0 for all u,v,w,x ∈ V .

By the alternating property we may assume thatu andv are orthonormal. Using the alternating

property again and Step 2 we may assume that w is a unit vector orthogonal to u,v,u ×v and that

x is a unit vector orthogonal to u,v,w and v ×w,w × u,u ×v . This implies that

ϕ(u,v,w) = ϕ(x ,v,w) = ϕ(x ,w,u) = ϕ(x ,u,v) = 0.

Hence, the vectors x × u,x × v,x ×w form a basis of the orthogonal complement of the space

spanned byu,v,w,x . Each of these vectors is orthogonal to τ (u,v,w,x) and hence τ (u,v,w,x) = 0

by Step 1. This proves Lemma 4.22. �
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The square of the volume of the 4–dimensional parallelepiped spanned by u,v,w,x ∈ V will

be denoted by

|u ∧v ∧w ∧ x |2 := det

©­­­«
|u |2 〈u,v〉 〈u,w〉 〈u,x〉
〈v,u〉 |v |2 〈v,w〉 〈v,x〉
〈w,u〉 〈w,v〉 |w |2 〈w,x〉
〈x ,u〉 〈x ,v〉 〈x ,w〉 |x |2

ª®®®¬ .
Lemma 4.24. For all u,v,w,x ∈ V we have

(4.25) ψ (u,v,w,x)2 + |[u,v,w,x]|2 = |u ∧v ∧w ∧ x |2.

Proof. The proof has four steps.

Step 1. If u,v,w,x are orthogonal, then

ψ (u,v,w,x)2 = 〈u ×v,w × x〉2,

|[u,v,w,x]|2 = 〈u ×v,w〉2 |x |2 + 〈u ×v,x〉2 |w |2

+ 〈u,w × x〉2 |v |2 + 〈v,w × x〉2 |u |2,

|u ∧v ∧w ∧ x |2 = |u |2 |v |2 |w |2 |x |2.

The �rst equation follows from (4.1) and (4.9), using (2.7). The other two equations follow

immediately from the de�nitions.

Step 2. Equation (4.25) holds when u,v,w,x are orthogonal and, in addition,w and x are orthogonal
to u ×v .

Since [u,v,w] , 0, it follows from the assumptions and Lemma 4.7 that w × x is a linear

combination of the vectors u, v , u ×v . Hence, the assertion follows from Step 1.

Step 3. Equation (4.25) holds when u,v,w,x are orthogonal

Suppose, in addition, that w and x are orthogonal to u ×v and replace x by xλ := x + λu ×v
for λ ∈ R. Thenψ (u,v,w,xλ) is independent of λ and

|[u,v,w,xλ]|
2 = |[u,v,w,x]|2 + λ2 |u |2 |v |2 |w |2 |u ×v |2.

Hence, it follows from Step 2 that (4.25) holds when u,v,w,x are orthogonal and, in addition, w is

orthogonal to u ×v . This condition can be achieved by rotating the pair (w,x). This proves Step 3.

Step 4. Equation (4.25) holds always.

The general case follows from the orthogonal case via Gram–Schmidt, because both sides of

equation (4.25) remain unchanged if we add to any of the four vectors a multiple of any of the

other three. This proves the lemma. �
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De�nition 4.26. A 4–dimensional subspace H ⊂ V is called coassociative if

[u,v,w,x] = 0 for all u,v,w,x ∈ H .

Lemma 4.27. Let H ⊂ V be a 4–dimensional linear subspace. Then the following are equivalent:

1. H is coassociative.

2. If u,v,w,x is an orthonormal basis of H , thenψ (u,v,w,x) = ±1.

3. For all u,v,w ∈ H we have ϕ(u,v,w) = 0.

4. If u,v ∈ H , then u ×v ∈ H⊥.

5. If u ∈ H and v ∈ H⊥, then u ×v ∈ H .

6. If u,v ∈ H⊥, then u ×v ∈ H⊥.

7. The orthogonal complement H⊥ is associative.

Proof. That (1) is equivalent to (2) follows from Lemma 4.24.

We prove that (1) is equivalent to (3). That (3) implies (1) is obvious by de�nition of the

coassociator bracket in (4.23). Conversely, assume (1) and choose a basis u,v,w,x of H . Then

[u,v,w,x] = 0 and hence, by (4.23), we have ϕ(u,v,w) = ϕ(x ,v,w) = ϕ(x ,w,u) = ϕ(x ,u,v) = 0.

This implies (3).

We prove that (3) is equivalent to (4). If (3) holds and u,v ∈ H , then 〈u ×v,w〉 = ϕ(u,v,w) = 0

for every w ∈ H and hence u × v ∈ H⊥. Conversely, if (4) holds and u,v ∈ H , then u × v ∈ H⊥

and hence ϕ(u,v,w) = 〈u ×v,w〉 = 0 for all w ∈ H .

Thus we have proved that (1), (2), (3), (4) are equivalent. That assertions (4), (5), (6), (7) are

equivalent was proved in Lemma 4.7. �

Remark 4.28. Let V be a 7–dimensional real Hilbert space equipped with a cross product and

denote the associative and coassociative calibrations by ϕ and ψ . Let Λ ⊂ V be an associative

subspace and de�ne H := Λ⊥. Orient Λ and H by the volume forms volΛ := ϕ |Λ and volH := ψ |H .

A standard basis of the space Λ+H ∗ of self-dual 2–forms on H is a triple ω1,ω2,ω3 ∈ Λ
+H ∗ that

satis�es the condition ωi ∧ ωj = 2δi jvolH for all i and j. In this situation the map

(4.29) Λ→ Λ+H ∗ : u 7→ −ι(u)ϕ |H

is an orientation preserving isomorphism that sends every orthonormal basis of Λ to a standard

basis of Λ+H ∗. (To see this, choose a standard basis ofV as in Remark 4.11 with Λ = span{e1, e2, e3}.)

Let πΛ : V → Λ and πH : V → H be the orthogonal projections. Let u1,u2,u3 be any orthonormal

basis of Λ and de�ne αi := u∗i |Λ and ωi := −ι(ui )ϕ |H for i = 1, 2, 3. Then the associative calibration

ϕ can be expressed in the form

(4.30) ϕ = π ∗ΛvolΛ − π
∗
Λα1 ∧ π

∗
Hω1 − π

∗
Λα2 ∧ π

∗
Hω2 − π

∗
Λα3 ∧ π

∗
Hω3.
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The next theorem characterizes a nondegenerate 3–form ϕ in terms of its coassociative cali-

brationψ in Lemma 4.8.

Theorem 4.31. LetV be a 7–dimensional vector space over the reals, letϕ,ϕ ′ ∈ Λ3V ∗ be nondegenerate
3–forms, and letψ ,ψ ′ ∈ Λ4V ∗ be their coassociative calibrations. Then the following are equivalent:

1. ϕ ′ = ϕ or ϕ ′ = −ϕ.

2. ψ ′ = ψ .

Proof. That (1) implies (2) follows from the de�nition ofψ in Lemma 4.8 and the fact that revers-

ing the sign of ϕ also reverses the sign of the cross product and thus leaves ψ unchanged (see

equation (4.9)). To prove the converse assume thatψ ′ = ψ and denote by 〈·, ·〉′ the inner product

determined by ϕ ′, by ×′ the cross product determined by ϕ ′, and by [·, ·, ·]′ the associator bracket

determined by ϕ ′. We prove in four steps that ϕ ′ = ±ϕ.

Step 1. A 3–dimensional subspace Λ ⊂ V is associative for ϕ if and only if it is associative for ϕ ′.

Let Λ ⊂ V be a three-dimensional linear subspace. By De�nition 4.6 it is associative for ϕ if

and only if [u,v,w] = 0 for all u,v,w ∈ Λ. By Lemma 4.8 this is equivalent to the condition that

the linear functionalψ (u,v,w, ·) on V vanishes for all u,v,w ∈ Λ. Sinceψ = ψ ′, this proves Step 1.

Step 2. There is a linear functional α : V → R and a c ∈ R\{0} such that

u ×′ v = α(u)v − α(v)u + cu ×v

for all u,v ∈ V .

Fix two linearly independent vectorsu,v ∈ V . Then the vectorsu,v,u ×v span a ϕ–associative

subspace Λ ⊂ V by Lemma 4.7. The subspace Λ is also ϕ ′–associative by Step 1. Hence, u ×′ v ∈ Λ
by Lemma 4.7 and so there exist real numbers α(u,v), β(u,v),γ (u,v) such that

(4.32) u ×′ v = α(u,v)v + β(u,v)u + γ (u,v)u ×v .

Since u,v,u ×′ v are linearly independent, it follows that γ (u,v) , 0 and the coe�cients α , β ,γ
depend smoothly on u and v . Di�erentiate equation (4.32) with respect to v to obtain that α and γ
are locally independent of v . Di�erentiate it with respect to u to obtain that β and γ are locally

independent of u. Since the set of pairs of linearly independent vectors inV is connected, it follows

that there exist functions α , β : V → R and a constant c ∈ R\{0} such that

u ×′ v = α(u)v + β(v)u + cu ×v

for all pairs of linearly independent vectors u,v ∈ V . Interchange u and v to obtain β(v) = −α(v)
for all v ∈ V . Since the function V → V : u 7→ u ×′ v is linear for all v ∈ V it follows that

α : V → R is linear. This proves Step 2.

Step 3. Let α and c be as in Step 2. Then α = 0 and 〈u,v〉′ = c2〈u,v〉 for all u,v ∈ V .
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Fix a vector u ∈ V \{0} and choose a vector v ∈ V such that u and v are linearly independent.

Then u × (u ×v) = 〈u,v〉u − |u |2v by Lemma 2.9. Hence, it follows from Step 2 that

〈u,v〉′u − |u |′2v = u ×′ (u ×′ v)

= u ×′ (α(u)v − α(v)u + cu ×v)

= α(u)u ×′ v + cu ×′ (u ×v)

= α(u)
(
α(u)v − α(v)u + cu ×v

)
+ c

(
α(u)u ×v − α(u ×v)u + cu × (u ×v)

)
= α(u)

(
α(u)v − α(v)u + cu ×v

)
+ c

(
α(u)u ×v − α(u ×v)u + c 〈u,v〉u − c |u |2v

)
=

(
c2〈u,v〉 − cα(u ×v) − α(u)α(v)

)
u

+
(
α(u)2 − c2 |u |2

)
v + 2cα(u)u ×v .

Since u, v , and u ×v are linearly independent, it follows that

α(u) = 0, |u |′2 = c2 |u |2 − α(u)2.

Since u ∈ V \{0} was chosen arbitrarily, it follows that α(u) = 0 and

〈u,v〉′ = c2〈u,v〉, u ×′ v = cu ×v

for all u,v ∈ V . This proves Step 3.

Step 4. ϕ ′ = ±ϕ.

It follows from Step 2 and Step 3 that

ϕ ′(u,v,w) = 〈u ×′ v,w〉′ = c3〈u ×v,w〉 = c3ϕ(u,v,w)

for all u,v,w ∈ V , and so ψ = ψ ′ = c4ψ by equation (4.9). Hence c = ±1 and this proves

Theorem 4.31. �

The next theorem follows a suggestion by Donaldson for characterizing coassociative calibra-

tions in terms of their dual 3–forms.

Theorem 4.33. Let V be a 7–dimensional vector space over the reals and let ψ ∈ Λ4V ∗. Then the
following are equivalent:

1. There exists a nondegenerate 3–form ϕ ∈ Λ3V ∗ and a number ε = ±1 such that εψ is the
coassociative calibration of (V ,ϕ).

2. If α , β ∈ V ∗ are linearly independent, then there exists a 1–formγ ∈ V ∗ such that α∧β∧γ ∧ψ ,

0.
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Proof. That (1) implies (2) follows from equation (4.39) in Lemma 4.38 below. To prove the converse,

assume (2) and �x any volume form σ ∈ Λ7V ∗. De�ne the 3–form Φ on the dual space V ∗ by

(4.34) Φ(α , β,γ ) :=
α ∧ β ∧ γ ∧ψ

σ
for α , β ,γ ∈ V ∗.

This 3–form is nondegenerate by (2). Denote the corresponding coassociative calibration by

Ψ : V ∗ ×V ∗ ×V ∗ ×V ∗ → R and let 〈·, ·〉V ∗ be the inner product on V ∗ determined by Φ. Let

κ : V → V ∗ be the isomorphism induced by this inner product, so α(u) = 〈α ,κ(u)〉V ∗ for α ∈ V ∗

and u ∈ V . Let 〈·, ·〉V be the pullback under κ of the inner product on V ∗. Then ϕ := κ∗Φ ∈ Λ3V ∗

is a nondegenerate 3–form compatible with the inner product and the volume form

vol := 1

7
κ∗Φ ∧ κ∗Ψ.

By equation (4.34),

(4.35) ϕ(u,v,w)σ = κ(u) ∧ κ(v) ∧ κ(w) ∧ψ .

for all u,v,w ∈ V . Choose λ > 0 and ε = ±1 such that

(4.36) vol = ελ−4/3σ .

Replaceσ byσλ := λσ in (4.34) to obtainΦλ = λ
−1Φ. Its coassociative calibration isΨλ = λ

−4/3Ψ, the

inner product on V ∗ induced by Φλ is 〈·, ·〉V ∗,λ = λ
−2/3〈·, ·〉V ∗ , and the isomorphism κλ : V → V ∗

is κλ = λ
2/3κ. Hence ,

ϕλ := κ∗λΦλ = λϕ, ψλ := κ∗λΨλ = λ
4/3κ∗Ψ.

By (4.36) this implies

volλ := 1

7
ϕλ ∧ψλ = λ

7/3
vol = ελσ = εσλ .

Multiply both sides in equation (4.35) by ελ2
to obtain

ϕλ(u,v,w)εσλ = κλ(u) ∧ κλ(v) ∧ κλ(w) ∧ εψ

Since εσλ = volλ , it follows from (4.39) below that the same equation holds with εψ replaced byψλ .

Thus εψ = ψλ is the associative calibration of ϕλ . (Here ε is independent of the choice of σ .) This

proves Theorem 4.33. �

Remark 4.37. We can interpret Theorem 4.33 in the spirit of Remark 3.10. In the notation of

Remark 3.10, if V is an oriented n–dimensional vector space with an inner product д, then the

Hodge ∗–operator ∗ : ΛkV ∗ → Λn−kV ∗ can be de�ned as

∗α = (i−1

д )
∗α ⊗ volд ∈ Λ

kV ⊗ ΛnV ∗ = Λn−kV ∗.
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If V is a 7–dimensional vector space and ψ ∈ Λ4V ∗, then we can equivalently think of it as

a 3–form ϕ∗ on V ∗ with values in Λ7V ∗ since Λ4V ∗ = Λ3V ⊗ Λ7V ∗. De�ne a symmetric bilinear

form G∗ : V ∗ ×V ∗ → (Λ7V ∗)2 by

G∗(α , β) :=
1

6

i(α)ϕ∗ ∧ i(β)ϕ∗ ∧ ϕ∗ for α , β ∈ V ∗.

Condition (2) in Theorem 4.33 is equivalent to iG∗ : V ∗ → V ⊗(Λ7V ∗)2 being an isomorphism. Note

that det iG∗ ∈ (Λ
7V ∗)12

. After picking an orientation we de�ne a positive root (det iG∗)
1/12 ∈ Λ7V ∗.

De�ne a volume form on V and an inner product on V ∗ by

volд := (det(iG∗))
1/12

and д∗ :=
G∗

vol
2

д
.

A moment’s thought shows that volд is the volume form associated with the dual inner product д
and the chosen orientation on V . Further, the 3–form

ϕ :=
(iд)
∗ϕ∗

volд
∈ Λ3V ∗

satis�es

1

6

i(u)ϕ ∧ i(v)ϕ ∧ ϕ = д(u,v) volд .

and ∗ϕ = ψ .

The next lemma summarizes some useful identities that will be needed throughout. The �rst

of these has already been used in the proof of Theorem 4.33. Assume that V is a 7–dimensional

oriented real Hilbert space equipped with a compatible cross product, ϕ ∈ Λ3V ∗ is the associative

calibration, andψ := ∗ϕ ∈ Λ4V ∗ is the coassociative calibration of (V ,ϕ).
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Lemma 4.38. The following hold for all u,v,w,x ∈ V and all ω ∈ Λ2V ∗:

ψ ∧ u∗ ∧v∗ ∧w∗ = ϕ(u,v,w)vol,(4.39)

ϕ ∧ u∗ ∧v∗ ∧w∗ ∧ x∗ = ψ (u,v,w,x)vol,(4.40)

ι(u)ψ ∧v∗ ∧ ι(v)ψ = 0,(4.41)

∗(ψ ∧ u∗) = ι(u)ϕ,(4.42)

∗(ϕ ∧ u∗) = ι(u)ψ ,(4.43)

|ι(u)ϕ |2 = 3|u |2,(4.44)

|ι(u)ψ |2 = 4|u |2,(4.45)

ϕ ∧ ι(u)ϕ = 2ψ ∧ u∗,(4.46)

ϕ ∧ ι(u)ψ = −4ι(u)vol,(4.47)

ψ ∧ ι(u)ϕ = 3ι(u)vol,(4.48)

ψ ∧ ι(u)ψ = 0,(4.49)

∗(ϕ ∧ ι(u)ϕ) = 2ι(u)ϕ,(4.50)

∗(ϕ ∧ ι(u)ψ ) = −4u∗,(4.51)

∗(ψ ∧ ι(u)ϕ) = 3u∗,(4.52)

∗(ψ ∧ ∗(ψ ∧ ι(u)ϕ)) = 3ι(u)ϕ,(4.53)

ι(u)ϕ ∧ ∗ι(v)ϕ = 3〈u,v〉vol,(4.54)

u∗ ∧v∗ = ι(u ×v)ϕ − ι(v)ι(u)ψ ,(4.55)

u∗ ∧v∗ ∧ ∗ι(u ×v)ϕ = |u ×v |2vol,(4.56)

u∗ ∧v∗ ∧ ι(u)ϕ ∧ ι(v)ψ = 2|u ×v |2vol,(4.57)

ψ ∧ u∗ ∧v∗ = ι(u ×v)vol,(4.58)

ϕ ∧ u∗ ∧v∗ ∧w∗ = ι([u,v,w])vol,(4.59)

ϕ ∧ u∗ ∧v∗ = ∗ι(v)ι(u)ψ ,(4.60)

∗(ψ ∧ ∗(ψ ∧ ω)) = ω + ∗(ϕ ∧ ω),(4.61)

∗(ϕ ∧ ∗(ϕ ∧ ω)) = 2ω + ∗(ϕ ∧ ω).(4.62)

Proof. It is a general fact about alternating k–forms on a �nite-dimensional Hilbert space V that

〈u∗
1
∧ · · · ∧ u∗k ,α〉 = α(u1, . . . ,uk ) for all ui ∈ V and all α ∈ ΛkV ∗. This proves (4.39) and (4.40).

Equations (4.42) and (4.43) follow from (4.15) in Remark 4.14.

To prove equations (4.41) and (4.44)–(4.48) assume without loss of generality that u,v are

orthonormal. By Theorem 3.2 assume that V = R7
with u = e1 and v = e2, and that ϕ andψ are as

in (4.12) and (4.13), i.e.,

ϕ = ϕ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356,

ψ = ψ0 = −e
1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567.

(4.63)
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Then

ι(u)ϕ = e23 − e45 − e67,

ι(u)ψ = −e247 − e256 + e346 − e357,

v∗ ∧ ι(v)ψ = −e1247 − e1256 + e2345 − e2367.

(4.64)

Equation (4.41) follows by multipying the last two sums, and (4.44) and (4.45) follow by examining

the �rst two sums. Moreover, by (4.63) and (4.64),

ϕ ∧ ι(u)ϕ = −2e12345 − 2e12367 + 2e14567 = 2 ∗ι(u)ϕ = 2u∗ ∧ψ .

This proves (4.46). By (4.63) and (4.64) we also haveψ ∧ ι(u)ϕ = 3e234567
and ϕ ∧ ι(u)ψ = −4e234567

.

This proves (4.47) and (4.48).

Equation (4.49) follows by contracting u with the 8–formψ ∧ψ = 0. Equations (4.50)–(4.52)

follow from (4.46)–(4.48) and the fact that ∗u∗ = ι(u)vol and ∗(u∗ ∧ψ ) = ι(u)ϕ by (4.42). To prove

equation (4.53) take the exterior product of equation (4.52) withψ and then use (4.42) to obtain

ψ ∧ ∗(ψ ∧ ι(u)ϕ) = ψ ∧ 3u∗ = 3 ∗ι(u)ϕ .

Equation (4.54) follows from (4.44) and the fact that the left hand side in (4.54) is symmetric in u
and v . Equation (4.55) is equivalent to (4.20) in the proof of Lemma 4.8. To prove equation (4.56)

choose w := u ×v in (4.39) to obtain

|u ×v |2vol = u∗ ∧v∗ ∧ (u ×v)∗ ∧ψ = u∗ ∧v∗ ∧ ∗ι(u ×v)ϕ .

Here the last equation follows from (4.42). To prove (4.57) we compute

u∗ ∧v∗ ∧ ι(u)ϕ ∧ ι(v)ψ

= −ι(v)
(
u∗ ∧v∗ ∧ ι(u)ϕ

)
∧ψ

= −〈u,v〉v∗ ∧ ι(u)ϕ ∧ψ + |v |2u∗ ∧ ι(u)ϕ ∧ψ − u∗ ∧v∗ ∧ (u ×v)∗ ∧ψ

= −〈u,v〉ι(u)ϕ ∧ ∗ι(v)ϕ + |v |2ι(u)ϕ ∧ ∗ι(u)ϕ − u∗ ∧v∗ ∧ ∗ι(u ×v)ϕ

= 2|u ×v |2vol.

Here the second step uses the identity ι(v)ι(u)ϕ = ϕ(u,v, ·) = (u × v)∗, the third step follows

from (4.42), and the last step follows from (4.46) and (4.56).

To prove equation (4.58) take the exterior product with a 1–form w∗ and use equation (4.39) to

obtain (
ψ ∧ u∗ ∧v∗

)
∧w∗ = ϕ(u,v,w)vol = 〈u ×v,w〉vol

= (∗(u ×v)∗) ∧w∗ = (ι(u ×v)vol) ∧w∗.
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To prove equation (4.59) take the exterior product with a 1–form x∗ and use equation (4.40) to

obtain (
ϕ ∧ u∗ ∧v∗ ∧w∗

)
∧ x∗ = ψ (u,v,w,x)vol = 〈[u,v,w],x〉vol

= (∗[u,v,w]∗) ∧ x∗ = (ι([u,v,w])vol) ∧ x∗.

To prove equation (4.60) take the exterior product with w∗ ∧ x∗ for w,x ∈ V and use equa-

tion (4.58) to obtain (
ϕ ∧ u∗ ∧v∗

)
∧ (w∗ ∧ x∗) = ψ (u,v,w,x)vol

= 〈ι(v)ι(u)ψ ,w∗ ∧ x∗〉vol

= (∗ι(v)ι(u)ψ ) ∧ (w∗ ∧ x∗).

Since Λ2V ∗ has a basis of 2–forms of the form w∗ ∧ x∗, this proves (4.60).

To prove equations (4.61) and (4.62) it su�ces to assume

ω = u∗ ∧v∗

for u,v ∈ V . Then it follows from (4.55) and (4.60) that

ι(u ×v)ϕ = u∗ ∧v∗ + ι(v)ι(u)ψ

= u∗ ∧v∗ + ∗(u∗ ∧v∗ ∧ ϕ)

= ω + ∗(ϕ ∧ ω).

(4.65)

Moroever, ∗(ψ ∧ ω) = (u ×v)∗ by (4.58). Hence, by (4.42) and (4.65),

∗
(
ψ ∧ ∗

(
ψ ∧ ω

) )
= ∗

(
ψ ∧ (u ×v)∗

)
= ι(u ×v)ϕ

= ω + ∗(ϕ ∧ ω).

This proves equation (4.61). Moreover, by (4.50) and (4.65),

∗
(
ϕ ∧ ∗

(
ϕ ∧ ω

) )
= ∗

(
ϕ ∧

(
ι(u ×v)ϕ − ω

) )
= ∗

(
ϕ ∧ ι(u ×v)ϕ

)
− ∗

(
ϕ ∧ ω

)
= 2ι(u ×v)ϕ − ∗

(
ϕ ∧ ω

)
= 2ω + ∗(ϕ ∧ ω).

This proves equation (4.62) and Lemma 4.38. �
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5 Normed algebras

De�nition 5.1. A normed algebra consists of a �nite dimensional real Hilbert spaceW , a bilinear

map

W ×W →W : (u,v) 7→ uv,

(called the product), and a unit vector 1 ∈W (called the unit), satisfying

1u = u1 = u

and

(5.2) |uv | = |u | |v |

for all u,v ∈W .

WhenW is a normed algebra it is convenient to identify the real numbers with a subspace of

W via multiplication with the unit 1. Thus, for u ∈W and λ ∈ R, we write u + λ instead of u + λ1.

De�ne an involution W → W : u 7→ ū (called conjugation) by 1̄ := 1 and ū := −u for u ∈ 1
⊥

.

Thus

(5.3) ū := 2〈u, 1〉 − u .

We think of R ⊂W as the real part ofW and of its orthogonal complement as the imaginary part.

The real and imaginary parts of u ∈W will be denoted by Reu := 〈u, 1〉 and Imu := u − 〈u, 1〉.

Theorem 5.4. Normed algebras and vector spaces with cross products are related as follows.

1. IfW is a normed algebra, thenV := 1
⊥ is equipped with a cross productV ×V → V : (u,v) 7→

u ×v de�ned by

(5.5) u ×v := uv + 〈u,v〉

for u,v ∈ 1
⊥.

2. If V is a �nite dimensional Hilbert space equipped with a cross product, thenW := R ⊕ V is a
normed algebra with

(5.6) uv := u0v0 − 〈u1,v1〉 + u0v1 +v0u1 + u1 ×v1

for u = u0 + u1,v = v0 + v1 ∈ R ⊕ V . Here we identify a real number λ with the pair
(λ, 0) ∈ R ⊕ V and a vector v ∈ V with the pair (0,v) ∈ R ⊕ V .

These constructions are inverses of each other. In particular, a normed algebra has dimension 1, 2,
4, or 8 and is isomorphic to R, C, H, or O.

Proof. See page 29. �
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Lemma 5.7. LetW be a normed algebra. Then the following hold:

1. For all u,v,w ∈W we have

(5.8) 〈uv,w〉 = 〈v, ūw〉, 〈uv,w〉 = 〈u,wv̄〉.

2. For all u,v ∈W we have

(5.9) uū = |u |2, uv̄ +vū = 2〈u,v〉.

3. For all u,v ∈W we have

(5.10) 〈u,v〉 = 〈ū, v̄〉, uv = v̄ū .

4. For all u,v,w ∈W we have

(5.11) u(v̄w) +v(ūw) = 2〈u,v〉w, (uv̄)w + (uw̄)v = 2〈v,w〉u

Proof. We prove (1). The �rst equation in (5.8) is obvious when u is a real multiple of 1. Hence, it

su�ces to assume that u is orthogonal to 1. Expanding the identities |uv + uw |2 = |u |2 |v +w |2

and |uv +wv |2 = |u +w |2 |v |2 we obtain the equations

(5.12) 〈uv,uw〉 = |u |2〈v,w〉, 〈uv,wv〉 = 〈u,w〉|v |2.

If u is orthogonal to 1, the �rst equation in (5.12) gives

〈uv,w〉 + 〈v,uw〉 = 〈(1 + u)v, (1 + u)w〉 − (1 + |u |2)〈v,w〉 = 0.

Since ū = −u for u ∈ 1
⊥

, this proves the �rst equation in (5.8). The proof of the second equation is

similar.

We prove (2). Using the second equation in (5.8) with v = ū we obtain 〈uū,w〉 = 〈u,wu〉 =
〈1,w〉|u |2. Here we have used the second equation in (5.12). This impliesuū = |u |2 for everyu ∈W .

Replacing u by u +v gives uv̄ +vū = 2〈u,v〉. This proves (5.9).

We prove (3). That conjugation is an isometry follows immediately from the de�nition.

Using (5.9) with v replaced by v̄ we obtain

v̄ū = 2〈u, v̄〉 − uv = 2〈uv, 1〉 − uv = uv .

Here the second equation follows from (5.8). This proves (5.10).

We prove (4). For all u,w ∈W we have

(5.13) 〈u(ūw),w〉 = |ūw |2 = |ū |2 |w |2 = |u |2 |w |2

Since the operator w 7→ u(ūw) is self-adjoint, by (5.8), this shows that u(ūw) = |u |2w for all

u,w ∈ W . Replacing u by u + v we obtain the �rst equation in (5.11). The proof of the second

equation is similar. �
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Proof of Theorem 5.4. LetW be a normed algebra. It follows from (5.8) that 〈u,v〉 = −〈uv, 1〉 and,

hence, u ×v := uv + 〈u,v〉 ∈ 1
⊥

for all u,v ∈ 1
⊥

. We write an element ofW as u = u0 + u1 with

u0 := 〈u, 1〉 ∈ R and u1 := u − 〈u, 1〉 ∈ V = 1
⊥

. For u,v ∈W we compute

|u |2 |v |2 − |uv |2 =
(
u2

0
+ |u1 |

2
) (
v2

0
+ |v1 |

2
)
− (u0v0 − 〈u1,v1〉)

2

− |u0v1 +v0u1 + u1 ×v1 |
2

= u2

0
|v1 |

2 +v2

0
|u1 |

2 + 2u0v0〈u1,v1〉 + |u1 |
2 |v1 |

2 − 〈u1,v1〉
2

− |u0v1 +v0u1 |
2 − |u1 ×v1 |

2 − 2〈u0v1 +v0u1,u1 ×v1〉

=|u1 |
2 |v1 |

2 − 〈u1,v1〉
2 − |u1 ×v1 |

2

− 2u0〈v1,u1 ×v1〉 − 2v0〈u1,u1 ×v1〉.

The right hand side vanishes for all u and v if and only if the product on V satis�es (2.3) and (2.4).

Hence, (5.5) de�nes a cross product onV and the product can obviously be recovered from the cross

product via (5.6). Conversely, the same argument shows that, ifV is equipped with a cross product,

the formula (5.6) de�nes a normed algebra structure onW := R ⊕V . Moreover, by Theorem 2.5, V
has dimension 0, 1, 3, or 7. This proves Theorem 5.4. �

Remark 5.14. IfW is a normed algebra and the cross product on V := 1
⊥

is de�ned by (5.5), then

the commutator of two elements u,v ∈W is given by

(5.15) [u,v] := uv −vu = 2u1 ×v1.

In particular, the product onW is commutative in dimensions 1 and 2 and is not commutative in

dimensions 4 and 8.

Remark 5.16. LetW be a normed algebra of dimension 4 or 8. ThenV := 1
⊥

has a natural orientation

determined by Lemma 2.12 or Lemma 3.4, respectively, in dimensions 3 and 7. We orientW as

R ⊕ V .

Remark 5.17. IfW is a normed algebra and the cross product on V := 1
⊥

is de�ned by (5.5), then

the associator bracket on V is related to the product onW by

(5.18) (uv)w − u(vw) = 2[u1,v1,w1]

for all u,v,w ∈W . ThusW is an associative algebra in dimensions 1, 2, 4 and is not associative in

dimension 8. The formula (5.18) is the reason for the term associator bracket. Many authors actually

de�ne the associator bracket as the left hand side of equation (5.18) (see for example [HL82]).

To prove (5.18), we observe that the associator bracket on V can be written in the form

2[u,v,w] = 2(u ×v) ×w + 2〈v,w〉u − 2〈u,w〉v

= (u ×v) ×w − u × (v ×w) + 〈v,w〉u − 〈u,v〉w
(5.19)
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foru,v,w ∈ V . Here the �rst equation follows from (4.1) and the second equation follows from (2.11).

For u,v,w ∈ V we compute

(uv)w − u(vw) = (−〈u,v〉 + u ×v)w − u(−〈v,w〉 +v ×w)

= (u ×v) ×w − u × (v ×w) − 〈u,v〉w + 〈v,w〉u

= 2[u,v,w].

Here the �rst equation follows from the de�nition of the cross product in (5.5), the second equation

follows by applying (5.5) again and using (2.7), and the last equation follows from (5.19). Now, if

any of the factors u,v,w is a real number, the term on the left vanishes. Hence, real parts can be

added to the vectors without changing the expression.

Theorem 5.20. LetW be an 8–dimensional normed algebra.

1. The mapW 3 →W : (u,v,w) 7→ u ×v ×w de�ned by

(5.21) u ×v ×w := 1

2

(
(uv̄)w − (wv̄)u

)
(called the triple cross product ofW ) is alternating and satis�es

(5.22) 〈x ,u ×v ×w〉 + 〈u ×v × x ,w〉 = 0,

(5.23) |u ×v ×w | = |u ∧v ∧w |,

for all u,v,w,x ∈W and

(5.24) 〈e × u ×v, e ×w × x〉 = −|e |2〈u ×v ×w,x〉

whenever e,u,v,w,x ∈W are orthonormal.

2. The map Φ : W 4 → R de�ned by

Φ(x ,u,v,w) := 〈x ,u ×v ×w〉

(called the Cayley calibration ofW ) is an alternating 4–form. Moreover, Φ is self-dual, i.e.,

(5.25) Φ = ∗Φ,

where ∗ : ΛkW ∗ → Λ8−kW ∗ denotes the Hodge ∗–operator associated to the inner product and
the orientation of Remark 5.16.
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3. Let V := 1
⊥ with the cross product de�ned by (5.5) and the associator bracket [·, ·, ·] de�ned

by (4.1). Let ϕ ∈ Λ3V ∗ and ψ ∈ Λ4V ∗ be the associative and coassociative calibrations of V
de�ned by (2.8) and (4.9), respectively. Then the triple cross product (5.21) of u,v,w ∈W can
be expressed as

u ×v ×w = ϕ(u1,v1,w1) − [u1,v1,w1]

− u0(v1 ×w1) −v0(w1 × u1) −w0(u1 ×v1)
(5.26)

and the Cayley calibration is given by

(5.27) Φ = 1
∗ ∧ ϕ +ψ .

4. For all u,v ∈W we have

(5.28) uv = u × 1 ×v + 〈u, 1〉v + 〈v, 1〉u − 〈u,v〉.

Remark 5.29. There is a choice involved in the de�nition of the triple cross product in (5.21). An

alternative formula is

(u,v,w) 7→ 1

2

(
u(v̄w) −w(v̄u)

)
.

This map also satis�es (5.22) and (5.23). However, it satis�es (5.24) with the minus sign changed

to plus and the resulting Cayley calibration is given by Φ = 1
∗ ∧ ϕ − ψ and is anti-self-dual.

Equation (5.28) remains unchanged.

Proof of Theorem 5.20. LetW ×W ×W →W : (u,v,w) 7→ u ×v ×w be the trilinear map de�ned

by (5.21). We prove that this map satis�es (5.26). To see this, �x three vectors u,v,w ∈W . Then,

by (5.15), we have

v̄w −wv̄ = −2v1 ×w1, uw −wu = −2w1 × u1, uv̄ − v̄u = −2u1 ×v1.

Multiplying these expressions byu0,v0,w0, respectively, we obtain (twice) the last three expressions

on the right in (5.26). Thus it su�ces to assume u,v,w ∈ V . Then we obtain

2u ×v ×w = (uv̄)w − (wv̄)u

= −(uv)w + (wv)u

= −(−〈u,v〉 + u ×v)w + (−〈w,v〉 +w ×v)u

= 〈u ×v,w〉 + 〈u,v〉w − (u ×v) ×w

− 〈w ×v,u〉 − 〈w,v〉u + (w ×v) × u

= 2ϕ(u,v,w) − 2[u,v,w].

Here the third and fourth equations follow from (5.5), and the last equation follows from (2.8)

and (5.19). This proves that the formulas (5.21) and (5.26) agree.
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We prove (1). By (5.26) we have

〈x ,u ×v ×w〉 = x0ϕ(u1,v1,w1) +ψ (x1,u1,v1,w1)

− u0ϕ(x1,v1,w1) −v0ϕ(x1,w1,u1)

−w0ϕ(x1,u1,v1)

(5.30)

for x ,u,v,w ∈W . Here we have used ϕ(u1,v1,w1) = 〈u1,v1 ×w1〉 and

−〈x1, [u1,v1,w1]〉 = −ψ (u1,v1,w1,x1) = ψ (x1,u1,v1,w1).

It follows from the alternating properties of ϕ and ψ that the right hand side of (5.30) is an

alternating 4–form. Hence, the map (5.21) is alternating and satis�es (5.22). For u,v,w ∈ V = 1
⊥

equation (5.23) follows from Lemma 4.4. In general, if u,v,w ∈ W are pairwise orthogonal, it

follows from (5.9) and (5.11) that

(uv̄)w = −(uw̄)v = (wū)v = −(wv̄)u .

This shows that

(5.31) 〈u,v〉 = 〈v,w〉 = 〈w,u〉 = 0 =⇒ u ×v ×w = u(v̄w)

and, hence, by (5.2), we have |u×v×w | = |u∧v∧w | in the orthogonal case. This equation continues

to hold in general by Gram–Schmidt. This proves that the triple cross product satis�es (5.23).

We prove (5.24). The second equation in (5.11) asserts that (yz)z = |z |2y for all y, z ∈W . Hence,

by (5.31), we have

〈e × u ×v, e ×w × x〉 = 〈u ×v × e,w × x × e〉

= 〈(uv̄)e, (wx̄)e〉

= 〈uv̄, ((wx̄)e)ē〉

= |e |2〈uv̄,wx̄〉

= |e |2〈(uv̄)x ,w〉

= |e |2〈u ×v × x ,w〉

= −|e |2〈x ,u ×v ×w〉

whenever e,u,v,w,x ∈ W are pairwise orthogonal. Thus the triple cross product (5.21) satis-

�es (5.24). This proves (1).

We prove (2) and (3). That Φ is a 4–form follows from (1). That it satis�es equation (5.27)

follows directly from the de�nition of Φ and equation (5.30). That Φ is self-dual with respect to the

orientation of Remark 5.16 follows from (5.27) and Lemma 4.8. Equation (5.26) was proved above.

We prove (4). By (5.15) and (5.21), we have

u1 ×v1 =
1

2

(
uv −vu

)
= u × 1 ×v .
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Hence, it follows from (5.6) that

uv = u0v0 − 〈u1,v1〉 + u0v1 +v0u1 + u1 ×v1

= −u0v0 − 〈u1,v1〉 + u0v +v0u + u1 ×v1

= −〈u,v〉 + 〈u, 1〉v + 〈v, 1〉u + u × 1 ×v .

This proves (5.28) and Theorem 5.20. �

Example 5.32. If W = R8 = R ⊕ R7
with coordinates x0,x1, . . . ,x7 and the cross product of

Example 2.15 on R7
, then the associated Cayley calibration is given by

Φ0 = e0123 − e0145 − e0167 − e0246 + e0257 − e0347 − e0356

+ e4567 − e2367 − e2345 − e1357 + e1346 − e1256 − e1247.

Thus

Φ0 ∧ Φ0 = 14vol.

(See the proof of Lemma 4.8.)

De�nition 5.33. LetW be an 8–dimensional normed algebra. The fourfold cross product onW
is the alternating multi-linear mapW 4 →W : (u,v,w,x) 7→ u ×v ×w × x de�ned by

(5.34) 4x × u ×v ×w := (u ×v ×w)x̄ − (v ×w × x)ū + (w × x × u)v̄ − (x × u ×v)w̄ .

Theorem 5.35. LetW be an 8–dimensional normed algebra with triple cross product (5.21), Cayley
calibration Φ ∈ Λ4W ∗, and fourfold cross product (5.34). Then, for all x ,u,v,w ∈W , we have

(5.36) |x × u ×v ×w | = |x ∧ u ∧v ∧w |

and

Re (x × u ×v ×w) = Φ(x ,u,v,w),

Im (x × u ×v ×w) = [x1,u1,v1,w1] − x0[u1,v1,w1]

+ u0[v1,w1,x1] −v0[w1,x1,u1]

+w0[x1,u1,v1],

(5.37)

where the last �ve terms use the associator and coassociator brackets on V := 1
⊥ de�ned by (4.1)

and (4.23). In particular,

(5.38) Φ(x ,u,v,w)2 + |Im (x × u ×v ×w)|2 = |x ∧ u ∧v ∧w |2.

Proof. That the fourfold cross product is alternating is obvious from the de�nition and the alter-

nating property of the triple cross product. We prove that it satis�es (5.36). For this it su�ces to

assume that u,v,w,x are pairwise orthogonal. Then u ×v ×w = (uv̄)w and hence

(u ×v ×w)x̄ = ((uv̄)w)x̄ = −((uv̄)x)w̄ = −(u ×v × x)w̄ .
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Here we have used (5.9) and (5.11). Using the alternating property of the triple cross product we

obtain that the four summands in (5.34) agree in the orthogonal case. Hence, x×u×v×w = ((uv̄)w)x̄
and so equation (5.36) follows from (5.2).

We prove (5.37). Since u × 1 ×v = u1 ×v1, we have

1 × u ×v ×w = 1

4

(
u ×v ×w + (v1 ×w1)ū + (w1 × u1)v̄ + (u1 ×v1)w̄

)
= 1

4

(
u ×v ×w + u0(v1 ×w1) +v0(w1 × u1) +w0(u1 ×v1)

)
+ 1

4

(
〈v1 ×w1,u1〉 + 〈w1 × u1,v1〉 + 〈u1 ×v1,w1〉

)
− 1

4

(
(v1 ×w1) × u1 + (w1 × u1) ×v1 + (u1 ×v1) ×w1

)
= ϕ(u1,v1,w1) − [u1,v1,w1].

The last equation follows from (5.26) and the de�nition of the associator bracket in (4.1). This

proves (5.37) in the case x1 = 0. Using the alternating property we may now assume that x ,u,v,w ∈
V := 1

⊥
. If x ,u,v,w are orthogonal to 1 it follows from (5.26) that u ×v ×w = ϕ(u,v,w) − [u,v,w]

and Φ(x ,u,v,w) = −〈x , [u,v,w]〉 = ψ (x ,u,v,w). Moreover, x̄ = −x and similarly for u,v,w .

Hence,

4x × u ×v ×w

= −(u ×v ×w)x + (v ×w × x)u − (w × x × u)v + (x × u ×v)w

= [u,v,w]x − [v,w,x]u + [w,x ,u]v − [x ,u,v]w

− ϕ(u,v,w)x + ϕ(v,w,x)u − ϕ(w,x ,u)v + ϕ(x ,u,v)w

= −〈[u,v,w],x〉 + 〈[v,w,x],u〉 − 〈[w,x ,u],v〉 + 〈[x ,u,v],w〉

+ [u,v,w] × x − [v,w,x] × u + [w,x ,u] ×v − [x ,u,v] ×w

− ϕ(u,v,w)x + ϕ(v,w,x)u − ϕ(w,x ,u)v + ϕ(x ,u,v)w

= −4ψ (u,v,w,x) − 4[u,v,w,x]

= 4Φ(x ,u,v,w) + 4[x ,u,v,w].

Here the last but one equation follows from Lemma 4.22. Thus we have proved (5.37) and Theo-

rem 5.35. �

6 Triple cross products

In this section we show how to recover the normed algebra structure onW from the triple cross

product. In fact we shall see that every unit vector in W can be used as a unit for the algebra

structure. We assume throughout thatW is a �nite dimensional real Hilbert space.
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De�nition 6.1. An alternating multi-linear map

(6.2) W ×W ×W →W : (u,v,w) 7→ u ×v ×w

is called a triple cross product if it satis�es

〈u ×v ×w,u〉 = 〈u ×v ×w,v〉 = 〈u ×v ×w,w〉 = 0,(6.3)

|u ×v ×w | = |u ∧v ∧w |(6.4)

for all u,v,w ∈W .

A multi-linear map (6.2) that satis�es (6.4) also satis�es u ×v ×w = 0 whenever u,v,w ∈W
are linearly dependent, and hence is necessarily alternating.

Lemma 6.5. Let (6.2) be an alternating multi-linear map. Then (6.3) holds if and only if, for all
x ,u,v,w ∈W , we have

(6.6) 〈x ,u ×v ×w〉 + 〈u ×v × x ,w〉 = 0.

Proof. If (6.6) holds, then (6.3) follows directly from the alternating property of the map (6.2). To

prove the converse, expand the expression 〈u ×v × (w +x),w +x〉 and use (6.3) to obtain (6.6). �

Lemma 6.7. Let (6.2) be an alternating multi-linear map satisfying (6.3). Then equation (6.4) holds
if and only if, for all u,v,w ∈W , we have

u ×v × (u ×v ×w) + |u ∧v |2w

=
(
|v |2〈u,w〉 − 〈u,v〉〈v,w〉

)
u +

(
|u |2〈v,w〉 − 〈v,u〉〈u,w〉

)
v .

(6.8)

Proof. If (6.8) holds and w is orthogonal to u and v , then

u ×v × (u ×v ×w) = −|u ∧v |2w .

Taking the inner product with w and using (6.6) we obtain (6.4) under the assumption 〈u,w〉 =
〈v,w〉 = 0. Since both sides of equation (6.4) remain unchanged if we add tow a linear combination

of u and v , this proves that (6.8) implies (6.4).

To prove the converse we assume (6.4). If w is orthogonal to u and v , we have |u ×v ×w |2 =
|u ∧v |2 |w |2. Replacing w by w + x we obtain

(6.9) w,x ∈ u⊥ ∩v⊥ =⇒ 〈u ×v ×w,u ×v × x〉 = |u ∧v |2〈w,x〉.

Using (6.6) we obtain (6.8) for every vector w ∈ u⊥ ∩ v⊥. Replacing a general vector w by its

projection onto the orthogonal complement of the subspace spanned byu andv we deduce that (6.8)

holds in general. This proves Lemma 6.7. �
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Let (6.2) be a triple cross product. If e ∈W is a unit vector, then the subspaceVe := e⊥ carries a

cross product (u,v) 7→ u ×e v de�ned by u ×e v := u ×e ×v . Hence, by Theorem 2.5, the dimension

of Ve is 0, 1, 3, or 7.

It follows that the dimension ofW is 0, 1, 2, 4, or 8.

Lemma 6.10. Assume dimW = 8 and let (6.2) be a triple cross product. Then there is a number
ε ∈ {±1} such that

(6.11) e × u × (e ×v ×w) = ε |e |2u ×v ×w

whenever e,u,v ∈W are pairwise orthogonal andw ∈W is orthogonal to e,u,v, and e × u ×v .

Proof. It su�ces to assume that the vectors e,u,v ∈W are orthonormal. Then the subspace

H := span(e,u,v, e × u ×v)⊥

has dimension four. It follows from (6.6) and (6.9) that the formulas

Iw := e × u ×w, Jw := e ×v ×w, Kw := u ×v ×w,

de�ne endomorphisms I , J ,K ofH . Moreover, by (6.6), these operators are skew adjoint and, by (6.9),

they are complex structures on H . It follows also from (6.9) that e × x × (e × x × w) = −|x |2w
whenever e,x ,w are pairwise orthogonal and |e | = 1. Assumingw ∈ H and using this identity with

x = u +v we obtain I J + J I = 0. This implies that the automorphisms of H of the form aI +bJ +cI J
with a2 + b2 + c2 = 1 belong to the space J of orthogonal complex structures on H . They form

one of the two components of J and K belongs to this component because it anticommutes with

I and J . Hence, K = εI J with ε = ±1. Since the space of orthonormal triples inW is connected,

and the constant ε depends continuously on the triple e,u,v , we have proved (6.11) under the

assumption that e,u,v are orthonormal andw is orthogonal to the vectors e,u,v, e × u ×v . Hence,

the assertion follows by scaling. This proves Lemma 6.10. �

De�nition 6.12. Assume dimW = 8. A triple cross product (6.2) is called positive if it satis�es (6.11)

with ε = 1 and is called negative if it satis�es (6.11) with ε = −1.

De�nition 6.13. Assume dimW = 8 and let (6.2) be a triple cross product. Then, by Lemma 6.5,

the map Φ : W ×W ×W ×W → R de�ned by

(6.14) Φ(x ,u,v,w) := 〈x ,u ×v ×w〉

is an alternating 4–form. It is called the Cayley calibration ofW .

Theorem 6.15. Assume dimW = 8 and let (6.2) be a triple cross product with Cayley calibration
Φ ∈ Λ4W ∗ given by (6.14). Let e ∈W be a unit vector.
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1. De�ne the mapψe : W 4 → R by

ψe (u,v,w,x) := 〈e × u ×v, e ×w × x〉

−
(
〈u,w〉 − 〈u, e〉〈e,w〉

) (
〈v,x〉 − 〈v, e〉〈e,x〉

)
+

(
〈u,x〉 − 〈u, e〉〈e,x〉

) (
〈v,w〉 − 〈v, e〉〈e,w〉

)
.

(6.16)

Thenψe ∈ Λ4W ∗ and

(6.17) Φ = e∗ ∧ ϕe + εψe , ϕe := ι(e)Φ ∈ Λ3W ∗,

where ε ∈ {±1} is as in Lemma 6.10.

2. The subspace Ve := e⊥ carries a cross product

(6.18) Ve ×Ve → Ve : (u,v) 7→ u ×e v := u × e ×v,

the restriction of ϕe to Ve is the associative calibration of (6.18), and the restriction ofψe to Ve
is the coassociative calibration of (6.18).

3. The spaceW is a normed algebra with unit e and multiplication and conjugation given by

(6.19) uv := u × e ×v + 〈u, e〉v + 〈v, e〉u − 〈u,v〉e, ū := 2〈u, e〉e − u .

If the triple cross product is positive, then (uv̄)w − (wv̄)u = 2u ×v ×w .

Proof. We prove (1). If the vectors e,u,v,w,x are pairwise orthogonal, then

(6.20) 〈e × u × x , e ×v ×w〉 = −ε |e |2〈x ,u ×v ×w〉.

To see this, take the inner product of (6.11) with x . Then it follows from (6.6) that (6.20) holds

under the additional assumption that w is perpendicular to e × u ×v . Since x is orthogonal to e ,

this additional condition can be dropped, as both sides of the equation remain unchanged if we

add to w a multiple of e × u ×v . Thus we have proved (6.20).

Now �x a unit vector e ∈ W . By de�nition, ψe is alternating in the �rst two and last two

arguments, and satis�esψe (u,v,w,x) = ψe (w,x ,u,v) for all u,v,w,x ∈W . By (6.4) we also have

ψe (u,v,u,v) = 0. Expanding the identityψe (u,v + x ,u,v + x) = 0 we obtainψe (u,v,u,x) = 0 for

all u,v,x ∈W . Using this identity with u replaced by u +w gives

ψe (u,v,w,x) +ψe (w,v,u,x) = 0.

Hence, ψe is also skew-symmetric in the �rst and third argument and so is an alternating 4–

form. To see that it satis�es (6.17) it su�ces to show that εΦ and ψe agree on e⊥. Since they

are both 4–forms, it su�ces to show that they agree on every quadrupel of pairwise orthogonal

vectors u,v,w,x ∈ e⊥. But in this case we haveψe (u,x ,v,w) = −εΦ(x ,u,v,w) = εΦ(u,x ,v,w), by

equation (6.20). This proves (1).
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We prove (2). That (6.18) is a cross product onVe = e⊥ follows immediately from the de�nitions.

By (6.14) we have

〈u ×e v,w〉 = Φ(w,u, e,v) = Φ(e,u,v,w) = ϕe (u,v,w)

for u,v,w ∈ Ve , and hence the restriction of ϕe to Ve is the associative calibration. Moreover, the

associator bracket (4.1) on Ve is given by

[u,v,w]e = (u × e ×v) × e ×w + 〈v,w〉u − 〈u,w〉v .

Hence, for all u,v,w,x ∈ Ve , we have

〈[u,v,w]e ,x〉 = 〈e ×w × (u × e ×v),x〉 + 〈v,w〉〈u,x〉 − 〈u,w〉〈v,x〉

= 〈e × u ×v, e ×w × x〉 − 〈u,w〉〈v,x〉 + 〈u,x〉〈v,w〉

= ψe (u,v,w,x),

where the last equation follows from (6.16). Hence, the restriction ofψe to Ve is the coassociative

calibration and this proves (2).

We prove (3). That e is a unit follows directly from the de�nitions. To prove that the norm of

the product is equal to the product of the norms we observe that u × e ×v is orthogonal to e , u,

and v , by equation (6.6). Hence,

|uv |2 = |u × e ×v + 〈u, e〉v + 〈v, e〉u − 〈u,v〉e |2

= |u × e ×v |2 − 2〈v, e〉〈u,v〉〈v, e〉

+ 〈u, e〉2 |v |2 + 〈v, e〉2 |u |2 + 〈u,v〉2

= |u |2 |v |2.

Here the last equality uses the fact that |u × e ×v |2 = |u ∧ e ∧v |2. Thus we have proved thatW is

a normed algebra with unit e .

If the triple cross product (6.2) is positive, then ε = 1 and hence equation (6.17) asserts that

Φ = e∗ ∧ ϕe +ψe . Hence, it follows from (5.27) in Theorem 5.20 that the Cayley calibration Φe
associated to the above normed algebra structure is equal to Φ. This implies that the given triple

cross product (6.2) agrees with the triple cross product de�ned by (5.21). This proves (3) and

Theorem 6.15. �

Remark 6.21. Assume dimW = 8 and let (6.2) be a triple cross product with Cayley calibration

Φ ∈ Λ4W ∗ given by (6.14). Then, for every unit vector e ∈W , the subspace Ve = e⊥ is oriented by

Lemma 3.4 and Theorem 6.15. We orientW as the direct sumW = Re ⊕ Ve . This orientation is

independent of the choice of the unit vector e . With this orientation we have e∗ ∧ ϕe = ∗ψe , by

Theorem 6.15 (2) and Lemma 4.8. Hence, it follows from equation (6.17) in Theorem 6.15 (1) that

Φ ∧ Φ , 0. In fact, the triple cross product is positive if and only if Φ ∧ Φ > 0 with respect to our

orientation and negative if and only if Φ ∧ Φ < 0. In the positive case Φ is self-dual and in the

negative case Φ is anti-self-dual.
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Corollary 6.22. Assume dimW = 8 and let (6.2) be a triple cross product and let ε be as in Lemma 6.10.
Then, for all e,u,v,w ∈W , we have

e × u × (e ×v ×w) = ε |e |2u ×v ×w − ε 〈e,u ×v ×w〉e

− ε 〈e,u〉e ×v ×w

− ε 〈e,v〉e ×w × u

− ε 〈e,w〉e × u ×v

−
(
|e |2〈u,v〉 − 〈e,u〉〈e,v〉

)
w

+
(
|e |2〈u,w〉 − 〈e,u〉〈e,w〉

)
v

+
(
〈u,v〉〈e,w〉 − 〈u,w〉〈e,v〉

)
e .

(6.23)

Proof. Both sides of the equation remain unchanged if we add to u, v , or w a multiple of e . Hence,

it su�ces to prove (6.23) under the assumption that u,v,w are all orthogonal to e . Moreover, both

sides of the equation are always orthogonal to e . Hence, it su�ces to prove that the inner products

of both sides of (6.23) with every vector x ∈ e⊥ agree. It also su�ces to assume |e | = 1. Thus we

must prove that, if e ∈W is a unit vector and u,v,w,x ∈W are orthogonal to e , then we have

〈e × u × (e ×v ×w),x〉 = ε 〈u ×v ×w,x〉 − 〈u,v〉〈w,x〉 + 〈u,w〉〈v,x〉

or equivalently

(6.24) − 〈e × u × x , e ×v ×w〉 + 〈u,v〉〈x ,w〉 − 〈u,w〉〈x ,v〉 = ε 〈x ,u ×v ×w〉.

The right hand side of (6.24) is εΦ(x ,u,v,w) and, by (6.16), the left hand side of (6.24) is−ψe (u,x ,v,w).
Hence, equation (6.24) is equivalent to the assertion that the restriction ofψe to e⊥ agrees with Φ.

But this follows from equation (6.17) in Theorem 6.15. This proves Corollary 6.22. �

Lemma 6.25. Assume dimW = 8 and let (6.2) be a triple cross product with Cayley calibration
Φ ∈ Λ4W ∗ given by (6.14). Let H ⊂W be a 4–dimensional linear subspace. Then the following are
equivalent:

1. If u,v,w ∈ H , then u ×v ×w ∈ H .

2. If u,v ∈ H andw ∈ H⊥, then u ×v ×w ∈ H⊥.

3. If u ∈ H and v,w ∈ H⊥, then u ×v ×w ∈ H .

4. If u,v,w ∈ H⊥, then u ×v ×w ∈ H⊥.

5. If u,v,w ∈ H and x ∈ H⊥, then Φ(x ,u,v,w) = 0.

6. If x ,u,v,w is an orthonormal basis of H , then Φ(x ,u,v,w) = ±1.

7. If e ∈ H⊥ has norm one, then H is a coassociative subspace of Ve := e⊥.
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8. If e ∈ H has norm one, then H ∩Ve is an associative subspace of Ve .

A 4–dimensional subspace that satis�es these equivalent conditions is called a Cayley subspace of
W . If the vectors u,v,w ∈W are linearly independent, thenH := span{u,v,w,u ×v ×w} is a Cayley
subspace ofW .

Proof. We prove that (1) is equivalent to (5). If (1) holds andu,v,w ∈ H , x ∈ H⊥, thenu×v×w ∈ H
and, hence, Φ(x ,u,v,w) = 〈x ,u × v × w〉 = 0. Conversely, if (5) holds and u,v,w ∈ H , then

〈x ,u ×v ×w〉 = Φ(x ,u,v,w) = 0 for every x ∈ H⊥ and hence u ×v ×w ∈ H .

We prove that (1) is equivalent to (6). If (1) holds and x ,u,v,w is an orthonormal basis of H ,

then u × v ×w is orthogonal to u,v,w and has norm one. Since u × v ×w ∈ H , we must have

x = ±u × v × w . Hence Φ(x ,u,v,w) = ±|x |2 = ±1. Conversely, assume (6), let u,v,w ∈ H be

orthonormal, and choose x such that x ,u,v,w form an orthonormal basis of H . Then

〈x ,u ×v ×w〉2 = Φ(x ,u,v,w)2 = 1 = |x |2 |u ×v ×w |2.

Hence, u × v ×w is a real multiple of x and so u × v ×w ∈ H . Since the triple cross product is

alternating, the general case can be reduced to the orthonormal case by scaling and Gram–Schmidt.

That (6) is equivalent to (7) follows from Lemma 4.27 and the fact that Φ|Ve is the coassociative

calibration on Ve . Likewise, that (6) is equivalent to (8) follows from Lemma 4.7 and the fact that

ι(e)Φ|Ve is the associative calibration on Ve .

Thus we have proved that (1), (5), (6), (7), (8) are equivalent. The equivalence of (1), (2), (3) for

a unit vector u = e ∈ H follows from Lemma 4.27 with V := Ve and H replaced by H⊥, using the

fact that v ×e w = −e ×v ×w is the cross product on Ve .

The equivalence of (3) and (4) follows from the equivalence of (1) and (2) by interchanging the

roles of Λ and Λ⊥. Thus we have proved the equivalence of conditions (1)–(8). The last assertion

of the lemma follows from (1) and equation (6.8). This proves Lemma 6.25. �

7 Cayley calibrations

We assume throughout thatW is an 8–dimensional real vector space.

De�nition 7.1. A 4–form Φ ∈ Λ4W ∗ is called nondegenerate if for every triple u,v,w of linearly

independent vectors inW there is a vector x ∈W such that Φ(u,v,w,x) , 0. An inner product on

W is called compatible with a 4–form Φ if the mapW 3 →W : (u,v,w) 7→ u ×v ×w de�ned by

(7.2) 〈x ,u ×v ×w〉 := Φ(x ,u,v,w)

is a triple cross product. A 4–form Φ ∈ Λ4W ∗ is called a Cayley-form if it admits a compatible

inner product.
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Example 7.3. The standard Cayley-form on R8
in coordinates x0,x1, . . . ,x7 is given by

Φ0 = e0123 − e0145 − e0167 − e0246 + e0257 − e0347 − e0356

+ e4567 − e2367 − e2345 − e1357 + e1346 − e1256 − e1247.

It is compatible with the standard inner product and induces the standard triple cross product on

R8
(see Example 5.32). Note that Φ0 ∧ Φ0 = 14 vol.

As in Section 3 we shall see that a compatible inner product, if it exists, is uniquely determined

by Φ. However, in contrast to Section 3, nondegeneracy is, in the present setting, not equivalent to

the existence of a compatible inner product, but is only a necessary condition. The goal in this

section is to give an intrinsic characterization of Cayley-forms. In particular, we shall see that

every Cayley-form satis�es the condition Φ ∧ Φ , 0. It seems to be an open question whether or

not every nondegenerate 4–form onW has this property; we could not �nd a counterexample but

also did not see how to prove it. We begin by characterizing compatible inner products.

Lemma 7.4. Fix an inner product onW and a 4–form Φ ∈ Λ4W ∗. Then the following are equivalent:

1. The inner product is compatible with Φ.

2. There is a unique orientation onW , with volume form vol ∈ Λ8W ∗, such that, for allu,v,w ∈W ,
we have

(7.5) ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ = 6|u ∧v |2vol.

3. Choose the orientation onW and the volume form vol ∈ Λ8W ∗ as in (2). Then, for all u,v,w ∈
W , we have

(7.6) ι(v)ι(u)Φ ∧ ι(w)ι(u)Φ ∧ Φ = 6

(
|u |2〈v,w〉 − 〈v,u〉〈u,w〉

)
vol

Each of these conditions implies that Φ is nondegenerate and Φ ∧ Φ , 0.

Proof. We prove that (1) implies (2). Assume the inner product is compatible with Φ and let

W 3 → W : (u,v,w) 7→ u × v × w be the triple cross product on W de�ned by (7.2). Assume

u,v ∈W are linearly independent. Then the subspace

Wu,v := {w ∈W : 〈u,w〉 = 〈v,w〉 = 0}

carries a symplectic formωu,v : Wu,v×Wu,v → R and a compatible complex structure Ju,v : Wu,v →

Wu,v given by

ωu,v (x ,w) :=
Φ(x ,u,v,w)

|u ∧v |
, Ju,vw := −

u ×v ×w

|u ∧v |
.
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Equation (6.4) asserts that Ju,v is an isometry on Wu,v and equation (6.6) asserts that Ju,v is

skew adjoint. Hence, Ju,v is a complex structure onWu,v and equation (7.2) shows that, for all

x ,w ∈Wu,v , we have

ωu,v (x ,w) =
〈x ,u ×v ×w〉

|u ∧v |
= −〈x , Ju,vw〉.

Thus the inner product ωu,v (·, Ju,v ·) onWu,v is the one inherited fromW . It follows that

(7.7) ωu,v ∧ ωu,v ∧ ωu,v = 6volu,v ,

where volu,v ∈ Λ
6W ∗u,v denotes the volume form onWu,v with the symplectic orientation. Since

the space of linearly independent pairs u,v ∈W is connected, there is a unique orientation on

W such that, for every pair u,v of linearly independent vectors inW and every symplectic basis

e1, . . . , e6 of Wu,v , the basis u,v, e1, . . . , e6 of W is positively oriented. Let vol ∈ Λ8W ∗ be the

volume form ofW ∗ for this orientation. Then

volu,v =
1

|u ∧v |
ι(v)ι(u)vol|Wu,v

and, hence, equation (7.5) follows from (7.7). This shows that (1) implies (2). That (2) implies (3)

follows by using (7.5) with v replaced by v +w .

We prove that (3) implies (1). Assume there is an orientation onW such that (7.6) holds, and

de�ne the map W 3 → W : (u,v,w) 7→ u × v × w by (7.2). That this map is alternating and

satis�es (6.3) is obvious. We prove that it satis�es (6.4). Fix a unit vector e ∈W and denote

Ve := {v ∈W : 〈e,v〉 = 0} , ϕe := ι(e)Φ|Ve , vole := ι(e)vol|Ve .

Then equation (7.6) asserts that

ι(u)ϕe ∧ ι(v)ϕe ∧ ϕe = 6〈u,v〉vole

for every u ∈ Ve . Hence, ϕe satis�es condition (1) in Lemma 3.4 and therefore is compatible with

the inner product. This means that the bilinear map Ve ×Ve → Ve : (u,v) 7→ u ×e v de�ned by

〈u ×e v,w〉 := ϕe (u,v,w) is a cross product onVe . Since ϕe (u,v,w) = Φ(w,u, e,v) = 〈u × e ×v,w〉,
we haveu×ev = u×e×v . This implies |u×e×v | = |u∧v | wheneveru andv are orthogonal to e and

e has norm one. Using Gram–Schmidt and scaling, we deduce that our map (u,v,w) 7→ u ×v ×w
satis�es (6.4) and, hence, is a triple cross product. Thus we have proved that (1), (2), and (3) are

equivalent. Moreover, condition (2) implies that Φ is nondegenerate and (1) implies that Φ ∧ Φ , 0,

by Remark 6.21. This proves Lemma 7.4. �

We are now in a position to characterize Cayley-forms intrinsically. A 4–form Φ is nondegen-

erate if and only if the 2–form ι(v)ι(u)Φ ∈ Λ2W ∗ descends to a symplectic form on the quotient

W /span{u,v} or, equivalently, the 8–form ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ is nonzero whenever u,v are

linearly independent. The question to be adressed is under which additional condition we can �nd

an inner product onW that satis�es (7.5).
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Theorem 7.8. A 4–form Φ ∈ Λ4W ∗ admits a compatible inner product if and only if it satis�es the
following condition.

(C)



Φ is nondegenerate and, if u,v,w ∈W are linearly independent and

(7.9) ι(v)ι(u)Φ ∧ ι(w)ι(u)Φ ∧ Φ = ι(u)ι(v)Φ ∧ ι(w)ι(v)Φ ∧ Φ = 0,

then, for all x ∈W , we have

ι(w)ι(u)Φ ∧ ι(x)ι(u)Φ ∧ Φ = 0

⇐⇒ ι(w)ι(v)Φ ∧ ι(x)ι(v)Φ ∧ Φ = 0.
(7.10)

If this holds, then the compatible inner product is uniquely determined by Φ.

Proof. See page 47. �

To understand condition (C) geometrically, assume Φ satis�es (7.6) for some inner product

onW . Then ι(v)ι(u)Φ ∧ ι(w)ι(u)Φ ∧ Φ = 0 if and only if |u |2〈v,w〉 − 〈v,u〉〈u,w〉 = 0. Hence, if u,

v , w are linearly independent, equation (7.9) asserts that w is orthogonal to u and v . Under this

assumption both conditions in (7.10) assert that w and x are orthogonal.

Every Cayley-form Φ induces two orientations on W . First, since the 8–form ι(v)ι(u)Φ ∧
ι(v)ι(u)Φ ∧ Φ is nonzero for every linearly independent pair u,v ∈W and the space of linearly

independent pairs in W is connected, there is a unique orientation on W such that ι(v)ι(u)Φ ∧
ι(v)ι(u)Φ ∧ Φ > 0 whenever u,v ∈W are linearly independent. The second orientation ofW is

induced by the 8–form Φ ∧ Φ. This leads to the following de�nition.

De�nition 7.11. A Cayley-form Φ ∈ Λ4W ∗ is called positive if the 8–forms Φ ∧ Φ and ι(v)ι(u)Φ ∧
ι(v)ι(u)Φ ∧ Φ induce the same orientation whenever u,v ∈W are linearly independent. It is called

negative if it is not positive.

Thus Φ is negative if and only if −Φ is positive. Moreover, it follows from Remark 6.21 that a

Cayley-form Φ ∈ Λ4W ∗ is positive if and only if the associated triple cross product is positive.

Theorem 7.12. If Φ,Ψ ∈ Λ4W ∗ are two positive Cayley-forms, then there is an automorphism
д ∈ Aut(W ) such that д∗Φ = Ψ.

Proof. See page 48. �

Lemma 7.13. LetW be a real vector space and д : W 4 → R be a multi-linear map satisfying

(7.14) д(u,v ;w,x) = д(w,x ;u,v) = −д(v,u;w,x)

for all u,v,w,x ∈W and

(7.15) д(u,v ;u,v) > 0
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whenever u,v ∈W are linearly independent. Then the matrices

Λu (v,w) :=

(
д(u,v ;u,v) д(u,v ;u,w)
д(u,w ;u,v) д(u,w ;u,w)

)
∈ R2×2, and

A(u,v,w) :=
©­«
д(v,w ;v,w) д(v,w ;w,u) д(v,w ;u,v)
д(w,u;v,w) д(w,u;w,u) д(w,u;u,v)
д(u,v ;v,w) д(u,v ;w,u) д(u,v ;u,v)

ª®¬ ∈ R3×3

are positive de�nite whenever u,v,w ∈ W are linearly independent. Moreover, the following are
equivalent:

1. If u,v,w are linearly independent and д(u,v ;w,u) = д(v,w ;u,v) = 0, then, for all x ∈W , we
have

(7.16) д(u,w ;u,x) = 0 ⇐⇒ д(v,w ;v,x) = 0.

2. If u,v,w and u,v,w ′ are linearly independent, then

(7.17)

det(Λu (v,w))

det(Λv (u,w))
=

det(Λu (v,w
′))

det(Λv (u,w ′))
.

3. If u,v,w and u,v ′,w ′ are linearly independent, then

(7.18)

det(Λu (v,w))√
det(A(u,v,w))

=
det(Λu (v

′,w ′))√
det(A(u,v ′,w ′))

.

4. There is an inner product onW such that

(7.19) д(u,v ;u,v) = |u |2 |v |2 − 〈u,v〉2

for all u,v ∈W .

If these equivalent conditions are satis�ed, then the inner product in (4) is uniquely determined by д
and it satis�es

det(Λu (v,w)) = |u |
2 |u ∧v ∧w |2,

det(A(u,v,w)) = |u ∧v ∧w |4.
(7.20)

Proof. Letu,v,w ∈W be linearly independent. We prove that the matrices Λu (v,w) andA(u,v,w)
are positive de�nite. By (7.15) they have positive diagonal entries. Since the determinant of

Λu (v,w) agrees with the determinant of the lower right 2 × 2 block of A(u,v,w), it su�ces to

prove that both matrices have positive determinants. To see this, we observe that the determinants

of Λu (v,w) and A(u,v,w) remain unchanged if we add to v a multiple of u and to w a linear
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combination of u and v . With the appropriate choices both matrices become diagonal and thus

have positive determinants. Hence, Λu (v,w) and A(u,v,w) are positive de�nite, as claimed.

We prove that (4) implies (7.20). The matrix Λu (v,w) and |u ∧v ∧w |2 remain unchanged if

we add to v and w multiples of u. Hence, we may assume that v and w are orthogonal to u. In this

case

Λu (v,w) = |u |
2

(
|v |2 〈v,w〉
〈w,v〉 |w |2

)
and this implies the �rst equation in (7.20). Since the determinant of the matrix A(u,v,w) remains

unchanged if we add to v a multiple of u and tow a linear combination of u and v , we may assume

that u,v,w are pairwise orthogonal. In this case the second equation in (7.20) is obvious. Thus we

have proved that (4) implies (7.20). By (7.20) the inner product is uniquely determined by д.

We prove that (1) implies (2). Fix two linearly independent vectorsu,v ∈W . Then the subspace

Wu,v := {w ∈W : д(u,v ;w,u) = д(v,w ;u,v) = 0}

has codimension two and W = Wu,v ⊕ span{u,v}. Now �x an element w ∈ Wu,v . Then (7.16)

asserts that the linear functionals x 7→ д(u,w ;u,x) and x 7→ д(v,w ;v,x) on W have the same

kernel. Hence, there exists a constant λ ∈ R such that д(v,w ;v,x) = λд(u,w ;u,x) for all x ∈W .

With x = w we obtain λ = д(v,w ;v,w)/д(u,w ;u,w) and hence

д(u,w ;u,x)д(v,w ;v,w) = д(u,w ;u,w)д(v,w ;v,x) for all x ∈W .

This equation asserts that the di�erential of the map

Wu,v\{0} → R : w 7→
д(u,w ;u,w)

д(v,w ;v,w)

vanishes and so the map is constant. This proves (7.17) for all w,w ′ ∈Wu,v\{0}. Since adding to

w a linear combination of u and v does not change the determinants of Λu (v,w) and Λv (u,w),
equation (7.17) continues to hold for all w,w ′ ∈W that are linearly independent of u and v . Thus

we have proved that (1) implies (2).

We prove that (2) implies (3). It follows from (7.17) that

w,w ′ ∈Wu,v\{0} =⇒
д(u,w ;u,w)

д(v,w ;v,w)
=
д(u,w ′;u,w ′)

д(v,w ′;v,w ′)
.

Using this identity with u replaced by u +v we obtain

w,w ′ ∈Wu,v\{0} =⇒
д(u,w ;v,w)

д(v,w ;v,w)
=
д(u,w ′;v,w ′)

д(v,w ′;v,w ′)
.

Now let w,w ′ ∈ Wu,v and assume that д(u,w ;v,w) = 0. Then we also have д(u,w ′;v,w ′) = 0

and so it follows from the de�nition ofWu,v that all o�-diagonal terms in the matrices Λu (v,w),
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Λu (v,w
′), A(u,v,w), and A(u,v,w ′) vanish. Hence,

det(Λu (v,w))
2

det(A(u,v,w))
=
д(u,v ;u,v)д(u,w ;u,w)

д(v,w ;v,w)

=
д(u,v ;u,v)д(u,w ′;u,w ′)

д(v,w ′;v,w ′)
=

det(Λu (v,w
′))2

det(A(u,v,w ′))
.

Thus we have proved (7.18) under the assumption that w,w ′ ∈ Wu,v\{0} and д(w,u;w,v) = 0.

Since the determinants of Λu (v,w) and A(u,v,w) remain unchanged if we add to w a linear

combination of u and v and if we add to v a multiple of u, equation (7.18) continues to hold when

v = v ′. If u,v,w and u,v,w ′ and u,v ′,w ′ are all linearly independent triples we obtain

det(Λu (v,w))
2

det(A(u,v,w))
=

det(Λu (v,w
′))2

det(A(u,v,w ′))
=

det(Λu (v
′,w ′))2

det(A(u,v ′,w ′))
.

Here the last equation follows from the �rst by symmetry in v and w . This proves equation (7.18)

under the additional assumption that u,v,w ′ is a linearly independent triple. This assumption can

be dropped by continuity. Thus we have proved that (2) implies (3).

We prove that (3) implies (4). De�ne a functionW → [0,∞) : u 7→ |u | by |u | := 0 for u = 0

and by

(7.21) |u |2 :=
д(u,w ;u,w)д(u,v ;u,v) − д(u,v ;u,w)2√

det(A(u,v,w))

for u , 0, where v,w ∈W are chosen such that u,v,w are linearly independent. By (7.18) the right

hand side of (7.21) is independent of v and w . It follows from (7.21) with u replaced by u +v that

|u +v |2 − |u |2 − |v |2 = 2

д(u,w ;v,w)д(u,v ;u,v) − д(u,v ;u,w)д(u,v ;v,w)√
det(A(u,v,w))

.

Replacing v by −v gives |u +v |2 + |u −v |2 = 2|u |2 + 2|v |2. Thus the mapW → [0,∞) : u 7→ |u |
is continuous, satis�es the parallelogram identity, and vanishes only for u = 0. Hence, it is a norm

onW and the associated inner product of two linearly independent vectors u,v ∈W is given by

(7.22) 〈u,v〉 :=
д(u,w ;v,w)д(u,v ;u,v) − д(u,v ;u,w)д(u,v ;v,w)√

det(A(u,v,w))

whenever w ∈ W is chosen such that u,v,w are linearly independent. That this inner product

satis�es (7.19) for every pair of linearly independent vectors follows from (7.21) and (7.22) with

w ∈Wu,v . This proves that (3) implies (4).

We prove that (4) implies (1). Replacing v in equation (7.19) by v +w we obtain

д(u,v ;u,w) = |u |2〈v,w〉 − 〈u,v〉〈u,w〉.
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for all u,v,w ∈W . Hence,

д(u,v ;w,u) = д(v,w ;u,v) = 0 ⇐⇒ 〈u,w〉 = 〈v,w〉 = 0.

If w ∈ W is orthogonal to u and v , then we have д(u,w ;u,x) = |u |2〈w,x〉 and д(v,w ;v,x) =
|v |2〈w,x〉. This implies (7.16) and proves Lemma 7.13. �

Proof of Theorem 7.8. If Φ is nondegenerate and u ∈ W is nonzero, then ι(u)Φ descends to a

nondegenerate 3–form on the 7–dimensional quotient spaceW /Ru. By Lemma 3.4 this implies

that ι(v)ι(u)Φ∧ι(v)ι(u)Φ∧ι(u)Φ descends to a nonzero 7–form onW /Ru for every vectorv ∈W \Ru.

Hence, the 8–form ι(v)ι(u)Φ∧ι(v)ι(u)Φ∧Φ onW is nonzero wheneveru,v are linearly independent.

The orientation onW induced by this form is independent of the choice of the pair u,v . Choose

any volume form Ω ∈ Λ8W ∗ compatible with this orientation and, for λ > 0, de�ne a multi-linear

function дλ : W 4 → R by

(7.23) дλ(u,v ;w,x) :=
ι(v)ι(u)Φ ∧ ι(x)ι(w)Φ ∧ Φ

6λ4Ω

This function satis�es (7.14) and (7.15) and, if Φ satis�es (C), it also satis�es (7.16). Hence, it follows

from Lemma 7.13 that there is a unique inner product 〈·, ·〉λ onW such that, for all u,v ∈W , we

have

(7.24) дλ(u,v ;u,v) = |u |2λ |v |
2

λ − 〈u,v〉
2

λ .

Let volλ be the volume form associated to the inner product and the orientation. Then there is a

constant µ(λ) > 0 such that

volλ = µ(λ)
2Ω.

We have дλ = λ−4д1, hence |u |λ = λ−1 |u |1 for every u ∈ W , and hence volλ = λ−8
vol1. Thus

µ(λ) = λ−4µ(1). With λ := µ(1)1/6 we obtain µ(λ) = λ−4µ(1) = µ(1)1/3 = λ2
. With this value of λ

we have λ4Ω = volλ . Hence, it follows from (7.23) and (7.24) that

ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ = 6

(
|u |2λ |v |

2

λ − 〈u,v〉
2

λ
)

volλ .

Hence, by Lemma 7.4, Φ is compatible with the inner product 〈·, ·〉λ . This shows that every 4–form

Φ ∈ Λ4W ∗ that satis�es (C) is compatible with a unique inner product.

Conversely, suppose that Φ is compatible with an inner product. Then, by Lemma 7.4, there

is an orientation onW such that the associated volume form vol ∈ Λ8W ∗ satis�es (7.5). De�ne

д : W 4 → R by

д(u,v ;w,x) :=
ι(v)ι(u)Φ ∧ ι(x)ι(w)Φ ∧ Φ

6vol

.

By (7.5) this map satis�es condition (4) in Lemma 7.13 and it obviously satis�es (7.14) and (7.15).

Hence, it satis�es condition (1) in Lemma 7.13 and this implies that Φ satis�es (C). This proves

Theorem 7.8. �
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Proof of Theorem 7.12. Let Φ ∈ Λ4W ∗ be a positive Cayley-form with the associated inner product,

orientation, and triple cross product. Let ϕ0 ∈ Λ
3(R7)∗ andψ0 ∈ Λ

4(R7)∗ be the standard associative

and coassociative calibrations de�ned in Example 2.15 and in the proof of Lemma 4.8. Then

Φ0 := 1
∗ ∧ ϕ0 +ψ0 ∈ Λ

4(R8)∗ is the standard Cayley-form on R8
.

Choose a unit vector e ∈W and denote

Ve := e⊥, ϕe := ι(e)Φ|Ve ∈ Λ
3V ∗e , ψe := Φ|Ve ∈ Λ

4V ∗e .

Then ϕe is a nondegenerate 3–form on Ve and, hence, by Theorem 3.2, there is an isomorphism

д : R7 → Ve such that д∗ϕe = ϕ0. It follows also from Theorem 3.2 that д identi�es the standard

inner product on R7
with the unique inner product on Ve that is compatible with ϕe , and the

standard orientation on R7
with the orientation determined by ϕe via Lemma 3.4. Hence, it follows

from Lemma 4.8 that д also identi�es the two coassociative calibrations, i.e., д∗ψe = ψ0. Since Φ is

a positive Cayley-form, we have

Φ = e∗ ∧ ϕe +ψe .

Hence, if we extend д to an isomorphism R8 = R ⊕ R7 →W , which is still denoted by д and sends

e0 = 1 ∈ R ⊂ R8
to e , we obtain д∗Φ = Φ0 and this proves Theorem 7.12. �

Remark 7.25. The space S2Λ2W ∗ of symmetric bilinear forms on Λ2W can be identi�ed with the

space of multi-linear maps д : W 4 → R that satisfy (7.14). Denote by S2

0
Λ2W ∗ ⊂ S2Λ2W ∗ the

subspace of all д ∈ S2Λ2W ∗ that satisfy the algebraic Bianchi identity

(7.26) д(u,v ;w,x) + д(v,w ;u,x) + д(w,u;v,x) = 0

for all u,v,w,x ∈W . Then there is a direct sum decomposition

S2Λ2W ∗ = Λ4W ∗ ⊕ S2

0
Λ2W ∗

and the projection

Π : S2Λ2W ∗ → Λ4W ∗

is given by

(Πд)(u,v,w,x) := 1

3

(
д(u,v ;w,x) + д(v,w ;u,x) + д(w,u;v,x)

)
.

Note that

dim Λ2W = 28, dim S2Λ2W = 406,(7.27)

dim Λ4W = 70, dim S2

0
Λ2W = 336.(7.28)

Moreover, there is a natural quadratic map qΛ : S2W ∗ → S2

0
Λ2W ∗ given by(

qΛ(γ )
)
(u,v ;x ,y) := γ (u,x)γ (v,y) − γ (u,y)γ (v,x)
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for γ ∈ S2W ∗ and u,v,x ,y ∈W . Lemma 7.13 asserts, in particular, that the restriction of this map

to the subset of inner products is injective and, for each element д ∈ S2Λ2W ∗, it gives a necessary

and su�cient condition for the existence of an inner product γ onW such that

д − Πд = qΛ(γ ).

We shall see in Corollary 9.9 below that, if Φ ∈ Λ4W ∗ is a positive Cayley-form and д = дΦ ∈
S2Λ2W ∗ is given by

дΦ(u,v ;x ,y) :=
ι(v)ι(u)Φ ∧ ι(y)ι(x)Φ ∧ Φ

vol

, vol :=
Φ ∧ Φ

14

,

then

дΦ = 6qΛ(γ ) + 7Φ

for a unique inner product γ ∈ S2W ∗, and the volume form of γ is indeed vol. Thus, in particular,

we have ΠдΦ = 7Φ.

Remark 7.29. The space S2S2W ∗ of symmetric bilinear forms on S2W can be identi�ed with the

space of multi-linear maps σ : W 4 → R that satisfy

(7.30) σ (u,v ;x ,y) = σ (x ,y;u,v) = σ (v,u;x ,y).

Denote by S2

0
S2W ∗ the subspace of all σ ∈ S2S2W ∗ that satisfy the algebraic Bianchi identity (7.26).

Then

S2S2W ∗ = S4W ∗ ⊕ S2

0
S2W ∗,

where

dim S2W = 36, dim S2S2W = 666,(7.31)

dim S4W = 330, dim S2

0
S2W = 336.(7.32)

The projection Π : S2S2W ∗ → S4W ∗ is given by the same formula as above. Thus

(σ − Πσ )(u,v ;x ,y) = 2

3
σ (u,v ;x ,y) − 1

3
σ (v,x ;u,y) − 1

3
σ (x ,u;v,y).

There is a natural quadratic map qS : S2W ∗ → S2S2W ∗ given by(
qS (γ )

)
(u,v ;x ,y) := γ (u,v)γ (x ,y).

Polarizing the quadratic map qΛ : S2W ∗ → S2Λ2W ∗ one obtains a linear map T : S2S2W ∗ →
S2Λ2W ∗ given by (

Tσ
)
(u,v ;x ,y) := σ (u,x ;v,y) − σ (u,y;v,x)

such that qΛ = T ◦ qS . The image of T is the subspace S2

0
Λ2W ∗ of solutions of the algebraic

Bianchi identity (7.26) and its kernel is the subspace S4W ∗. A pseudo-inverse of T is the map

S : S2Λ2W ∗ → S2S2W ∗ given by(
Sд

)
(u,v ;x ,y) := 1

3

(
д(u,x ;v,y) + д(u,y;v,x)

)
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whose kernel is Λ4W ∗ and whose image is S2

0
S2W ∗. Thus

TSд = д − Πд, STσ = σ − Πσ

for д ∈ S2Λ2W ∗ and σ ∈ S2S2W ∗. Given д ∈ S2Λ2W ∗ and γ ∈ S2W ∗, we have

д − Πд = qΛ(γ ) ⇐⇒ Sд = (1 − Π)qS (γ ).

Namely, if qΛ(γ ) = д−Πд, then Sд = S(д−Πд) = SqΛ(γ ) = qS (γ )−ΠqS (γ ), and if (1−Π)qS (γ ) = Sд,

then (1 − Π)д = TSд = T (1 − Π)qS (γ ) = qΛ(γ ).

8 The group G2

Let V be a 7–dimensional real Hilbert space equipped with a cross product and let ϕ ∈ Λ3V ∗

be the associative calibration de�ned by (2.8). We orient V as in Lemma 3.4 and denote by

∗ : ΛkV ∗ → Λ7−kV ∗ the associated Hodge ∗–operator and by ψ := ∗ϕ ∈ Λ4V ∗ the coassociative

calibration. Recall thatV is equipped with an associator bracket via (4.1), related toψ via (4.9), and

with a coassociator bracket (4.23).

The group of automorphisms of ϕ will be denoted by

G(V ,ϕ) := {д ∈ GL(V ) : д∗ϕ = ϕ} .

By Lemma 2.20, we have G(V ,ϕ) ⊂ SO(V ) and hence, by (2.8),

G(V ,ϕ) = {д ∈ SO(V ) : дu × дv = д(u ×v) ∀u,v ∈ V } .
For the standard structure ϕ0 on R7

in Example 2.15 we denote the structure group by G2 :=

G(R7,ϕ0). By Theorem 3.2, the group G(V ,ϕ) is isomorphic to G2 for every nondegenerate 3–form

on a 7–dimensional vector space.

Theorem 8.1. The group G(V ,ϕ) is a 14–dimensional simple, connected, simply connected Lie group.
It acts transitively on the unit sphere and, for every unit vector u ∈ V , the isotropy subgroup
Gu := {д ∈ G(V ,ϕ) : дu = u} is isomorphic to SU(3). Thus there is a �bration

SU(3) ↪→ G2 −→ S6.

Proof. As we have observed in Step 4 in the proof of Lemma 3.4, the group G = G(V ,ϕ) has

dimension at least 14, as it is an isotropy subgroup of the action of the 49–dimensional group

GL(V ) on the 35–dimensional space Λ3V ∗. Since G ⊂ SO(V ), by Lemma 2.20, the group acts on

the unit sphere

S := {u ∈ V : |u | = 1} .

Thus, for every u ∈ S , the isotropy subgroup Gu has dimension at least 8. By Lemma 2.18, the

group Gu preserves the subspaceWu := u⊥, the symplectic form ωu , and the complex structure Ju
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onWu given by ωu (v,w) = 〈u,v ×w〉 and Juv = u ×v . Hence, Gu is isomorphic to a subgroup of

U(Wu ,ωu , Ju ) � U(3). Now consider the complex valued 3–form θu ∈ Λ
3,0W ∗u given by

θu (x ,y, z) := ϕ(x ,y, z) − ßϕ(u × x ,y, z) = ϕ(x ,y, z) − ßψ (u,x ,y, z)

for x ,y, z ∈Wu . (See (4.1) and (4.9) for the last equality.) This form is nonzero and is preserved by

Gu . Hence, Gu is isomorphic to a subgroup of SU(Wu ,ωu , Ju ). Since SU(Wu ,ωu , Ju ) � SU(3) is a

connected Lie group of dimension 8 and Gu has dimension at least 8, it follows that

Gu � SU(Wu ,ωu , Ju ) � SU(3).

In particular, dim Gu = 8 and so dim G ≤ dim Gu + dim S = 14. This implies dim G = 14

and, since S is connected, G acts transitively on S . Thus we have proved that there is a �bration

SU(3) ↪→ G→ S . It follows from the homotopy exact sequence of this �bration that G is connected

and simply connected and that π3(G) � Z. Hence, G is simple.

Here is another proof that G is simple. Let g := Lie(G) denote its Lie algebra and, for every

u ∈ S , let gu := Lie(Gu ) denote the Lie algebra of the isotropy subgroup. Then, for every ξ ∈ g, we

have ξ ∈ gu if and only if u ∈ ker ξ . Since every ξ ∈ g is skew-adjoint, it has a nontrivial kernel

and hence belongs to gu for some u ∈ S .

Now let I ⊂ g be a nonzero ideal. Then, by what we have just observed, there is an element

u ∈ S such that I ∩ gu , {0}. Thus I ∩ gu is a nonzero ideal in gu and, since gu is simple, this

implies gu ⊂ I . Next we claim that, for every v ∈ u⊥, there is an element ξ ∈ I such that ξu = v .

To see this, choose any element η ∈ gu ⊂ I such that kerη = 〈u〉. Then there is a unique element

w ∈ u⊥ such that ηw = v . Since G acts transitively on S there is an element ζ ∈ g such that ζu = w .

Hence, ξ = [η, ζ ] ∈ I and ξu = ηζu = ηw = v . This proves that dim(I/gu ) ≥ 6; hence, dim I ≥ 14,

and hence I = g. This proves Theorem 8.1. �

We examine the action of the group G(V ,ϕ) on the space

S :=

{
(u,v,w) ∈ V :

|u | = |v | = |w | = 1,

〈u,v〉 = 〈u,w〉 = 〈v,w〉 = 〈u ×v,w〉 = 0

}
.

Let S ⊂ V denote the unit sphere. Then each tangent space TuS = u
⊥

carries a natural complex

structure v 7→ u ×v . The space S is a bundle over S whose �ber over u is the space of Hermitian

orthonormal pairs in TuS . Hence, S is a bundle of 3–spheres over a bundle of 5–spheres over a

6–sphere and therefore is a compact connected simply connected 14–dimensional manifold.

Theorem 8.2. The group G(V ,ϕ) acts freely and transitively on S.

Proof. We give two proofs of this result. The �rst proof uses the fact that the isotropy subgroup

Gu ⊂ G := G(V ,ϕ) of a unit vector u ∈ V is isomorphic to SU(3) and the isotropy subgroup in

SU(3) of a Hermitian orthonormal pair is the identity. Hence, G acts freely on S. Since G and S

are compact connected manifolds of the same dimension, this implies that G acts transitively on S.
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For the second proof we assume that ϕ = ϕ0 is the standard structure on V = R7
. Given

(u,v,w) ∈ S, de�ne д : R7 → R7
by

дe1 = u, дe2 = v, дe3 = u ×v, дe4 = w

дe5 = w × u, дe6 = w ×v, дe7 = w × (u ×v).

By construction д preserves the cross product and the inner product. Hence, д ∈ G2. Moreover, д is

the unique element of G2 that maps the triple (e1, e2, e4) to (u,v,w). This proves Theorem 8.2. �

Corollary 8.3. The group G(V ,ϕ) acts transitively on the space of associative subspaces of V and on
the space of coassociative subspaces of V .

Proof. This follows from Theorem 8.2, Lemma 4.7, and Lemma 4.27. �

Remark 8.4. LetΛ ⊂ V be an associative subspace and de�neH := Λ⊥ and GΛ := {д ∈ G(V ,ϕ) : дΛ = Λ}.
Then every h ∈ SO(H ) extends uniquely to an element д ∈ GΛ (choose (u,v,w) ∈ S such that

u,v,w ∈ H ) and the action of д on Λ is induced by the action of h on Λ+H ∗ under the isomor-

phism in Remark 4.28. Hence the map GΛ → SO(H ) : д 7→ д |H is an isomorphism and so the

associative Grassmannian L := {Λ ⊂ V : Λ is an associative subspace} is di�eomorphic to the

homogeneous space G(V ,ϕ)/SO(H ) � G2/SO(4), by Corollary 8.3. Since Λ ⊂ V is associative if

and only if H := Λ⊥ is coassociative (see Lemma 4.27), L also is the coassociative Grassmannian.

Theorem 8.5. There are orthogonal splittings

Λ2V ∗ = Λ2

7
⊕ Λ2

14
,

Λ3V ∗ = Λ3

1
⊕ Λ3

7
⊕ Λ3

27
,

where dimΛk
d = d and

Λ2

7
:= {ι(u)ϕ : u ∈ V } =

{
ω ∈ Λ2V ∗ : ∗(ϕ ∧ ω) = 2ω

}
,

Λ2

14
:=

{
ω ∈ Λ2V ∗ : ψ ∧ ω = 0

}
=

{
ω ∈ Λ2V ∗ : ∗(ϕ ∧ ω) = −ω

}
,

Λ3

1
:= 〈ϕ〉,

Λ3

7
:= {ι(u)ψ : u ∈ V } ,

Λ3

27
:=

{
ω ∈ Λ3V ∗ : ϕ ∧ ω = 0, ψ ∧ ω = 0

}
.

Each of the spaces Λk
d is an irreducible representation of G(V ,ϕ) and the representations Λ2

7
and Λ3

7

are both isomorphic to V , Λ2

14
is isomorphic to the Lie algebra g(V ,ϕ) := Lie(G(V ,ϕ)) � g2, and Λ3

27

is isomorphic to the space of traceless symmetric endomorphisms of V . The orthogonal projections
π7 : Λ2V ∗ → Λ2

7
and π14 : Λ2V ∗ → Λ2

14
are given by

π7(ω) =
1

3
ω + 1

3
∗ (ϕ ∧ ω) = 1

3
∗

(
ψ ∧ ∗(ψ ∧ ω)

)
,(8.6)

π14(ω) =
2

3
ω − 1

3
∗ (ϕ ∧ ω) = ω − 1

3
∗

(
ψ ∧ ∗(ψ ∧ ω)

)
.(8.7)
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Proof. For u ∈ V denote by Au ∈ so(V ) the endomorphism Auv := u × v . Then the Lie algebra

g := Lie(G) of G = G(V ,ϕ) is given by

g =
{
ξ ∈ End(V ) : ξ + ξ ∗ = 0, Aξu + [Au , ξ ] = 0 ∀u ∈ V }

.

Step 1. There is an orthogonal decomposition

so(V ) = g ⊕ h, h := {Au : u ∈ V }

with respect to the inner product 〈ξ ,η〉 := − 1

2
tr(ξη) on so(V ).

The group G acts on the space so(V ) of skew-adjoint endomorphisms by conjugation and

this action preserves the inner product. Both subspaces g and h are invariant under this action,

because дAuд
−1 = Aдu for all u ∈ V and д ∈ G. If ξ = Au ∈ g ∩ h, then 0 = LAuϕ = 3ι(u)ψ (see

equation (4.19)) and hence u = 0. This shows that g ∩ h = {0}. Since dim g = 14, dim h = 7, and

dim so(V ) = 21, we have so(V ) = g ⊕ h. Moreover, g⊥ is another G–invariant complement of g.

Hence h is the graph of a G–equivariant linear map g⊥ → g. The image of this map is an ideal in g

and hence must be zero. This shows that h = g⊥.

Step 2. Λ2

14
is the orthogonal complement of Λ2

7

By equation (4.42) in Lemma 4.38 we have u∗ ∧ψ = ∗ι(u)ϕ for all u ∈ V . Hence, u∗ ∧ ω ∧ψ =
ω ∧ ∗ι(u)ϕ and this proves Step 2.

Step 3. The isomorphism so(V ) → Λ2V ∗ : ξ 7→ ωξ := 〈·, ξ ·〉 is an SO(V )–equivariant isometry and
maps g onto Λ2

14

That the isomorphism ξ 7→ ωξ is an SO(V )–equivariant isometry follows directly from the

de�nitions. The image of h under this isomorphism is obviously the subspace Λ2

7
. Hence, by Step 1,

the orthogonal complement of Λ2

7
is the image of g under this isomorphism. Hence, the assertion

follows from Step 2.

Step 4. Let ω ∈ Λ2V ∗. Thenψ ∧ ω = 0 if and only if ∗(ϕ ∧ ω) = −ω.

De�ne the operators Q : Λ2V ∗ → Λ2V ∗ and R : Λ2V ∗ → Λ1V ∗ by

Qω := ∗(ϕ ∧ ω), Rω := ∗(ψ ∧ ω)

for ω ∈ Λ2V ∗. Then Q is self-adjoint and R∗ : Λ1V ∗ → Λ2V ∗ is given by the same formula

R∗α = ∗(ψ ∧ α) for α ∈ Λ1V ∗. Both operators are G–equivariant. Moreover, R∗R = Q + id by

equation (4.61) in Lemma 4.38. Hence, Rω = 0 if and only if Qω = −ω. (Note also that the operator

R∗R vanishes on Λ2

14
by equation (4.61) and has eigenvalue 3 on Λ2

7
by (4.53).) This proves Step 4.

One can rephrase this argument more geometrically as follows. The action of G on Λ2

14
is

irreducible by Step 3. Hence, Λ2

14
is (contained in) an eigenspace of the operator Q . Moreover,

the operator Q is traceless. To see this, let e1, . . . , e7 be an orthonormal basis of V and denote by
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e1, . . . , e7
the dual basis of V ∗. Then the 2–forms ei j := ei ∧ e j with i < j form an orthonormal

basis of Λ2V ∗ and we have∑
i<j

〈ei j , ∗(ϕ ∧ ei j )〉 =
∑
i<j

(ei j ∧ ei j ∧ ϕ)(e1, . . . , e7) = 0.

By equation (4.50) in Lemma 4.38, the operator Q has eigenvalue 2 on the 7–dimensional subspace

Λ2

7
. Since dim Λ2V ∗ = 21, it follows that Q has eigenvalue −1 on the 14–dimensional subspace

Λ2

14
. This gives rise to another proof of equation (4.61) and completes the second proof of Step 4.

Step 5. The subspaces Λ3

1
, Λ3

7
, and Λ3

27
form an orthogonal decomposition of Λ3V ∗ and dim Λ3

d = d .

That dimΛ3

d = d for d = 1, 7 is obvious. Since ∗ι(u)ψ = −u∗∧ϕ, it follows that Λ3

1
is orthogonal

to Λ3

7
. Moreover, for every ω ∈ Λ3V ∗, we have

ϕ ∧ ω = 0 ⇐⇒ u∗ ∧ ϕ ∧ ω = 0 ∀u ∈ V ⇐⇒ ω ⊥ Λ3

7

and

ψ ∧ ω = 0 ⇐⇒ ω ⊥ Λ3

1
.

Hence, Λ3

27
is the orthogonal complement of Λ3

1
⊕ Λ3

7
. Since dim Λ3V ∗ = 35, this proves Step 5.

Step 6. The subspaces Λ2

7
, Λ2

14
, Λ3

1
, Λ3

7
, Λ3

27
are irreducible representations of the group G = G(V ,ϕ).

The irreducibility of Λ3

1
and Λ2

7
� Λ3

7
is obvious and for Λ2

14
it follows from Step 3. We also

point out that Λ3

7
is the tangent space of the orbit of ϕ under the action of SO(V ). The space Λ3

27

can be identi�ed with the space of traceless symmetric endomorphisms S : V → V via S 7→ LSϕ
by Theorem 8.8 below. That it is an irreducible representation of G(V ,ϕ) is shown in [Bry87]. This

proves Step 6. Equations (8.6) and (8.7) follow directly from the de�nitions and (4.61). This proves

Theorem 8.5. �

Theorem 8.8. The linear map

End(V ) → Λ3V ∗ : A 7→ LAϕ

(see Remark 4.16) restricts to a G(V ,ϕ)–equivariant isomorphism from the space of traceless symmetric
endomorphisms of V onto Λ3

27
.

Proof. We follow the exposition of Karigiannis in [Kar09, Section 2]. De�ne the linear map

Λ3V ∗ → End(V ) : η 7→ Sη by

(8.9) 〈u, Sηv〉 :=
ι(u)ϕ ∧ ι(v)ϕ ∧ η

4vol

for η ∈ Λ3V ∗ and u,v ∈ V . This map has the following properties.
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Step 1. Let A ∈ End(V ). Then

(8.10) SLAϕ =
1

2
(A∗ +A) + 1

2
tr(A)1.

In particular, Sϕ = 3

2
1.

For t ∈ R de�ne дt := eAt and ϕt := д∗tϕ. Then ϕt ∈ Λ3V ∗ is a nondegenerate 3–form

compatible with the inner product

〈u,v〉t := 〈дtu,дtv〉

on V and the volume form volt ∈ Λ
7V ∗ given by

volt := д∗t vol = det(дt )vol.

Hence,

ι(u)ϕt ∧ ι(u)ϕt ∧ ϕt = 6|u |2t volt

for all u ∈ V and all t ∈ R. Di�erentiate this equation with respect to t at t = 0 and use the identity

0 = ι(u)(ι(u)ϕ ∧ ϕ ∧ η) = ι(u)ϕ ∧ ι(u)ϕ ∧ η − ι(u)ϕ ∧ ϕ ∧ ι(u)η for η ∈ Λ3V ∗ to obtain

3ι(u)ϕ ∧ ι(u)ϕ ∧ LAϕ = 12〈u,Au〉vol + 6|u |2 tr(A)vol.

Divide this equation by 12vol and use the de�nition of SLAϕ in equation (8.9) to obtain

〈u, SLAϕu〉 = 〈u,Au〉 +
1

2
tr(A)|u |2.

Since SLAϕ is a symmetric endomorphism, this proves equation (8.10). Now take A = 1 and use

the identities L1ϕ = 3ϕ and tr(1) = 7 to obtain S3ϕ = SL1ϕ =
9

2
1. This proves Step 1.

Step 2. Let v ∈ V . Then Sι(v)ψ = 0.

It follows from equation (4.48) in Lemma 4.38 that

(8.11)

ι(u)ϕ ∧ α ∧ψ

vol

=
α ∧ ∗u∗

vol

= 3α(u)

for all u ∈ V and all α ∈ V ∗. Take α := ι(w)ι(v)ϕ = ϕ(v,w, ·) to obtain

(8.12) 3ϕ(u,v,w) =
ι(u)ϕ ∧ ι(w)ι(v)ϕ ∧ψ

vol

.

Interchange u and v to obtain

(8.13) − 3ϕ(u,v,w) =
ι(w)ι(u)ϕ ∧ ι(v)ϕ ∧ψ

vol

.
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Now contract the vector w with the 8–form ι(u)ϕ ∧ ι(v)ϕ ∧ψ = 0 to obtain

0 = ι(w)
(
ι(u)ϕ ∧ ι(v)ϕ ∧ψ

)
= ι(w)ι(u)ϕ ∧ ι(v)ϕ ∧ψ

+ ι(u)ϕ ∧ ι(w)ι(v)ϕ ∧ψ

+ ι(u)ϕ ∧ ι(v)ϕ ∧ ι(w)ψ

= ι(u)ϕ ∧ ι(v)ϕ ∧ ι(w)ψ .

Here the last step follows from (8.12) and (8.13). Thus we have proved that

(8.14) ι(u)ϕ ∧ ι(v)ϕ ∧ ι(w)ψ = 0 for all u,v,w ∈ V .

Hence, Sι(w )ψ = 0 for all w ∈ V by de�nition of Sη . This proves Step 2.

Step 3. Let S = S∗ ∈ End(V ) be a self-adjoint endomorphism. Then

(8.15) ∗ LSϕ = tr(S)ψ − LSψ .

It su�ces to prove this for self-adjoint rank 1 endomorphisms. Let u ∈ V and de�ne S := uu∗.
Then tr(S) = |u |2 and LSϕ = u

∗ ∧ ι(u)ϕ. Hence,

∗LSϕ = ∗
(
u∗ ∧ ι(u)ϕ)

= ∗
(
u∗ ∧ ∗(u∗ ∧ψ )

)
= ι(u)(u∗ ∧ψ )

= |u |2ψ − u∗ ∧ ι(u)ψ

= tr(S)ψ − LSψ .

Here the third step uses the identity u∗ ∧ ∗α = (−1)k−1 ∗ ι(u)α in Remark 4.14 with k = 5 and

α = u∗ ∧ψ . This proves Step 3.

Step 4. Let S = S∗ ∈ End(V ) and T = T ∗ ∈ End(V ) be self-adjoint endomorphisms. Then

(8.16) 〈LSϕ,LTϕ〉 = 2 tr(ST ) + tr(S) tr(T ).

It su�ces to prove this for self-adjoint rank 1 endomorphisms. Let u,v ∈ V and de�ne S := uu∗

andT := vv∗. Then tr(S) = |u |2, tr(T ) = |v |2, tr(ST ) = 〈u,v〉2, LSϕ = u
∗ ∧ ι(u)ϕ, LTϕ = v

∗ ∧ ι(v)ϕ.

Hence, by Step 3,

〈LSϕ,LTϕ〉vol = LSϕ ∧ ∗LTϕ

= LSϕ ∧
(
tr(T )ψ − LTψ

)
= |v |2u∗ ∧ ι(u)ϕ ∧ψ − u∗ ∧ ι(u)ϕ ∧v∗ ∧ ι(v)ψ

= |v |2ι(u)ϕ ∧ ∗ι(u)ϕ − u∗ ∧v∗ ∧ ι(u)ϕ ∧ ι(v)ψ

=
(
3|u |2 |v |2 − 2|u ×v |2

)
vol

=
(
|u |2 |v |2 + 2〈u,v〉2

)
vol.

56



Here the fourth step follows from (4.42) and the �fth step follows from (4.44) and (4.57). This

proves Step 4.

Step 5. Let S = S∗ ∈ End(V ) be a self-adjoint endomorphism and let u ∈ V . Then 〈ι(u)ψ ,LSϕ〉 = 0.

It su�ces to prove this for rank 1 endomorphisms. Let v ∈ V and de�ne S := vv∗. Then

∗LSϕ = tr(S)ψ − LSψ = |v |
2ψ −v∗ ∧ ι(v)ψ by Step 3, so

ι(u)ψ ∧ ∗LSϕ = |v |
2ι(u)ψ ∧ψ − ι(u)ψ ∧v∗ ∧ ι(v)ψ = 0.

Here the last equation follows from (4.41) and (4.49).

Step 6. De�ne
End

sym

0
(V ) := {S ∈ End(V ) : S = S∗, tr(S) = 0} .

Then the map A 7→ LAϕ restricts to G(V ,ϕ)–equivariant isomorphism

End
sym

0
(V ) → Λ3

27
: S 7→ LSϕ .

That the map A 7→ LAϕ is G(V ,ϕ)–equivariant follows directly from the de�nitions. Now let

S ∈ End
sym

0
(V ). Then by Step 4

LSϕ ∧ψ

vol

= 〈LSϕ,ϕ〉 =
1

3
〈LSϕ,L1ϕ〉 = tr(S) = 0.

Moreover, ∗ι(u)ψ = −u∗ ∧ ϕ by (4.43) and so u∗ ∧ LSϕ ∧ ϕ = −〈LSϕ, ι(u)ψ 〉 = 0 for all u ∈ V by

Step 5. This shows that LSϕ ∧ ϕ = 0 and LSϕ ∧ψ = 0, and so LSϕ ∈ Λ
3

27
. Moreover, SLSϕ = S

for all S ∈ End
sym

0
(V ) by Step 1. Thus the map End

sym

0
(V ) → Λ3

27
: S 7→ LSϕ is injective. Since

End
sym

0
(V ) and Λ3

27
both have dimension 27, this proves Step 6 and Theorem 8.8. �

The above proof of Theorem 8.8 does not use the fact that the G(V ,ϕ)–representation End
sym

0
(V ),

and hence also Λ3

27
, is irreducible. Moreover, we have not included a proof of this fact in these

notes (although it is stated in Theorem 8.5). Assuming irreducibility, the proof of Theorem 8.8 can

be simpli�ed as follows.

Proof of Theorem 8.8 assuming End
sym

0
(V ) is irreducible. Since

LAϕ =
d

dt

����
t=0

exp(tA)∗ϕ,

it is clear that the map End(V ) → Λ3V ∗ : A 7→ LAϕ is G(V ,ϕ)–equivariant. Its kernel is

Lie(G(V ,ϕ)) and hence its restriction to End
sym

0
(V ) is injective. Now the composition of the

map End
sym

0
(V ) → Λ3V ∗ : A → LAϕ with the orthogonal projection onto Λ3

1
, respectively Λ3

7
,

is G(V ,ϕ)–equivariant by Step 5 in the proof of Theorem 8.5. This composition cannot be an

isomorphism for dimensional reasons, and hence must vanish by Schur’s Lemma, because the

G(V ,ϕ)–representations End
sym

0
(V ), Λ3

1
, and Λ3

7
are all irreducible. Thus the image of End

sym

0
(V )

under the map A 7→ LAϕ is perpendicular to Λ3

1
and Λ3

7
, and hence is equal to Λ3

27
. �
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We close this section with the proof of a well-known formula for the di�erential of the map

that assigns to a nondegenerate 3–form its coassociative calibration. LetV be a seven-dimensional

real vector space, abbreviate Λk
:= ΛkV ∗ for k = 0, 1, . . . , 7, and de�ne

P = P(V ) :=
{
ϕ ∈ Λ3

��ϕ is nondegenerate

}
.

This is an open subset of Λ3
and it is di�eomorphic to the homogeneous space GL(7,R)/G2. Namely,

if ϕ0 ∈ P is any nondegenerate 3–form then the map GL(V ) → P : д 7→ (д−1)∗ϕ0 descends to a

di�eomorphism from the quotient space GL(V )/G(V ,ϕ0) to P. De�ne the map Θ : P→ Λ4
by

(8.17) Θ(ϕ) := ∗ϕϕ .

Here ∗ϕ : Λ3 → Λ4
denotes the Hodge ∗–operator associated to the inner product and orientation

determined by ϕ.

Theorem 8.18. The map Θ : P → Λ4 in (8.17) is a GL(V )–equivariant local di�eomorphism, it
restricts to a di�eomorphism onto its image on each connected component of P, and its derivative at
ϕ ∈ P is given by

(8.19) dΘ(ϕ)η = ∗ϕ
(

4

3
π1(η) + π7(η) − π27(η)

)
for η ∈ Λ3. Here πd : Λ3 → Λ3

d denotes the projection associated to the orthogonal splitting Λ3 =

Λ3

1
⊕ Λ3

7
⊕ Λ3

27
in Theorem 8.5 determined by ϕ.

Proof. That P has two connected components distinguished by the orientation of V follows from

the fact that GL(V ) has two connected components. That the restriction of Θ to each connected

component of P is bijective follows from Theorem 4.31 and that it is a di�eomorphism then follows

from equation (8.19) and the inverse function theorem.

Thus it remains to prove (8.19). Since Θ is GL(V )–equivariant, it satis�es

(8.20) Θ(д∗ϕ) = д∗Θ(ϕ)

for ϕ ∈ P and д ∈ GL(V ). Fix a nondegenerate 3–form ϕ ∈ P, denote by ψ := Θ(ϕ) = ∗ϕϕ its

coassociative calibration, and di�erentiate equation (8.20) at д = 1 in the direction A ∈ End(V ) to

obtain

(8.21) dΘ(ϕ)LAϕ = LAψ .

Now let η ∈ Λ3
and denote ηd := πd (η) for d = 1, 7, 27. By Theorem 8.5 and Theorem 8.8 there

exists a real number λ, a vector u ∈ V , and a traceless symmetric endomorphism S : V → V such

that

η1 = 3λϕ, η7 = 3ι(u)ψ , η27 = LSϕ .

Since L1ϕ = 3ϕ and L1ψ = 4ψ , it follows from equation (8.21) that

(8.22) dΘ(ϕ)η1 = λdΘ(ϕ)L1ϕ = λL1ψ = 4λψ = 4

3
∗ϕ (3λϕ) =

4

3
∗ϕ η1.
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Now de�ne Au ∈ End(V ) by Auv := u ×v for v ∈ V . Then

LAuϕ = 3ι(u)ψ = η7, LAuψ = ∗ϕ (3ι(u)ψ ) = ∗ϕη7

by (4.18) and (4.19). Hence, it follows from equation (8.21) that

(8.23) dΘ(ϕ)η7 = dΘ(ϕ)LAuϕ = LAuψ = ∗ϕη7.

Moreover it follows from equations (8.15) and (8.21)

(8.24) dΘ(ϕ)η27 = dΘ(ϕ)LSϕ = LSψ = − ∗ϕ LSϕ = − ∗ϕ η27.

With this understood, equation (8.19) follows from (8.22), (8.23), and (8.24). This proves Theo-

rem 8.18. �

9 The group Spin(7)

LetW be an 8–dimensional real Hilbert space equipped with a positive triple cross product and let

Φ ∈ Λ4W ∗ be the Cayley calibration de�ned by (6.14). We orientW so that

Φ ∧ Φ > 0

and denote by ∗ : ΛkW ∗ → Λ8−kW ∗ the associated Hodge ∗–operator. Then Φ is self-dual, by

Remark 6.21. Recall that, for every unit vector e ∈W , the subspace

Ve := e⊥

is equipped with a cross product

u ×e v := u × e ×v

and that

Φ = e∗ × ϕe +ψe , ϕe := ι(e)Φ ∈ Λ3W ∗, ψe := ∗(e∗ ∧ ϕe ) ∈ Λ
4W ∗,

(see Theorem 6.15). The orientation ofW is compatible with the decompositionW = 〈e〉 ⊕ Ve (see

Remark 6.21).

The group of automorphisms of Φ will be denoted by

G(W ,Φ) := {д ∈ GL(W ) : д∗Φ = Φ} .

By Theorem 7.8, we have G(W ,Φ) ⊂ SO(W ) and hence

G(W ,Φ) = {д ∈ SO(W ) : дu × дv × дw = д(u ×v ×w) ∀u,v,w ∈W } .
For the standard structure Φ0 on R8

in Example 5.32 we denote the structure group by Spin(7) :=

G(R8,Φ0). By Theorem 7.12, the group G(W ,Φ) is isomorphic to Spin(7) for every positive Cayley-

form on an 8–dimensional vector space.
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Theorem 9.1. The group G(W ,Φ) is a 21–dimensional simple, connected, simply connected Lie group.
It acts transitively on the unit tangent bundle of the unit sphere and, for every unit vector e ∈W , the
isotropy subgroup Ge := {д ∈ G(W ,Φ) : дe = e} is isomorphic to G2. Thus there is a �bration

G2 ↪→ Spin(7) −→ S7.

Proof. The isotropy subgroup Ge is obviously isomorphic to G(Ve ,ϕe ) and hence to G2. We prove

that G(W ,Φ) acts transitively on the unit sphere. Let u,v ∈W be two unit vectors and choose a

unit vector e ∈W which is orthogonal to u and v . By Theorem 8.1, the isotropy subgroup Ge acts

transitively on the unit sphere in Ve . Hence, there is an element д ∈ Ge such that дu = v . That

G(W ,Φ) acts transitively on the set of pairs of orthonormal vectors now follows immediately from

Theorem 8.1. In particular, there is a �bration G2 ↪→ Spin(7) −→ S7
. It follows from the homotopy

exact sequence of this �bration and Theorem 8.1 that Spin(7) is connected and simply connected,

and that π3(Spin(7)) � Z. Hence, Spin(7) is simple. This proves Theorem 9.1. �

Lemma 9.2. Abbreviate

G := G(W ,Φ), g := Lie(G) ⊂ so(W ).

The homomorphism ρ : G(W ,Φ) → SO(g⊥) is a nontrivial double cover. Hence, Spin(7) is isomorphic
to the universal cover of SO(7).

Proof. De�ne

I := {ξ ∈ g : [ξ , so(W )] ⊂ g} .

If ξ ∈ I and η ∈ g, then [[ξ ,η], ζ ] = −[[η, ζ ], ξ ] − [[ζ , ξ ],η] ∈ g for all ζ ∈ so(W ), and so [ξ ,η] ∈ I .
Thus I is an ideal in g. Since so(W ) is simple, we have I ( g. Since g is simple, we have I = {0}.
This implies im ad(ξ ) 1 g for 0 , ξ ∈ g. Since ad(ξ ) : so(W ) → so(W ) is skew-adjoint, this

implies g⊥ 1 ker ad(ξ ) for 0 , ξ ∈ g. This means that the in�nitesimal adjoint action de�nes an

isomorphism g→ so(g⊥). Hence, the adjoint action gives rise to a covering map G→ SO(g⊥). Since

G is connected and simply connected, this implies that G is the universal cover of SO(g⊥) � SO(7)

and this proves Lemma 9.2. �

We examine the action of the group G(W ,Φ) on the space

S :=
{
(u,v,w,x) ∈W

��u,v,w,u ×v ×w,x are orthonormal

}
.

The space S is a bundle of 3–spheres over a bundle of 5–spheres over a bundle of 6–spheres over

a 7–sphere. Hence, it is a compact connected simply connected 21–dimensional manifold.

Theorem 9.3. The group G(W ,Φ) acts freely and transitively on S.

Proof. Since Spin(7) acts transitively on S7
with isotropy subgroup G2, the result follows immedi-

ately from Theorem 8.2. �
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Corollary 9.4. The group G(W ,Φ) acts transitively on the space of Cayley subspaces ofW .

Proof. This follows directly from Lemma 6.25 and Theorem 9.3. �

Remark 9.5. For each Cayley subspace H ⊂W choose the orientation such that

volH := Φ|H

is a positive volume form and denote by Λ+H ∗ the space of self-dual 2-forms (as in Remark 4.28),

by πH : W → H the orthogonal projection, and by

GH := {д ∈ G(W ,Φ) : дH = H }

the isotropy subgroup. Fix a Cayley subspaceH ⊂W . Then there is a unique orientation preserving

GH -equivariant isometric isomorphism

TH : Λ+H ∗ → Λ+(H⊥)∗.

It is given by

(9.6) THω := − 1

2

(
∗(Φ ∧ π ∗Hω)

)
|H⊥ for ω ∈ Λ+H ∗

and its inverse is (TH )
−1 = TH⊥ . If ω1,ω2,ω3 is a standard basis of Λ+H ∗ and τi ∈ Λ+(H⊥)∗ is

de�ned by τi := THωi for i = 1, 2, 3, then the Cayley calibration Φ can be expressed in the form

(9.7) Φ = π ∗HvolH + π
∗
H⊥volH⊥ −

3∑
i=1

π ∗Hωi ∧ π
∗
H⊥τi .

To see this, choose a standard basis ofW as in Example 7.3 such that the vectors e0, e1, e2, e3 form

a basis of H , the vectors e4, e5, e6, e7 form a basis of H⊥, and

ω1 = e01 + e23, ω2 = e02 − e13, ω3 = e03 + e12,

τ1 = e45 + e67, τ2 = e46 − e57, τ3 = e47 + e56.

That such a basis exists follows from Theorem 7.12 and Theorem 9.3. It follows also from The-

orem 9.3 that a pair (h,h′) ∈ SO(H ) × SO(H⊥) belongs to the image of the homomorphism

GH → SO(H ) × SO(H⊥) if and only if the induced automorphisms of Λ+H ∗ and Λ+(H⊥)∗ are

conjugate under TH . Hence the map

GH → SO(H ) ×SO(Λ+H ∗) SO(H⊥) : д 7→ [д |H ,д |H⊥]

is a Lie group isomorphism. Hence, dim GH = 9 and so the Cayley Grassmannian

H := {H ⊂W : H is a Cayley subspace} ,

which is di�eomorphic to the homogeneous space G(W ,Φ)/GH , has dimension 12.
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Theorem 9.8. There are orthogonal splittings

Λ2W ∗ = Λ2

7
⊕ Λ2

21
,

Λ3W ∗ = Λ3

8
⊕ Λ3

48
,

Λ4W ∗ = Λ4

1
⊕ Λ4

7
⊕ Λ4

27
⊕ Λ4

35
,

where dimΛk
d = d and

Λ2

7
:=

{
ω ∈ Λ2W ∗ : ∗(Φ ∧ ω) = 3ω

}
= {u∗ ∧v∗ − ι(u)ι(v)Φ : u,v ∈W } ,

Λ2

21
:=

{
ωξ : ξ ∈ g

}
=

{
ω ∈ Λ2W ∗ : ∗(Φ ∧ ω) = −ω

}
=

{
ω ∈ Λ2W ∗ : 〈ω, ι(u)ι(v)Φ〉 = ω(u,v) ∀u,v ∈W }

,

Λ3

8
:= {ι(u)Φ : u ∈W } ,

Λ3

48
:=

{
ω ∈ Λ3W ∗ : Φ ∧ ω = 0

}
,

Λ4

1
:= 〈Φ〉,

Λ4

7
:=

{
LξΦ : ξ ∈ so(W )

}
,

Λ4

27
:=

{
ω ∈ Λ4W ∗ : ∗ω = ω, ω ∧ Φ = 0, ω ∧ LξΦ = 0∀ξ ∈ so(W )} ,

Λ4

35
:=

{
ω ∈ Λ4W ∗ : ∗ω = −ω

}
.

Here g := Lie(G(W ,Φ)) and, for ξ ∈ so(W ), the 4–form LξΦ ∈ Λ
4W ∗ and the 2–form ωξ ∈ Λ

2W ∗

are de�ned by LξΦ := d
dt

��
t=0

exp(tξ )∗Φ and ωξ := 〈·, ξ ·〉. Each of the spaces Λk
d is an irreducible

representation of G(W ,Φ).

Proof. By Theorem 9.1, G := G(W ,Φ) is simple and so the action of G on g by conjugation is

irreducible. Hence, the 21–dimensional subspace Λ2

21
must be contained in an eigenspace of the

operator ω 7→ ∗(Φ ∧ ω) on Λ2W ∗. We prove that the eigenvalue is −1. To see this, we choose a

unit vector e ∈W and an element ξ ∈ g with ξe = 0. Let

Ve := e⊥

and denote by ιe : Ve →W and πe : W → Ve the inclusion and orthogonal projection and by

∗e : ΛkV ∗e → Λ7−kV ∗e the Hodge ∗–operator on the subspace. Then

∗(e∗ ∧ π ∗eαe ) = π
∗
e ∗e αe ∀ αe ∈ ΛkV ∗e .

Moreover, the alternating forms

ϕe := ι∗e (ι(e)Φ), ψe := ι∗eΦ

are the associative and coassociative calibrations of Ve . Since ξe = 0, we have ωξ = π
∗
e ι
∗
eωξ and,

by Theorem 8.5,

ψe ∧ ι
∗
eωξ = 0, ∗e (ϕe ∧ ι

∗
eωξ ) = −ι

∗
eωξ .
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Since Φ = e∗ ∧ π ∗eϕe + π
∗
eψe , this gives

∗
(
Φ ∧ ωξ

)
= ∗

( (
e∗ ∧ π ∗eϕe + π

∗
eψe

)
∧ π ∗e ι

∗
eωξ

)
= ∗

(
e∗ ∧ π ∗e

(
ϕe ∧ ι

∗
eωξ

) )
+ ∗π ∗e

(
ψe ∧ ι

∗
eωξ

)
= π ∗e ∗e

(
ϕe ∧ ι

∗
eωξ

)
= −π ∗e ι

∗
eωξ = −ωξ .

By Lemma 9.2 the adjoint action of G on g⊥ ⊂ so(W ) is irreducible, and g⊥ is mapped under ξ 7→ ωξ
onto the orthogonal complement of Λ2

21
. Hence, the 7–dimensional orthogonal complement of Λ2

21

is also contained in an eigenspace of the operator ω 7→ ∗(Φ∧ω). Since this operator is self-adjoint

and has trace zero, its eigenvalue on the orthogonal complement of Λ2

21
must be 3 and therefore

this orthogonal complement is equal to Λ2

7
. It follows that the orthogonal projection of ω ∈ Λ2W ∗

onto Λ2

7
is given by π7(ω) =

1

4
(ω + ∗(Φ ∧ ω)) . Hence, for every nonzero vector e ∈W , we have

Λ2

7
=

{
e∗ ∧ u∗ − ι(e)ι(u)Φ : u ∈ e⊥

}
,

Λ2

21
=

{
ω ∈ Λ2W ∗ : 〈ω, ι(e)ι(u)Φ〉 = ω(e,u)∀u ∈ e⊥} .

This proves the decomposition result for Λ2W ∗.

We verify the decomposition of Λ3W ∗. For u ∈W and ω ∈ Λ3W ∗ we have the equation

u∗ ∧ Φ ∧ ω = −ω ∧ ∗ι(u)Φ.

Hence, Φ ∧ ω = 0 if and only if ω is orthogonal to ι(u)Φ for all u ∈W . This shows that Λ3

48
is

the orthogonal complement of Λ3

8
. Since Φ is nondegenerate, we have dim Λ3

8
= 8 and, since

dim Λ3W ∗ = 56, it follows that dim Λ3

48
= 48.

We verify the decomposition of Λ4W ∗. The 4–form д∗Φ is self-dual for every д ∈ G = G(W ,Φ),
because Φ is self-dual and G ⊂ SO(W ). This implies that LξΦ is self-dual for every ξ ∈ g = Lie(G).

Since SO(W ) has dimension 28 and the isotropy subgroup G of Φ has dimension 21, it follows that

the tangent space Λ4

7
to the orbit of Φ under the action of G has dimension 7. As Λ4

1
has dimension

1 and the space of self-dual 4–forms has dimension 35, the orthogonal complement of Λ4

1
⊕ Λ4

7
in

the space of self-dual 4–forms has dimension 27. This proves the dimension and decomposition

statements.

That the action of G onΛ2

21
� g is irreducible follows from the fact that G is simple. Irreducibility

of the action on Λ4

1
is obvious. For Λ3

8
�W it follows from the fact that G acts transitively on the

unit sphere inW , and for Λ2

7
� g⊥ � Λ4

7
it follows from the fact that the istropy subgroup Ge of a

unit vector e ∈W acts transitively on the unit sphere in Ve = e⊥. For Λ4

27
, Λ4

35
, and Λ3

48
we refer

to [Bry87]. This proves Theorem 9.8. �

Corollary 9.9. For u,v ∈W denote ωu,v := ι(v)ι(u)Φ = Φ(u,v, ·, ·). Then, for all u,v,x ,y ∈W we
have

∗ (Φ ∧ u∗ ∧v∗) = ωu,v , ∗
(
Φ ∧ ωu,v

)
= 3u∗ ∧v∗ + 2ωu,v ,(9.10)

〈ωu,v ,ωx,y〉 = 3

(
〈u,x〉〈v,y〉 − 〈u,y〉〈v,x〉

)
+ 2Φ(u,v,x ,y),(9.11)

ωu,v ∧ ωx,y ∧ Φ

vol

= 6

(
〈u,x〉〈v,y〉 − 〈u,y〉〈v,x〉

)
+ 7Φ(u,v,x ,y).(9.12)
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Proof. The �rst equation in (9.10) is a general statement about the Hodge ∗–operator in any

dimension. Moreover, by Theorem 9.8, the 2–form u∗ ∧v∗ +ωu,v is an eigenvector of the operator

ω 7→ ∗(Φ ∧ ω) with eigenvalue 3. Hence, the second equation in (9.10) follows from the �rst.

To prove (9.11), take the inner product of the second equation in (9.10) with x∗ ∧ y∗ and use the

identities

〈ωu,v ,x
∗ ∧ y∗〉 = Φ(u,v,x ,y),(9.13)

〈u∗ ∧v∗,x∗ ∧ y∗〉 = 〈u,x〉〈v,y〉 − 〈u,y〉〈v,x〉,(9.14)

and the fact that the operator ω 7→ ∗(Φ ∧ ω) is self-adjoint. To prove (9.12), we observe that

ωu,v ∧ ωx,y ∧ Φ

vol

= 〈ωu,v , ∗(Φ ∧ ωx,y )〉

= 〈ωu,v , 3x
∗ ∧ y∗ + 2ωx,y〉

= 6

(
〈u,x〉〈v,y〉 − 〈u,y〉〈v,x〉

)
+ 7Φ(u,v,x ,y),

where the second equation follows from (9.10) and the last follows from (9.11) and (9.14). This

proves Corollary 9.9. �

10 Spin structures

This section explains how a cross products in dimension seven, respectively a triple cross products

in dimension eight, gives rise to a spin structure and a unit spinor and how, conversely, the

cross product or triple cross product can be recovered from these data. We begin the discussion

with spin structures and triple cross products in Section 10.1 and then move on to cross products

in Section 10.2.

10.1 Spin structures and triple cross products

Let W be an 8–dimensional oriented real Hilbert space. A spin structure on W is a pair of

8–dimensional real Hilbert spaces S± equipped with a vector space homomorphism γ : W →

Hom(S+, S−) that satis�es the condition

(10.1) γ (u)∗γ (u) = |u |21

for all u ∈ W (see [Sal99, Proposition 4.13, De�nition 4.32, Example 4.48]). The sign in S± is

determined by the condition

(10.2) γ (e7)
∗γ (e6) · · ·γ (e1)

∗γ (e0) = 1S+

for some, and hence every, positively oriented orthonormal basis e0, . . . , e7 of W (see [Sal99,

page 132]). More precisely, consider the 16–dimensional real Hilbert space S := S+ ⊕ S− and de�ne
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the homomorphism Γ : W → End(S) by

Γ(u) :=

(
0 γ (u)

−γ (u)∗ 0

)
for u ∈W .

Then equation (10.1) guarantees that Γ extends uniquely to an algebra isomorphism from the

Cli�ord algebra C`(W ) to End(S), still denoted by Γ. The complexi�cation of S gives rise an

algebra isomorphism Γc : C`c (W ) → End(Sc ) from the complexi�ed Cli�ord algebra C`c (W ) :=

C`(W ) ⊗R C to the complex endomorphisms of Sc := S ⊗R C (see [Sal99, Proposition 4.33]).

Theorem 10.3. LetW be an oriented 8–dimensional real Hilbert space and abbreviate Λk
:= ΛkW ∗

for k = 0, 1, . . . , 8.

1. SupposeW is equipped with a positive triple cross product (6.2), let Φ ∈ Λ4 be the Cayley
calibration de�ned by (6.14), and assume that Φ ∧ Φ > 0. De�ne the homomorphism γ : W →
Hom(S+, S−) by

(10.4) S+ := Λ0 ⊕ Λ2

7
, S− := Λ1

and

(10.5) γ (u)(λ,ω) := λu∗ + 2ι(u)ω

for u ∈W , λ ∈ R, and ω ∈ Λ2

7
. Then γ is a spin structure onW , i.e., it satis�es (10.1) and (10.2).

Moreover, the space S+ = Λ0 ⊕ Λ2

7
of positive spinors contains a canonical unit vector s = (1, 0)

and the triple cross product can be recovered from the spin structure and the unit spinor via the
formula

γ (u ×v ×w)s = 〈v,w〉γ (u)s − 〈w,u〉γ (v)s + 〈u,v〉γ (w)s

− γ (u)γ (v)∗γ (w)s
(10.6)

for u,v,w ∈W .

2. Let γ : W → Hom(S+, S−) be a spin structure and let s ∈ S+ be a unit vector. Then equa-
tion (10.6) de�nes a positive triple cross product onW and the associated Cayley calibration Φ
satis�es Φ ∧ Φ > 0. Since any two spin structures onW are isomorphic, this shows that there is
a one-to-one correspondence between positive unit spinors and positive triple cross products on
W that are compatible with the inner product and orientation.

Proof. See page 69. �

AssumeW is equipped with a positive triple cross product (6.2) and that its Cayley calibration

Φ ∈ Λ4W ∗ in (6.14) satis�es Φ ∧ Φ > 0. Recall that, for every unit vector e ∈W , there is a normed

algebra structure onW , de�ned by (6.19). This normed algebra structure can be recovered from an

intrinsic product map

m : W ×W → Λ0 ⊕ Λ2

7
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(which does not depend on e) and an isomorphism γ (e) : Λ0 ⊕ Λ2

7
→ Λ1

(which does depend on e).

The product map is given by

(10.7) m(u,v) =
(
〈u,v〉, 1

2
(u∗ ∧v∗ + ωu,v )

)
foru,v ∈W and the isomorphismγ (e) is given by (10.5) withu replaced by e . Hereωu,v := ι(v)ι(u)Φ
as in Corollary 9.9.

Lemma 10.8. Let IW : W →W ∗ be the isomorphism induced by the inner product, so that IW (u) =
〈u, ·〉 = u∗ for u ∈ W . Let γ : W → Hom(S+, S−) and m : W ×W → S+ be de�ned by (10.5)

and (10.7). Then, for all u,v, e ∈W , we have

I−1

W (γ (e)m(u,v)) = 〈u,v〉e + 〈u, e〉v − 〈v, e〉u + u × e ×v,(10.9)

|m(u,v)| = |u | |v |, |γ (e)(λ,ω)|2 = |e |2
(
|λ |2 + |ω |2

)
.(10.10)

Proof. Equation (10.9) follows directly from the de�nitions. Moreover, it follows from (9.11) that

|m(u,v)|2 = 〈u,v〉2 + 1

4
|u∗ ∧v∗ |2 + 1

4
|ωu,v |

2 = 〈u,v〉2 + |u ∧v |2 = |u |2 |v |2.

This proves the �rst equation in (10.10). To prove the second equation in (10.10) we observe that

γ (e)m(e,v) = v and, hence, |γ (e)m(e,v)| = |v | = |m(e,v)| whenever |e | = 1. Since the map

W → Λ0 ⊕ Λ2

7
: v 7→m(e,v) is bijective, this proves Lemma 10.8. �

Remark 10.11. If we �x a unit vector e ∈W and denote v̄ := 2〈e,v〉e −v , then the product in (6.19)

is given by

uv = −〈u,v〉e + 〈u, e〉v + 〈v, e〉u + u × e ×v = I−1

W (γ (e)m(u, v̄))

for u,v ∈W .

The next lemma shows that the linear mapγ (u) : Λ0 ⊕ Λ2

7
→ Λ1

is dual to the mapm(u, ·) : W →
Λ0 ⊕ Λ2

7
for every u ∈W and that it satis�es equation (10.1).

Lemma 10.12. Let γ : W → Hom(S+, S−) be the homomorphism in (10.4) and (2.21). Then γ satis-
�es (10.1) and

(10.13) γ (u)∗v∗ =m(u,v) =
(
〈u,v〉, 1

2
(u∗ ∧v∗ + ωu,v )

)
for all u,v ∈W .

Proof. For u ∈W , λ ∈ R, ω ∈ Λ2

7
, and v ∈W we compute

〈γ (u)(λ,ω),v∗〉 = 〈λu∗ + 2ι(u)ω,v∗〉

= λ〈u,v〉 + 2〈ω,u∗ ∧v∗〉

= λ〈u,v〉 + 1

2
〈ω,ωu,v + u

∗ ∧v∗〉.
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The last equation follows from the fact that

π7(u
∗ ∧v∗) = 1

4
(u∗ ∧v∗ + ωu,v ).

This proves (10.13). With this understood, the formulaγ (u)∗γ (u) = |u |21 follows directly from (10.10).

This proves Lemma 10.12. �

Combining the product mapm with the triple cross product we obtain an alternating multi-

linear map τ : W 4 → Λ0 ⊕ Λ2

7
de�ned by

τ (x ,u,v,w) = 1

4

(
m(u ×v ×w,x) −m(v ×w × x ,u)

+m(w × x × u,v) −m(x × u ×v,w)
)
.

(10.14)

This map corresponds to the four-fold cross product (see De�nition 5.33) and has the following

properties (see Theorem 5.35).

Lemma 10.15. Let χ : W 4 → Λ2

7
denote the second component of τ . Then, for all u,v,w,x ∈W , we

have

τ (x ,u,v,w) = (Φ(x ,u,v,w), χ (x ,u,v,w)) ,

Φ(x ,u,v,w)2 + |χ (x ,u,v,w)|2 = |x ∧ u ∧v ∧w |2.

Proof. That the �rst component of τ is equal to Φ follows directly from the de�nitions. Moreover,

for u,v,w,x ∈W , we have

2χ (x ,u,v,w) = (u ×v ×w)∗ ∧ x∗ + ωu×v×w,x

− (v ×w × x)∗ ∧ u∗ − ωv×w×x,u

+ (w × x × u)∗ ∧v∗ + ωw×x×u,v

− (x × u ×v)∗ ∧w∗ − ωx×u×v,w .

(10.16)

We claim that the four rows on the right agree whenever u,v,w,x are pairwise orthogonal. Under

this assumption the �rst two rows remain unchanged if we add to x a multiple of u ×v ×w . Thus

we may assume that x is orthogonal to u, v , w , and u ×v ×w . By Theorem 9.3, we may therefore

assume thatW = R8
with the standard triple cross product and

u = e0, v = e1, w = e2, x = e4.

In this case a direct computation proves that the �rst two rows agree. Thus we have proved that,

if u,v,w,x ∈W are pairwise orthogonal, then

τ (x ,u,v,w) =m(u ×v ×w,x).
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In this case it follows from (10.10) that

|τ (x ,u,v,w)| = |m(u ×v ×w,x)|

= |x | |u ×v ×w |

= |x | |u | |v | |w |

= |x ∧ u ∧v ∧w |.

Since τ is alternating, this proves Lemma 10.15. �

Lemma 10.17. Let γ : W → Hom(S+, S−) be the homomorphism in (10.4) and (10.5). Then γ satis-
�es (10.2) and (10.6).

Proof. It follows from (10.1) that 〈γ (u)s,γ (v)s〉 = 〈u,v〉 for all u,v ∈W . Hence, equation (10.6) is

equivalent to

Φ(x ,u,v,w) = 〈x ,u〉〈v,w〉 − 〈x ,v〉〈w,u〉 + 〈x ,w〉〈u,v〉

− 〈γ (u)∗γ (x)s,γ (v)∗γ (w)s〉
(10.18)

for all x ,u,v,w ∈W . Since s = (1, 0) ∈ S+ = Λ0 ⊕ Λ2

7
, we have

γ (u)∗γ (x)s = γ (u)∗x∗ =
(
〈u,x〉, 1

2
(u∗ ∧ x∗ + ωu,x )

)
for all u,x ∈W by Lemma 10.12. Hence,

〈γ (u)∗γ (x)s,γ (v)∗γ (w)s〉

= 〈u,x〉〈v,w〉 + 1

4
〈u∗ ∧ x∗ + ωu,x ,v

∗ ∧w∗ + ωv,w 〉

= 〈u,x〉〈v,w〉 + 〈u,v〉〈x ,w〉 − 〈u,w〉〈x ,v〉 + Φ(u,x ,v,w).

Here the last equation follows from Corollary 9.9. This shows that the homomorphism γ satis-

�es (10.18) and hence also (10.6).

We prove that γ satis�es (10.2). Choose an orthonormal basis e0, . . . , e7 ofW in which Φ has

the standard form of Example 7.3. Such a basis exists by Theorem 7.12 because Φ is a positive

Cayley form, and it is positive because Φ ∧ Φ > 0. Moreover, for any quadruple of integers

0 ≤ i < j < k < ` ≤ 7, the following are equivalent.

(a) The term ±ei jk` appears in the standard basis.

(b) Φ(ei , ej , ek , e`) = ±1.

(c) ek × ej × ei = ±e` .

(d) −γ (ek )γ (ej )
∗γ (ei )s = ±γ (e`)s .
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Here the equivalence of ((a)) and ((b)) is obvious, the equivalence of ((b)) and ((c)) follows from

the fact that

Φ(ei , ej , ek , e`) = Φ(e`, ek , ej , ei ) = 〈ek × ej × ei , e`〉

by (7.2), and the equivalence of ((c)) and ((d)) follows from equation (10.6). Examining the relevant

terms in Example 7.3 we �nd that

γ (e2)γ (e1)
∗γ (e0)s = −γ (e3)s,

hence

γ (e4)γ (e3)
∗γ (e2)γ (e1)

∗γ (e0)s = −γ (e4)s,

hence

γ (e6)γ (e5)
∗γ (e4)γ (e3)

∗γ (e2)γ (e1)
∗γ (e0)s = −γ (e6)γ (e5)

∗γ (e4)s = γ (e7)s,

and hence

γ (e7)
∗γ (e6)γ (e5)

∗γ (e4)γ (e3)
∗γ (e2)γ (e1)

∗γ (e0)s = s .

Hence, γ satis�es (10.2) and this proves Lemma 10.17. �

Proof of Theorem 10.3. Part (1) follows from Lemma 10.12 and Lemma 10.17. To prove part (2) as-

sumeγ : W → Hom(S+, S−) is a spin structure, let s ∈ S+ be a unit vector, and de�ne the multilinear

map

(10.19) W 3 →W : (u,v,w) 7→ u ×v ×w

by (10.6). Then u × v × w = 0 whenever two of the three vectors agree. Hence, it su�ces to

verify (6.3) and (6.4) under the assumption that u,v,w are pairwise orthogonal. In this case we

compute

〈u ×v ×w,u〉 = 〈γ (u ×v ×w)s,γ (u)s〉

= −〈γ (u)γ (v)∗γ (w)s,γ (u)s〉

= −|u |2〈γ (v)∗γ (w)s, s〉

= −|u |2〈v,w〉 = 0.

and

|u ×v ×w |2 = |γ (u ×v ×w)s |2

= |γ (u)γ (v)∗γ (w)s |2

= |u |2 |v |2 |w |2

= |u ∧v ∧w |2.
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This shows that the map (10.19) is a triple cross product. To prove that it is positive, choose a

quadruple of pairwise orthogonal vectors e,u,v,w ∈W such thatw is also orthogonal to e ×u ×v .

Then

γ (e × u × (e ×v ×w))s = −γ (e)γ (u)∗γ (e ×v ×w)s

= γ (e)γ (u)∗γ (e)γ (v)∗γ (w)s

= −γ (e)γ (e)∗γ (u)γ (v)∗γ (w)s

= −|e |2γ (u)γ (v)∗γ (w)s

= |e |2γ (u ×v ×w)s .

Here the �rst, second, and �fth equalities follow from (10.6) and the third and fourth equalities

follow from (10.1). Thus we have proved that the triple cross product (10.19) is positive. That the

associated Cayley calibration Φ satis�es Φ ∧ Φ > 0 follows by using a standard basis and reversing

the argument in the proof of Lemma 10.17. This proves Theorem 10.3. �

10.2 Spin structures and cross products

Let V be a 7–dimensional oriented real Hilbert space. A spin structure on V is an 8-dimensional

real Hilbert space S equipped with a vector space homomorphism γ : V → End(S) that satis�es

the conditions

(10.20) γ (u)∗ + γ (u) = 0, γ (u)∗γ (u) = |u |21

for all u ∈ V (see [Sal99, De�nition 4.32]) and

(10.21) γ (e7)γ (e6) · · ·γ (e1) = −1.

for some, and hence every, positive orthonormal basis e1, . . . , e7 of V . Equation (10.20) guar-

antees that the linear map γ : V → End(S) extends uniquely to an algebra homomorphism

γ : C`(V ) → End(S) (see [Sal99, Proposition 4.33]). It follows from (10.21) that the kernel of

this extended homomorphism is given by {x ∈ C`(V ) : εx = x}, where ε := e7 · · · e1 ∈ C`7(V )
for a positive orthonormal basis e1, . . . , e7 of V (see [Sal99, Proposition 3.34]). Since ε is an odd

element of C`(V ), this implies that the restrictions of γ to both C`ev(V ) and C`odd(V ) are injective.

Since dim C`ev(V ) = dim C`odd(V ) = dim End(S) = 64, it follows that γ restricts to an algebra

isomorphism from C`ev(V ) to End(S) and to a vector space isomorphism from C`odd(V ) to End(S).

Theorem 10.22. Let V be an oriented 7–dimensional real Hilbert space.

1. Suppose V is equipped with a cross product and de�ne the homomorphism γ : V → End(S) by

(10.23) S := R ×V , γ (u)(λ,v) := (−〈u,v〉, λu + u ×v)

for λ ∈ R and u,v ∈ V . Then γ is a spin structure on V , i.e., it satis�es (10.20) and (10.21).
Moreover, the space S = R ×V contains a canonical unit vector s = (1, 0) and the cross product
can be recovered from the spin structure and the unit spinor via the formula

(10.24) γ (u ×v)s = γ (u)γ (v)s + 〈u,v〉s for u,v ∈ V .
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2. Let γ : V → End(S) be a spin structure and let s ∈ S be a unit vector. Then equation (10.24)

de�nes a cross product onV that is compatible with the inner product and orientation. Since any
two spin structures on V are isomorphic, this shows that there is a one-to-one correspondence
between unit spinors and cross products on V that are compatible with the inner product and
orientation.

Proof. We prove part (1). Thus assume V is equipped with a cross product that is compatible

with the inner product and orientation, and let γ : V → End(S) be given by (10.23). Then, for

u,v,w ∈ V and λ, µ ∈ R, we have

〈(λ,v),γ (u)(µ,w)〉 = µ〈u,v〉 − λ〈u,w〉 + ϕ(v,u,w).

This expression is skew-symmetric in (λ,v) and (µ,w) and so γ (u) is skew-adjoint. Moreover, for

u,v,w ∈ V and µ ∈ R, we have

γ (u)γ (v)(µ,w) + 〈u,v〉(µ,w)

= (−〈u, µv +v ×w〉,−〈v,w〉u + u × (µv +v ×w)) + 〈u,v〉(µ,w)

= (−〈u ×v,w〉, µ(u ×v) + u × (v ×w) − 〈v,w〉u + 〈u,v〉w)

= γ (u ×v)(µ,w) + (0,−(u ×v) ×w − 〈v,w〉u + 〈u,w〉v)

+ (0,−(v ×w) × u − 〈u,w〉v + 〈u,v〉w)

= γ (u ×v)(µ,w) − 2(0, [u,v,w]).

Here the last equation follows from (4.1). This proves (10.20) by taking v = −u and (10.24) by

taking µ = 1 and w = 0. For the proof of (10.21) it is convenient to use the standard basis for the

standard cross product on V = R7
in Example 2.15. The left hand side of (10.21) is independent

of the choice of the positive orthonormal basis and we know from general principles that the

composition γ (e7) · · ·γ (e1)must equal ±1 (see [Sal99, Prop 4.34]). The sign can thus be determined

by evaluating the composition of the γ (ej ) on a single nonzero vector. We leave the veri�cation to

the reader. This proves part (1).

We prove part (2). Thus assume that γ : V → End(S) is a spin structure compatible with the

orientation and let s ∈ S be a unit vector. Then the map

(10.25) R ×V → S : (λ,v) 7→ Ξ(λ,v) := λs + γ (v)s

is an isometric isomorphism, because |λs +γ (v)s |2 = |λ |2 + |v |2 by (10.20) and both spaces have the

same dimension. Foru,v ∈ V the �rst coordinate of Ξ−1γ (u)γ (v)s is 〈s,γ (u)γ (v)s〉 = −〈u,v〉 and so

the second coordinate is the vector u ×v ∈ V that satis�es (10.24). The mapV ×V → V : (u,v) 7→
u × v is obviously bilinear and it is skew symmetric because γ (u)γ (v) + γ (v)γ (u) = −2〈u,v〉1
by (10.20). It satis�es (2.3) and (2.10) because

〈u,u ×v〉 = 〈γ (u)s,γ (u ×v)s〉 = 〈γ (u)s,γ (u)γ (v)s + 〈u,v〉s〉 = 0,

γ (u × (u ×v))s = γ (u)γ (u ×v)s = γ (u)
(
γ (u)γ (v)s + 〈u,v〉s

)
= γ

(
〈u,v〉u − |u |2v

)
s .
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for allu,v ∈ V . Hence, it is a cross product by Lemma 2.9. That it is compatible with the orientation

can be proved by choosing a standard basis as in Example 2.15. This proves Theorem 10.22. �

We close this section with some useful identities.

Lemma 10.26. Fix a spin structure γ : V → End(S) that is compatible with the orientation and a
unit vector s ∈ S , let V ×V → V : (u,v) 7→ u ×v be the cross product determined by (10.24), and let
Ξ : R ×V → S be the isomorphism in (10.25). Then the following hold:

1. The spin structure γ is isomorphic to the spin structure in (10.23) via Ξ, i.e., for all λ ∈ R and
all u,v ∈ V , we have

(10.27) Ξ−1γ (u)Ξ(λ,v) = (−〈u,v〉, λu + u ×v)

2. For all u,v,w ∈ V we have

γ ([u,v,w])s + ϕ(u,v,w)s + γ (u)γ (v)γ (w)s

= −〈v,w〉γ (u)s + 〈w,u〉γ (v)s − 〈u,v〉γ (w)s .
(10.28)

3. The associative calibration ϕ ∈ Λ3V ∗ is given by

(10.29) ϕ(u,v,w) = −〈s,γ (u)γ (v)γ (w)s〉

and the coassociative calibrationψ = ∗ϕ ∈ Λ4V ∗ is given by

ψ (u,v,w,x) = −〈s,γ (u)γ (v)γ (w)γ (x)s〉

+ 〈v,w〉〈u,x〉 − 〈w,u〉〈v,x〉 + 〈u,v〉〈w,x〉.
(10.30)

Proof. Part (1) follows from (10.24) by direct calculation. By (1) the second displayed formula in

the proof of Theorem 10.22 with µ = 0 can be expressed as

γ (u)γ (v)γ (w)s + 〈u,v〉γ (w)s

= γ (u ×v)γ (w)s − 2γ ([u,v,w])s

= −2〈u ×v,w〉s − 2γ ([u,v,w])s − γ (w)γ (u ×v)s

= −2ϕ(u,v,w)s − 2γ ([u,v,w])s − γ (w)γ (u)γ (v)s − 〈u,v〉γ (w)s

= −2ϕ(u,v,w)s − 2γ ([u,v,w])s

+ γ (u)γ (w)γ (v)s + 2〈w,u〉γ (v)s − 〈u,v〉γ (w)s

= −2ϕ(u,v,w)s − 2γ ([u,v,w])s

− γ (u)γ (v)γ (w)s − 2〈v,w〉γ (u)s + 2〈w,u〉γ (v)s − 〈u,v〉γ (w)s

for all u,v,w ∈ V and this proves (2). Part (3) follows from (2) by taking the inner product with s ,
respectively with γ (x)s (see Lemma 4.8). This proves Lemma 10.26. �
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11 Octonions and complex linear algebra

Let W be a 2n–dimensional real vector space. An SU(n)–structure on W is a triple (ω, J ,θ )
consisting of a nondegenerate 2–form ω ∈ Λ2W ∗, an ω–compatible complex structure J : W →W
(so that 〈·, ·〉 := ω(·, J ·) is an inner product), and a complex multi-linear map θ : W n → C which

has norm 2
n/2

with respect to the metric determined by ω and J . The archetypal example is

W = Cn
with the standard symplectic form

ω :=
∑
j

dx j ∧ dyj ,

the standard complex structure J := i , and the standard (n, 0)–form

θ := dz1 ∧ · · · ∧ dzn .

In this section we examine the relation between SU(3)–structures and cross products and between

SU(4)–structures and triple cross products. We also explain the decompositions of Theorem 8.5

and Theorem 9.8 in this setting.

Theorem 11.1. LetW be a 6–dimensional real vector space equipped with an SU(3)–structure (ω, J ,θ ).
Then the space V := R ⊕W carries a natural cross product de�ned by

(11.2) v ×w := (ω(v1,w1),v0 Jw1 −w0 Jv1 +v1 ×θ w1)

for u = (u0,u1),v = (v0,v1) ∈ R ⊕ W , where v1 ×θ w1 ∈ V is de�ned by 〈u1,v1 ×θ w1〉 :=

Reθ (u1,v1,w1) for all u1 ∈W . The associative calibration of this cross product is

(11.3) ϕ := e0 ∧ ω + Reθ ∈ Λ3V ∗

and the coassociative calibration is

(11.4) ψ := ∗ϕ = 1

2
ω ∧ ω − e0 ∧ Imθ ∈ Λ4V ∗.

Moreover, the subspaces Λk
d ⊂ ΛkV ∗ in Theorem 8.5 are given by

Λ2

7
= Rω ⊕ {e0 ∧ u∗ − ι(u)Imθ : u ∈W },

Λ2

14
=

{
τ − e0 ∧ ∗W (τ ∧ Reθ ) : τ ∈ Λ2W ∗, τ ∧ ω ∧ ω = 0

}
,

Λ3

7
= R · Imθ ⊕

{
u∗ ∧ ω − e0 ∧ ι(u)Reθ : u ∈W

}
,

Λ3

27
= R ·

(
3Reθ − 4e0 ∧ ω

)
⊕

{
e0 ∧ τ : τ ∈ Λ1,1W ∗, τ ∧ ω ∧ ω = 0

}
⊕

{
β ∈ Λ2,1W ∗ + Λ1,2W ∗ : β ∧ ω = 0

}
⊕

{
u∗ ∧ ω + e0 ∧ ι(u)Reθ : u ∈W

}
.
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Proof. For v,w ∈W we de�ne αv,w ∈ Λ
1W ∗ by αv,w := Reθ (·,v,w). Then |αv,w | = |θ (u,v,w)| =

|v | |w | whenever u, Ju,v, Jv,w, Jw are pairwise orthogonal and |u | = 1. This implies

(11.5) |αv,w |
2 + ω(v,w)2 + 〈v,w〉2 = |v |2 |w |2

for all v,w ∈W . (Add to w a suitable linear combination of v and Jv .) It follows from (11.5) by

direct computation that the formula (11.2) de�nes a cross product on R ×W . By (11.2) and (11.3), we

have ϕ(u,v,w) = 〈u,v ×w〉 so that ϕ is the associative calibration of (11.2) as claimed. That ϕ is

compatible with the orientation of R ⊕W follows from the fact that ι(e0)ϕ = ω and ω ∧ Reθ = 0

so that ι(e0)ϕ ∧ ι(e0)ϕ ∧ ϕ = e0 ∧ ω3 = 6vol. The formula (11.4) for ψ := ∗ϕ follows from the fact

that ω ∧ θ = 0 and Imθ = ∗Reθ so that Reθ ∧ Imθ = 4volW . It remains to examine the subspaces

Λk
d ⊂ ΛkV ∗ introduced in Theorem 8.5.

The formula for Λ2

7
follows directly from the formula for ϕ in (11.3) and the fact that Λ2

7
consists

of all 2–forms ι(v)ϕ for v ∈ R ⊕W . With v = (1, 0) we obtain ι(v)ϕ = ω and with v = (0, Ju) we

obtain

ι(v)ϕ = −e0 ∧ ι(Ju)ω + ι(Ju)Reθ = e0 ∧ u∗ − ι(u)Imθ .

Similarly, the formula for Λ3

7
follows directly from the formula forψ in (11.3) and the fact that Λ3

7

consists of all 3–forms ι(v)ψ for v ∈ R ⊕W . With v = (−1, 0) we obtain ι(v)ψ = Imθ and with

v = (0,−Ju) we obtain

ι(v)ψ = −(ι(Ju)ω) ∧ ω − e0 ∧ ι(Ju)Imθ = u∗ ∧ ω − e0 ∧ ι(u)Reθ .

To prove the formula for Λ2

14
we choose α ∈ Λ1W ∗ and τ ∈ Λ2W ∗. Then τ + e0 ∧ α ∈ Λ2

14
if and

only if (τ + e0 ∧ α) ∧ψ = 0. By (11.4), we have

(e0 ∧ α + τ ) ∧ψ =
(
e0 ∧ α + τ

)
∧

(
1

2
ω ∧ ω − e0 ∧ Imθ

)
= e0 ∧

(
1

2
ω ∧ ω ∧ α − τ ∧ Imθ

)
+ 1

2
τ ∧ ω ∧ ω .

The expression on the right vanishes if and only if τ ∧ω ∧ω = 0 and ω ∧ω ∧ α = 2Imθ ∧ τ . Since

α ◦ J = 1

2
∗W (ω∧ω∧α), the last equation is equivalent to α = − (∗W (Imθ ∧ τ ))◦ J = −∗W (Reθ∧τ ).

To prove the formula for Λ3

27
we choose τ ∈ Λ2W ∗ and β ∈ Λ3W ∗. Then(

β + e0 ∧ τ
)
∧ ϕ = e0 ∧ (τ ∧ Reθ − β ∧ ω) + β ∧ Reθ ,(

β + e0 ∧ τ
)
∧ψ = e0 ∧

(
1

2
τ ∧ ω ∧ ω + β ∧ Imθ

)
.

Both terms vanish simultaneously if and only if

τ ∧ Reθ = β ∧ ω, β ∧ Reθ = 0, β ∧ Imθ = −
1

2

τ ∧ ω ∧ ω .

These equations hold in the following four cases.

(a) β = 3λReθ and τ = −4λω with λ ∈ R.
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(b) β = 0 and τ ∈ Λ1,1W ∗ with τ ∧ ω ∧ ω = 0.

(c) β ∈ Λ1,2W ∗ + Λ2,1W ∗ with β ∧ ω = 0 and τ = 0.

(d) β = u∗ ∧ ω and τ = ι(u)Reθ with u ∈W .

In case ((d)) this follows from (ι(u)Re θ ) ∧ Reθ = 2 ∗ (Ju)∗ = u∗ ∧ ω ∧ ω. The subspaces

determined by these conditions are pairwise orthogonal and have dimensions 1 in case (((a)), 8 in

case ((b)), 12 in case ((c)), and 6 in case ((d)). Thus, for dimensional reasons, their direct sum is the

space Λ3

27
. This proves Theorem 11.1. �

Theorem 11.6. Let W be an 8–dimensional real vector space equipped with an SU(4)–structure
(Ω, J ,Θ). Then the alternating multi-linear map

Φ := 1

2
Ω ∧ Ω + ReΘ ∈ Λ4W ∗

is a positive Cayley calibration, compatible with the complex orientation and the inner product.
Moreover, in the notation of Theorem 9.8, we have

Λ2

7
= RΩ ⊕

{
τ ∈ Λ2,0 + Λ0,2

: ∗ (ReΘ ∧ τ ) = 2τ
}
,

Λ2

21
=

{
τ ∈ Λ1,1

: τ ∧ Ω3 = 0

}
⊕

{
τ ∈ Λ2,0 + Λ0,2

: ∗ (ReΘ ∧ τ ) = −2τ
}
.

Proof. We prove that Φ is compatible with the inner product 〈·, ·〉 := Ω(·, J ·) and the complex

orientation onW . The associated volume form is
1

24
Ω4

. Hence, by Lemma 7.4, we must show that

(11.7) ωu,v ∧ ωu,v ∧ Φ =
1

4
|u ∧v |2Ω4

for all u,v ∈W , where

ωu,v := ι(v)ι(u)Φ = Ω(u,v)Ω − ι(u)Ω ∧ ι(v)Ω + ι(v)ι(u)ReΘ.

To see this, we observe that

(11.8) ι(v)ι(u)ReΘ ∧ ι(u)Ω ∧ ι(v)Ω ∧ Ω2 = (ι(v)ι(u)ReΘ)2 ∧ ReΘ = 0.

Ifv = Ju, then (11.8) follows from the fact that ι(u)Ω∧ ι(Ju)Ω is a (1, 1)–form and ι(Ju)ι(u)ReΘ = 0.

If v is orthogonal to u and Ju, then (11.8) follows from the explicit formulas in Remark 11.9 below.

The general case follows from the special cases by adding to v a linear combination of u and Ju.

Using (11.8) and the identity ι(u)Ω ∧ ι(v)Ω ∧ Ω3 = 1

4
Ω(u,v)Ω4

we obtain

ωu,v ∧ ωu,v ∧ Φ =
1

2
Ω(u,v)2Ω4 + 1

2
ι(v)ι(u)ReΘ ∧ ι(v)ι(u)ReΘ ∧ Ω2

− Ω(u,v)ι(u)Ω ∧ ι(v)Ω ∧ Ω3

− 2ι(v)ι(u)ReΘ ∧ ι(u)Ω ∧ ι(v)Ω ∧ ReΘ

= 1

4
Ω(u,v)2Ω4 + 1

2
ι(v)ι(u)ReΘ ∧ ι(v)ι(u)ReΘ ∧ Ω2

− 2ι(v)ι(u)ReΘ ∧ ι(u)Ω ∧ ι(v)Ω ∧ ReΘ.
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One can now verify equation (11.7) by �rst considering the casev = Ju and using ι(Ju)ι(u)ReΘ = 0

(here the last two terms on the right vanish). Next one can verify (11.7) in the case where v is

orthogonal to u and Ju by using the SU(4)–symmetry and the explicit formulas in Remark 11.9

below (here the �rst term on the right vanishes). Finally, one can reduce the general case to the

special cases by adding to v a linear combination of u and Ju.

Now recall from Theorem 9.8 that, for every τ ∈ Λ2W ∗, we have

τ ∈ Λ2

7
⇐⇒ ∗(Φ ∧ τ ) = 3τ ,

τ ∈ Λ2

21
⇐⇒ ∗(Φ ∧ τ ) = −τ .

Since ReΘ ∧ Ω = 0, we have

∗ (Φ ∧ Ω) = 1

2
∗ (Ω ∧ Ω ∧ Ω) = 3Ω

and, hence, RΩ ⊂ Λ2

7
. Moreover, Λ2

21
is the image of the Lie algebra g of G(W ,Φ) under the

isomorphism

so(W ) → Λ2W ∗ : ξ 7→ ωξ

given byωξ (u,v) := 〈u, ξv〉. The image of su(W ) under this inclusion is the subspace

{
τ ∈ Λ1,1W ∗ : τ ∧ Ω3 = 0

}
and, since SU(W ) ⊂ G(W ,Φ), this space is contained in Λ2

21
. By considering the standard structure

on C4
we obtain

∗(Ω ∧ Ω ∧ τ ) = 2τ

for τ ∈ Λ2,0 + Λ0,2
. Hence,

∗(Φ ∧ τ ) = 1

2
∗ (Ω ∧ Ω ∧ τ ) + ∗(ReΘ ∧ τ ) = τ + ∗(ReΘ ∧ τ ).

for τ ∈ Λ2,0 + Λ0,2
. Since the operator τ 7→ ∗(ReΘ ∧ τ ) has eigenvalues ±2 on the subspace

Λ2,0 + Λ0,2
the result follows. �

Remark 11.9. If (Ω, J ,Θ) is the standard SU(4)–structure on W = C4
with coordinates (x1 +

iy1, . . . ,x4 + iy4), then

ReΘ = dx1 ∧ dx2 ∧ dx3 ∧ dx4 + dy1 ∧ dy2 ∧ dy3 ∧ dy4

− dx1 ∧ dx2 ∧ dy3 ∧ dy4 − dy1 ∧ dy2 ∧ dx3 ∧ dx4

− dx1 ∧ dy2 ∧ dx3 ∧ dy4 − dy1 ∧ dx2 ∧ dy3 ∧ dx4

− dx1 ∧ dy2 ∧ dy3 ∧ dx4 − dy1 ∧ dx2 ∧ dx3 ∧ dy4

and

1

2
Ω ∧ Ω = dx1 ∧ dy1 ∧ dx2 ∧ dy2 + dx3 ∧ dy3 ∧ dx4 ∧ dy4

+ dx1 ∧ dy1 ∧ dx3 ∧ dy3 + dx2 ∧ dy2 ∧ dx4 ∧ dy4

+ dx1 ∧ dy1 ∧ dx4 ∧ dy4 + dx2 ∧ dy2 ∧ dx3 ∧ dy3.
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These forms are self-dual. The �rst assertion in Theorem 11.6 also follows from the fact that the

isomorphism R8 → C4
which sends e0, . . . , e7 to

∂/∂x1, ∂/∂y1, ∂/∂x2, ∂/∂y2, ∂/∂x3,−∂/∂y3,−∂/∂x4, ∂/∂y4

pulls back Φ to the standard form Φ0 in Example 5.32.

Theorem 11.10. Let V be a 7–dimensional real Hilbert space equipped with a cross product and
its induced orientation. Let ϕ ∈ Λ3V ∗ be the associative calibration and ψ := ∗Vϕ ∈ Λ4V ∗ the
coassociative calibration. DenoteW := R ⊕ V and de�ne Φ ∈ Λ4W ∗ by

Φ := e0 ∧ ϕ +ψ .

Then Φ is a positive Cayley-form onW and, in the notation of Theorem 8.5 and Theorem 9.8, we have

Λ2

7
W ∗ =

{
e0 ∧ ∗V (ψ ∧ τ ) + 3τ : τ ∈ Λ2

7
V ∗

}
,

Λ2

21
W ∗ =

{
e0 ∧ ∗V (ψ ∧ τ ) − τ : τ ∈ Λ2V ∗

}
,

Λ3

8
W ∗ = Rϕ ⊕

{
ι(u)ψ − e0 ∧ ι(u)ϕ : u ∈ V

}
,

Λ3

48
W ∗ = Λ3

27
V ∗ ⊕

{
e0 ∧ τ : τ ∈ Λ2

14
V ∗

}
⊕

{
3ι(u)ψ + 4e0 ∧ ι(u)ϕ : u ∈ V

}
,

Λ4

7
W ∗ =

{
e0 ∧ ι(u)ψ − u∗ ∧ ϕ : u ∈ V

}
,

Λ4

27
W ∗ =

{
e0 ∧ β + ∗V β : β ∈ Λ3

27
V ∗

}
,

Λ4

35
W ∗ =

{
e0 ∧ β − ∗V β : β ∈ Λ3V ∗

}
.

Proof. By Theorem 5.4, W is a normed algebra with product (5.6). Hence, by Theorem 5.20, W
carries a triple cross product (5.26) and Φ is the associated Cayley calibration. By Theorem 7.8,

Φ is a Cayley form. By (5.24) the triple cross product onW satis�es (6.11) with ε = +1 and so is

positive (De�nition 6.12). Thus, by Theorem 7.12, Φ is positive.

Recall that, by Theorem 9.8, Λ2

7
W ∗ and Λ2

21
W ∗ are the eigenspaces of the operator ∗W (Φ ∧ ·)

with eigenvalues 3 and −1 and, by Theorem 8.5, Λ2

7
V ∗ and Λ2

14
V ∗ are the eigenspaces of the operator

∗V (ϕ ∧ ·) with eigenvalues 2 and −1. With α ∈ Λ1V ∗ and τ ∈ Λ2V ∗ we have

∗W
(
Φ ∧

(
e0 ∧ α + τ

) )
= ∗W

(
e0 ∧

(
ψ ∧ α + ϕ ∧ τ

)
+ψ ∧ τ

)
= e0 ∧ ∗V (ψ ∧ τ ) + ∗V (ϕ ∧ τ ) + ∗V (ψ ∧ α)

and, hence,

e0 ∧ α + τ ∈ Λ2

7
W ∗ ⇐⇒

{
∗V (ψ ∧ τ ) = 3α ,

∗V (ϕ ∧ τ ) + ∗V (ψ ∧ α) = 3τ .

Since ∗V (ψ ∧ ∗V (ψ ∧ τ )) = τ + ∗V (ϕ ∧ τ ), by equation (4.61) in Lemma 4.38, we deduce that

e0 ∧ α + τ ∈ Λ2

7
W ∗ if and only if ∗V (ϕ ∧ τ ) = 2τ and 3α = ∗V (ψ ∧ τ ). This proves the formula
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for Λ2

7
W ∗. Likewise, we have e0 ∧ α + τ ∈ Λ2

21
W ∗ if and only if α = − ∗V (ψ ∧ τ ). In this case the

second equation ∗V (ϕ ∧ τ ) + ∗V (ψ ∧ α) = −τ is automatically satis�ed.

The formula for the subspace Λ3

8
W ∗ follows from the fact that it consists of all 3–forms of the

form ι(u)Φ foru ∈W (see Theorem 9.8). Now let τ ∈ Λ2V ∗ and β ∈ Λ3V ∗. Then e0∧τ +β ∈ Λ3

48
W ∗

if and only if

0 = Φ ∧
(
e0 ∧ τ + β

)
= e0 ∧ (ϕ ∧ β +ψ ∧ τ ) +ψ ∧ β

(see again Theorem 9.8). Hence,

e0 ∧ τ + β ∈ Λ3

48
W ∗ ⇐⇒

{
ϕ ∧ β +ψ ∧ τ = 0,

ψ ∧ β = 0.

These conditions are satis�ed in the following three cases.

(a) β = 0 andψ ∧ τ = 0 (or equivalently τ ∈ Λ2

14
V ∗).

(b) τ = 0 and ϕ ∧ β = 0 andψ ∧ β = 0 (or equivalently β ∈ Λ3

27
V ∗).

(c) β = 3ι(u)ψ and τ = 4ι(u)ϕ with u ∈ V .

In the case ((a)) this follows from the equationsψ ∧ ι(u)ψ = 0 and

(11.11) 3ϕ ∧ ι(u)ψ + 4ψ ∧ ι(u)ϕ = 0

for u ∈ V . This last identity can be veri�ed by direct computation using the standard structure on

V = R7
with

ϕ0 = e123 − e145 − e167 − e246 + e257 − e347 − e356
and

ψ0 = −e
1247 − e1256 + e1346 − e1357 − e2345 − e2367 + e4567,

and u := e1 (see the proof of Lemma 4.8). In this case

ι(u)ϕ0 = e23 − e45 − e67, ι(u)ψ0 = −e
247 − e256 + e346 − e357

and so

ψ0 ∧ ι(u)ϕ0 = 3e234567, ϕ0 ∧ ι(u)ψ0 = −4e234567.

This proves (11.11). The subspaces determined by the above conditions are pairwise orthogonal and

have dimensions 14 in case ((a)), 27 in case ((b)), and 7 in case ((c)). Thus, for dimensional reasons,

their direct sum is Λ3

48
W ∗.

Now Λ4

7
W ∗ is the tangent space of the SO(W )–orbit of Φ. For u ∈ V de�ne the endomorphism

Au ∈ so(V ) by Auv := u ×v . Then, by Remark 4.16, we have LAuϕ = 3ι(u)ψ and LAuψ = −3u∗ ∧ϕ.

Hence

e0 ∧ ι(u)ψ − u∗ ∧ ϕ ∈ Λ4

7
W ∗
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for all u ∈ V . Since Λ4

7
W ∗ has dimension 7, each element of Λ4

7
W ∗ has this form.

Next we recall that Λ4

27
W ∗ is contained in the subspace of self-dual 4–forms, and every self-dual

4–form can be written as e0 ∧ β + ∗V β with β ∈ Λ3V ∗. By Theorem 9.8 we have

e0 ∧ β + ∗V β ∈ Λ
4

27
W ∗ ⇐⇒

{
β ∧ ∗Vϕ + ∗V β ∧ ∗Vψ = 0,

β ∧ ∗V (ι(u)ψ ) = ∗V β ∧ ∗V (u
∗ ∧ ϕ) ∀u,

⇐⇒ ψ ∧ β = 0, ϕ ∧ β = 0

⇐⇒ β ∈ Λ3

27
V ∗.

Here the last equivalence follows from Theorem 8.5. This proves the formula for Λ4

27
W ∗. The

formula for Λ4

35
W ∗ follows from the fact that this subspace consists of the anti-self-dual 4–forms.

This proves Theorem 11.10. �

12 Donaldson–Thomas theory

The motivation for the discussion in these notes came from our attempt to understand Riemannian

manifolds with special holonomy in dimensions six, seven, and eight [Bry87; HL82; Joy00] and

the basic setting of Donaldson–Thomas theory on such manifolds [DT98; DS11].

12.1 Manifolds with special holonomy

De�nition 12.1. Let Y be a smooth 7–manifold and X a smooth 8–manifold. A G2–structure on Y
is a nondegenerate 3–form ϕ ∈ Ω3(Y ); in this case the pair (Y ,ϕ) is called an almostG2–manifold.

An Spin(7)–structure on X is a 4–form Φ ∈ Ω4(X ) which restricts to a positive Cayley-form on

each tangent space; in this case the pair (X ,Φ) is called an almost Spin(7)–manifold.

Remark 12.2. An almost G2–manifold (Y ,ϕ) admits a unique Riemannian metric and a unique

orientation that, on each tangent space, are compatible with the nondegenerate 3–form ϕ as in

De�nition 3.1 (see Theorem 3.2). Thus each tangent space of Y carries a cross product

TyY ×TyY → TyY : (u,v) 7→ u ×v

such that

ϕ(u,v,w) = 〈u ×v,w〉

for all u,v,w ∈ TyY . Moreover, Theorem 8.5 gives rise to a natural splitting of the space Ωk (Y ) of

k–forms on Y for each k .

Remark 12.3. An almost Spin(7)–manifold (X ,Φ) admits a unique Riemannian metric that, on

each tangent space, is compatible with the Cayley-form Φ as in De�nition 7.1 (see Theorem 7.8).

Moreover, the positivity hypothesis asserts that the 8–forms

Φ ∧ Φ, ι(v)ι(u)Φ ∧ ι(v)ι(u)Φ ∧ Φ
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induce the same orientation whenever u,v ∈ TxX are linearly independent (see De�nition 7.11).

Thus each tangent space of X carries a positive triple cross product

TxX ×TxX ×TxX → TxX : (u,v,w) 7→ u ×v ×w

such that

Φ(ξ ,u,v,w) = 〈ξ ,u ×v ×w〉

for all ξ ,u,v,w ∈ TxX . Moreover, Theorem 9.8 gives rise to a natural splitting of the space Ωk (X )
of k–forms on X for each k .

Every spin 7–manifold admits a G2–structure [LM89, Theorem 10.6]; concrete examples are S7

(considered as unit sphere in the octonions), S1 × Z where Z is a Calabi–Yau 3–fold and various

resolutions of T 7/Γ where Γ is an appropriate �nite group, see [Joy00]. A spin 8–manifold X
admits a Spin(7)–structure if and only if either χ (/S+) = 0 or χ (/S−) = 0 [LM89, Theorem 10.7];

concrete examples can be obtained from almost G2–manifolds, Calabi–Yau 4–folds and various

resolutions of T 8/Γ.

De�nition 12.4. An almost G2–manifold (Y ,ϕ) is called a G2–manifold if ϕ is harmonic with

respect to the Riemannian metric in Remark 12.2 and we say that ϕ is torsion-free. An almost

Spin(7)–manifold (X ,Φ) is called a Spin(7)–manifold if Φ is closed (and, hence, harmonic with

respect to the Riemannian metric in Remark 12.3) and we say that Φ is torsion-free.

Remark 12.5. Let (Y ,ϕ) be an almost G2–manifold equipped with the metric of Remark 12.2. Then

ϕ is harmonic if and only if ϕ is parallel with respect to the Levi–Civita connection and hence is

preserved by parallel transport. It follows that the holonomy of a G2–manifold is contained in

the group G2 [FG82]. It also follows that the splitting of Theorem 8.5 is preserved by the Hodge

Laplace operator and hence passes on to the de Rham cohomology. Exactly the same holds for an

almost Spin(7)–manifold (X ,Φ) equipped with the metric of Remark 12.3. The 4–form Φ is closed

(and hence harmonic) if and only if it is parallel with respect to the Levi–Civita connection [Bry87].

Thus the holonomy of a Spin(7) manifold is contained in Spin(7) and the splitting of its spaces of

di�erential forms in Theorem 9.8 descends to the de Rham cohomology.

Remark 12.6 (Construction methods). Examples of manifolds with torsion-free G2– or Spin(7)–

structures are much harder to construct. There are however a number of construction techniques

(all based on gluing methods): Joyce’s generalized Kummer construction for G2– and Spin(7)–

manifolds [Joy96b; Joy96c; Joy96a; Joy00] based on resolving orbifolds of the form T 7/Γ and

T 8/Γ; a method of Joyce’s for constructing Spin(7)–manifolds from real singular Calabi–Yau 4–

folds [Joy99]; and the twisted connected sum construction invented by Donaldson, pioneered

by Kovalev [Kov03], and extended and improved by Kovalev–Lee [KL11] and Corti–Haskins–

Nordström–Pacini [CHNP13; CHNP15].

12.2 The gauge theory picture

We close these notes with a brief review of certain partial di�erential equations arising in

Donaldson–Thomas theory [DT98]. We �rst discuss the gauge theoretic setting. Let (Y ,ϕ) be
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a G2–manifold with coassociative calibration ψ := ∗ϕ and E → Y a G–bundle with compact

semi-simple structure group G. In [DT98] Donaldson and Thomas introduce a G2–Chern–Simons
functional

CSψ : A(E) → R

on the space of connections on E. The functional depends on the choice of a reference connection

A0 ∈ A(E) satisfying FA0
∧ψ = 0 and is given by

(12.7) CSψ (A0 + a) :=
1

2

ˆ
Y

(
〈dA0

a ∧ a〉 +
1

3

〈a ∧ [a ∧ a]〉

)
∧ψ

for a ∈ Ω1(Y ,End(E)). The di�erential of CS has the form

δCSψ (A)a =

ˆ
N
〈FA ∧ a〉 ∧ψ

for A ∈ A(E) and a ∈ TAA(E) = Ω1(Y ,End(E)). Thus a connection A is a critical point of CSψ if

and only if

(12.8) FA ∧ψ = 0.

By Theorem 8.5 this is equivalent to the equation ∗(FA ∧ ϕ) = −FA and hence to π7(FA) = 0. A

connectionA that satis�es equation (12.8) is called aG2–instanton. As in the case of �at connections

on 3–manifolds equation (12.8) becomes elliptic with index zero after augmenting by a suitable

gauge �xing condition (which we do not elaborate on here). The negative gradient �ow lines of the

G2–Chern–Simons functional are the 1–parameter families of connections R→ A(E) : t 7→ A(t)
satisfying the partial di�erential equation

(12.9) ∂tA = − ∗ (FA ∧ψ ),

where FA = FA(t ) is understood as the curvature of the connection A(t) ∈ A(E) for a �xed value

of t . For the study of the solutions of (12.9) it is interesting to observe that, by equation (4.61) in

Lemma 4.38, every connection A on Y satis�es the energy identity

ˆ
Y
|FA |

2
volY =

ˆ
Y
|FA ∧ψ |

2
volY −

ˆ
Y
〈FA ∧ FA〉 ∧ ϕ .

A smooth solution of (12.9) can also be thought of as connection A on the pullback bundle E
of E over R × Y . The curvature of this connection is given by

FA = FA + dt ∧ ∂tA = FA − dt ∧ ∗(FA ∧ψ ).

Hence, it follows from Theorem 9.8 and Theorem 11.10 that FA satis�es

(12.10) ∗ (FA ∧ Φ) = −FA
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or, equivalently, π7(FA) = 0. Conversely, a connection on E satisfying equation (12.10) can be

transformed into temporal gauge and hence corresponds to a solution of (12.9). It is interesting

to observe that equation (12.10) makes sense over any Spin(7)–manifold. Solutions of (12.10) are

called Spin(7)–instantons. This discussion is completely analogous to Floer–Donaldson theory

in 3 + 1 dimensions. The hope is that one can construct an analogous quantum �eld theory in

dimension 7 + 1. Moreover, as is apparent from Theorem 11.1 and Theorem 11.6, this theory will

interact with theories in complex dimensions 3 and 4. The ideas for the real and complex versions

of this theory are outlined in [DT98; DS11].

Remark 12.11. For construction methods and concrete examples of G2–instantons and Spin(7)–

instantons we refer to [Wal13; SW15; Wal16b] and [Tan12; Wal16a].

12.3 The submanifold picture

There is an analogue of the G2–Chern–Simons functional on the space of 3–dimensional submani-

folds of Y , whose critical points are the associative submanifolds of Y and whose gradient �ow

lines are Cayley submanifolds of R × Y [DT98]. This is the submanifold part of the conjectural

Donaldson–Thomas �eld theory.

More precisely, let (Y ,ϕ) be a G2–manifold with coassociative calibrationψ = ∗ϕ and let S be

a compact oriented 3–manifold without boundary. Denote by F the space of smooth embeddings

f : S → Y such that f ∗ϕ vanishes nowhere. Then the group G := Di�
+(S) of orientation

preserving di�eomorphism of S acts on F by composition. The quotient space

S := F/G

can be identi�ed with the space of oriented 3–dimensional submanifolds of Y that are di�eomor-

phic to S and have the property that the restriction of ϕ to each tangent space is nonzero; the

identi�cation sends the equivalence class [f ] of an element f ∈ F to its image f (S).
Given f ∈ F the tangent space of S at [f ] can be identi�ed with the quotient

T[f ]S =
Ω0(S, f ∗TY )

{d f ◦ ξ : ξ ∈ Vect(S)}
.

Ifд ∈ G is an orientation preserving di�eomorphism of S , thenд∗ f := f ◦д is another representative

of the equivalence class [f ] and the two quotient spaces can be naturally identi�ed via [ ˆf ] 7→ [ ˆf ◦д].
Let us �x an element f0 ∈ F and denote by F̃ the universal cover of F based at f0. Thus the

elements of F̃ are equivalence classes of smooth maps f̃ : [0, 1] × S → Y such that f̃ (0, ·) = f0
and f̃ (t , ·) =: ft ∈ F for all t . Thus we can think of f̃ = { ft }0≤t ≤1 as a smooth path in F starting

at f0, and two such paths are equivalent i� they are smoothly homotopic with �xed endpoints.

F̃ → F sends f̃ to f := f̃ (1, ·). The universal cover of S is the quotient

S̃ := F̃/G̃
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where G̃ denotes the group of smooth isotopies [0, 1] → Di�(S) : t 7→ дt starting at the identity.

Now the space F̃ carries a natural G̃–invariant action functional A : F̃ → R de�ned by

A( f̃ ) := −

ˆ
[0,1]×S

f̃ ∗ψ = −

ˆ
1

0

ˆ
S
f ∗t (ι(∂t ft )ψ ) dt .

This functional is well de�ned becauseψ is closed and it evidently descends to S̃. Its di�erential is

the 1–form δA on F given by

δA(f ) ˆf = −

ˆ
S
f ∗

(
ι( ˆf )ψ

)
This 1–form is G–invariant in that δA(д∗ f )д∗ ˆf = δA(f ) ˆf and horizontal in that δA(f )d f ξ = 0

for ξ ∈ Vect(S). Hence, δA descends to a 1–form on S.

Lemma 12.12. An element [ f̃ ] = [{ ft }] ∈ F̃ is a critical point of A if and only if the image of
f := f1 : S → Y is an associative submanifold of Y (that is, each tangent space is an associative
subspace).

Proof. We haveδA(f ) = 0 if and only ifψ ( ˆf (x),d f (x)ξ ,d f (x)η,d f (x)ζ ) = 0 for all
ˆf ∈ Ω0(S, f ∗TY ),

all x ∈ S , and all ξ ,η, ζ ∈ TxS . This means that ψ (u,v,w, ·) = 0 for all q ∈ f (S) and all

u,v,w ∈ Tq f (S). By de�nition of the coassociative calibration ψ in Lemma 4.8 this means that

[u,v,w] = 0 for all u,v,w ∈ Tq f (S) whereTqY ×TqY ×TqY → TqY : (u,v,w) 7→ [u,v,w] denotes

the associator bracket de�ned by (4.1). By De�nition 4.6 this means that Tq f (S) is an associative

subspace of TqY for all q ∈ f (S). This proves Lemma 12.12. �

The tangent space of F at f carries a natural L2
inner product given by

(12.13) 〈 ˆf1, ˆf2〉L2 :=

ˆ
S
〈 ˆf1, ˆf2〉 f

∗ϕ

for
ˆf1, ˆf2 ∈ Ω

0(S, f ∗TY ). This can be viewed as a G–invariant metric on F.

Lemma 12.14. The gradient of A at an element f ∈ F with respect to the inner product (12.13) is
given by

gradA(f ) =
[d f ∧ d f ∧ d f ]

f ∗ϕ
∈ Ω0(S, f ∗TY ),

where [d f ∧ d f ∧ d f ] ∈ Ω3(S, f ∗TY ) denotes the 3–form

TxS ×TxS ×TxS → Tf (x )Y : (ξ ,η, ζ ) 7→ [d f (x)ξ ,d f (x)η,d f (x)ζ ].

Proof. The gradient of A at an element f ∈ F is the vector �eld gradA(f ) along f de�ned by

ˆ
S
〈gradA(f ), ˆf 〉 f ∗ϕ = −

ˆ
S
f ∗

(
ι( ˆf )ψ

)
=

ˆ
S
〈[d f ∧ d f ∧ d f ], ˆf 〉.
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Here the last equation follows from the identity

−ψ ( ˆf ,u,v,w) = ψ (u,v,w, ˆf ) = 〈[u,v,w], ˆf 〉

(see equation (4.9) in Lemma 4.8). This proves Lemma 12.14. �

We emphasize that the gradient of A at f is pointwise orthogonal to the image of d f . This is

of course a consequence of the fact that the 1–form δA on F and the inner product on TF are

G–invariant. Now a negative gradient �ow line of A is a smooth map

R × S → Y : (t ,x) 7→ ut (x)

that satis�es the partial di�erential equation

(12.15) ∂tut (x) +
[dut (x)e1,dut (x)e2,dut (x)e3]

ϕ(dut (x)e1,dut (x)e2,dut (x)e3)
= 0

for all (t ,x) ∈ R × S and every frame e1, e2, e3 of TxS . Moreover, we require of course that ut is an

embedding for every t and that u∗tϕ vanishes nowhere.

Lemma 12.16. Let R × S → Y : (t ,x) 7→ ut (x) be a smooth map such that ut ∈ F for every t . Let
ξt ∈ Vect(S) be chosen such that

(12.17) ∂tut (x) − dut (x)ξt (x) ⊥ im dut (x) ∀(t ,x) ∈ R × S .
Then the set

(12.18) Σ := {(t ,ut (x)) : t ∈ R, x ∈ S}

is a Cayley submanifold of R × Y (that is, each tangent space is a Cayley subspace) with respect to
the Cayley calibration Φ := dt ∧ ϕ +ψ if and only if

(12.19) ∂tut (x) − dut (x)ξt (x) +
[dut (x)e1,dut (x)e2,dut (x)e3]

ϕ(dut (x)e1,dut (x)e2,dut (x)e3)
= 0

for every pair (t ,x) ∈ R × S and every frame e1, e2, e3 of TxS .

Proof. Fix a pair (t ,x) ∈ R × S and choose a basis e1, e2, e3 of TxS . By Theorem 5.20 (3) the triple

cross product of the three tangent vectors

(0,dut (x)e1), (0,dut (x)e2), (0,dut (x)e3)

of Σ is the pair (
ϕ(dut (x)e1,dut (x)e2,dut (x)e3),−[dut (x)e1,dut (x)e2,dut (x)e3]

)
.

Since this pair is orthogonal to the three vectors (0,dut (x)ei ) and its �rst component is nonzero, it

follows that our pair is tangent to Σ if and only if it is a scalar multiple of the pair (1, ∂tut (x) −
dut (x)ξt (x)). This is the case if and only if (12.19) holds. Hence, it follows from Lemma 6.25

that Σ is a Cayley submanifold of R × Y if and only if u satis�es equation (12.19). This proves

Lemma 12.16. �
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Lemma 12.16 shows that every negative gradient �ow line of A determines a Cayley submani-

fold Σ ⊂ R ×Y via (12.18) and, conversely, every Cayley submanifold Σ ⊂ R ×Y , with the property

that the projection Σ→ R is a proper submersion, can be parametrized as a negative gradient �ow

line of A (for some S). Thus the negative gradient trajectories of A are solutions of an elliptic

equation, after taking account of the action of the in�nite dimensional reparametrization group G.

They minimize the energy

E(u, ξ ) := 1

2

ˆ ∞
−∞

ˆ
S

(
|∂tut − dut ξt |

2 +

���� [dut ∧ dut ∧ dut ]u∗tϕ

����2) u∗tϕ dt
= 1

2

ˆ ∞
−∞

ˆ
S

����∂tut − dut ξt + [dut ∧ dut ∧ dut ]u∗tϕ

����2u∗tϕ dt + ˆ
R×S

u∗ψ .

For studying the solutions of (12.19) it will be interesting to introduce the energy density ef : S → R
of an embedding f ∈ F via

ef (x) :=
det

(
〈d f (x)ei ,d f (x)ej 〉i, j=1,2,3

)
ϕ(d f (x)e1,d f (x)e2,d f (x)e3)

2

for every x ∈ S and every frame e1, e2, e3 of TxS . Then ef ◦д = ef ◦ д for every (orientation

preserving) di�eomorphism д of S and so the energy

(12.20) E(f ) :=

ˆ
S
ef f

∗ϕ

is a G–invariant function on F. Moreover, it follows from Lemma 4.4 that

E(f ) =

ˆ
S

���� [d f ∧ d f ∧ d f ]f ∗ϕ

����2 f ∗ϕ + ˆ
S
f ∗ϕ .

If ϕ is closed, then the last term on the right is a topological invariant. Moreover, the �rst term

vanishes if and only if f is a critical point of the action functional A. Thus the critical points of A

are also the absolute minima of the energy E (in a given homology class).

12.4 Outlook: di�culties and new phenomena

These observations are the starting point of a conjectural Floer–Donaldson type theory in dimen-

sions seven and eight, as outlined in the paper by Donaldson and Thomas [DT98]. The analytical

di�culties one encounters when making this precise are formidable, including non-compactness

phenomena in codimension four [Tia00] and two in the gauge theory and submanifold theory

respectively. The work of Donaldson and Segal [DS11] explains that this leads to new geometric

phenomena linking the gauge theory and the submanifold theory. It is now understood that neither

the naive approach to counting G2–instantons [DS11; Wal17] nor that of counting associative sub-

manifolds [Nor13] can work on their own. There are, however, ideas of how the theories outlined

in Section 12.2 and Section 12.3 have to be combined and extended to obtain new invariants [DS11;

HW15].
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