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Abstract

We prove that a sequence of solutions of the Seiberg–Witten equation with multiple spinors
in dimension three can degenerate only by converging (after rescaling) to a Fueter section of
a bundle of moduli spaces of ASD instantons.

Changes to the published version This is an update of our article published as Geometric
and Functional Analysis 25 (2015), no. 6, 1799–1821. The present version corrects a mistake in
Proposition A.1 pointed out to us by Aleksander Doan, namely the connection A does not need to
be �at if n ≥ 3. This is because the canonical connection on µ−1(0) → M̊1,n is �at only if n = 2,
whereas we claimed this to be true for all n. This was used to deduce that the limit connection A
in Theorem 1.5 is �at with Z2–monodromy.

1 Introduction

Let M be an oriented Riemannian closed three–manifold. Fix a Spin–structure s on M and
denote by /S the associated spinor bundle; also �x a U(1)–bundle L over M , a positive inte-
ger n ∈ N and a SU(n)–bundle E together with a connection B. We consider pairs (A,Ψ) ∈
A(L) × Γ

(
Hom(E, /S ⊗L)

)
consisting of a connection A on L and an n–tuple of twisted spinors

Ψ satisfying the Seiberg–Witten equation with n spinors:

/DA⊗BΨ = 0 and
FA = µ(Ψ).

(1.1)

Here µ : Hom(E, /S ⊗L) → gL ⊗ su(/S) = isu(/S) is de�ned by

(1.2) µ(Ψ) B ΨΨ∗ −
1
2 |Ψ|

2 id/S

and we identify Λ2T ∗M with su(/S) via

(1.3) ei ∧ e j 7→
1
2 [γ (e

i ),γ (e j )] = εi jkγ (e
k ).
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If n = 1, then E and B are trivial, since SU(1) = {1}, and (1.1) is nothing but the classical
Seiberg–Witten equation in dimension three, which has been studied with remarkable success,
see, e.g., [Che97; Lim00; KM07]. A key ingredient in the analysis of (1.1) with n = 1 is the identity

〈µ(Ψ)Ψ,Ψ〉 =
1
2 |Ψ|

4,

which combined with the Weitzenböck formula yields an a priori bound on Ψ and, therefore,
immediately gives compactness of the moduli spaces of solutions to (1.1). After taking care of
issues to do with transversality and reducibles, counting solutions of (1.1) leads to an invariant of
three–manifolds.

The above identity does not hold for n > 2 and, more importantly, µ is no longer proper; hence,
the L2–norm of Ψ is not bounded a priori. From an analytical perspective the di�cult case is when
this L2–norm becomes very large; however, also the case of very small L2–norm deserves special
attention as it corresponds to reducible solutions of (1.1). With this in mind it is natural to blow-up
(1.1), that is, to consider triples (A,Ψ,α) ∈ A(L) × Γ

(
Hom(E, /S ⊗L)

)
× [0,π/2] satisfying

‖Ψ‖L2 = 1,
/DA⊗BΨ = 0 and

sin(α)2FA = cos(α)2µ(Ψ),
(1.4)

c.f. [KM07, Section 2.5]. The di�culty in the analysis can now be understood as follows: for
α ∈ (0,π/2] equation (1.4) is elliptic (after gauge �xing), but as α tends to zero it becomes
degenerate.

The following is the main result of this article:

Theorem 1.5. Let (Ai ,Ψi ,αi ) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
× (0,π/2] be a sequence of solutions of

(1.4). If lim supαi > 0, then after passing to a subsequence and up to gauge transformations (Ai ,Ψi ,αi )
converges smoothly to a limit (A,Ψ,α). If lim supαi = 0, then after passing to a subsequence the
following holds:

• There is a closed nowhere-dense subset Z ⊂ M , a connection A on L |M\Z and a spinor Ψ ∈
Γ

(
M\Z ,Hom(E, /S ⊗L)

)
such that (A,Ψ, 0) solves (1.4). |Ψ| extends to a Hölder continuous

function on all ofM and Z = |Ψ|−1(0).

• On M\Z , up to gauge transformations, Ai converges weakly inW 1,2
loc to A and Ψi converges

weakly inW 2,2
loc to Ψ. There is a constant γ > 0 such that |Ψi | converges to |Ψ| in C0,γ on all of

M .

Remark 1.6. Proposition A.3 gives more detailed information about the limit (A,Ψ, 0). In particular,
if n = 2, then A is �at with monodromy in Z2.
Remark 1.7. Theorem 1.5 should be compared with the results of Taubes on PSL(2,C)–connections
on three–manifolds with curvature bounded in L2 [Tau13, Theorem 1.1]. Our proof heavily relies
on his insights and techniques.
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Remark 1.8. Taubes’ very recent work [Tau14, Theorems 1.2, 1.3, 1, 4 and 1.5] implies detailed
regularity properties for Z ; in particular, Z has Hausdor� dimension at most one. To see that
his theorems apply in our situation note that Z is the zero locus of a Z2 harmonic spinor by
Appendix A.

As is discussed in Appendix A, gauge equivalence classes of nowhere-vanishing solutions of
(1.4) with α = 0 correspond to Fueter sections of a bundleM with �bre M̊1,n , the framed moduli
space of centred charge one SU(n) ASD instantons on R4. In particular, while (1.4) degenerates as
α tends to zero, for α = 0 it is equivalent to an elliptic partial di�erential equation, away from the
zero-locus of Ψ. Morally, this is why one can hope to prove Theorem 1.5.

In view of Theorem 1.5, the count of solutions of (1.4) can depend on the choice of (generic)
parameters in P (the space of metrics on M and connections on E): since M̊1,n is a cone and the
Fueter equation has index zero, one expects Fueter sections ofM to appear (only) in codimension
one; thus, the count of solutions of (1.4) can jump along a path of parameters in P. In other
words: there is a set W ⊂ P of codimension one and the number of solutions of (1.4) depends on
the connected component of P\W. In the study of gauge theory on G2–manifolds the count of
G2–instantons also undergoes a jump whenever a solution of (1.4) with α = 0 appears, with M an
associative submanifold of a G2–manifold and B the restriction of a G2–instanton to M , see [DS11;
Wal17; Wal13]. So while both the count of G2–instantons and the count of solutions of (1.4) cannot
be invariants, there is hope that a suitable combination of counts of G2–instantons and solutions
of (generalisations of) (1.4) on associative submanifolds will yield an invariant of G2–manifolds.
We will discuss this circle of ideas in more detail elsewhere.

Outline of the proof of Theorem 1.5 The Weitzenböck formula leads to a priori bounds which
directly prove the �rst half of Theorem 1.5. The proof of the second half is more involved. For
a solution (A,Ψ,α) of (1.4), we show that the (renormalised)W 2,2

A –norm of Ψ on a ball Br (x) is
uniformly bounded provided the radius is smaller than the critical radius

ρ = sup{r : r 1/2‖FA‖L2(Br (x )) 6 1}.

To control ρ we use a frequency function n(r ), which—roughly speaking—measures the vanishing
order of Ψ near x . More precisely, we prove that there exists a constant ω > 0, depending only on
the geometry of M , such that n(50r ) 6 ω implies ρ ≥ r . We also show that for any ω, ε > 0 there
exists r > 0 such that n(r ) 6 ω provided |Ψ|(x) > ε . Thus, we can establish convergence outside
the subset Z = {x ∈ M : lim sup |Ψi |(x) = 0}.
Convention 1.9. We write x . y (or y & x) for x 6 cy with c > 0 a universal constant, which
depends only on the geometry of M , E and B; should c depend on further data we indicate that by
a subscript. O(x) denotes a quantity y with |y | . x . We denote by r0 a constant 0 < r0 � 1; in
particular, r0 6 injrad(M). We assume that all radii r on M under consideration are less than r0.
Throughout the rest of this article L, E and B are �xed.
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2 A priori estimates

In this section we prove the following a priori estimates:

Proposition 2.1. Every solution (A,Ψ,α) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
× (0,π/2] of (1.4) satis�es

‖Ψ‖L∞ = O(1)

and, for each x ∈ M and r > 0,

‖∇A⊗BΨ‖L2(Br (x )) = O(r
1/2) and

‖µ(Ψ)‖L2(Br (x )) = O(r
1/2 tan(α)).

This implies the �rst part of Theorem 1.5 because if lim supαi > 0, then (1.4) does not degenerate
and standard methods apply:

Proposition 2.2. In the situation of Theorem 1.5 if lim supαi > 0, then, after passing to a subsequence
and up to gauge transformations, (Ai ,Ψi ,αi ) converges in C∞ to a limit (A,Ψ,α) solving (1.4).

By the Banach–Alaoglu theorem we have the following proposition:

Proposition 2.3. In the situation of Theorem 1.5 after passing to a subsequence |Ψi | converges weakly
inW 1,2 to a bounded limit |Ψ|.

Remark 2.4. Note that we have not yet constructed Ψ; however, we will show later that the notation
|Ψ| is indeed justi�ed.

The key to proving Proposition 2.1 are the Weitzenböck formula (2.6), the algebraic identity (2.8)
and the integration by parts formula (2.11).

Proposition 2.5. For all (A,Ψ) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
(2.6) /D∗A⊗B /DA⊗BΨ = ∇

∗
A⊗B∇A⊗BΨ +

s

4Ψ + FAΨ + FBΨ

with s denoting the scalar curvature of д and FA and FB acting via the isomorphism de�ned in
(1.3). �

4



Proposition 2.7. For all Ψ ∈ Γ
(
Hom(E, /S ⊗L)

)
(2.8) 〈µ(Ψ)Ψ,Ψ〉 = |µ(Ψ)|2.

Proof. This follows from a simple computation:

〈µ(Ψ)Ψ,Ψ〉 = 〈µ(Ψ),ΨΨ∗〉 = 〈µ(Ψ),ΨΨ∗ −
1
2 |Ψ|

2 id/S 〉 = |µ(Ψ)|2. �

Proposition 2.9. Suppose (A,Ψ,α) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
× (0,π/2] satis�es

/DA⊗BΨ = 0 and

sin(α)2FA = cos(α)2µ(Ψ).
(2.10)

If f is any smooth function onM andU is a closed subset ofM with smooth boundary, then

(2.11)
ˆ
U
∆f · |Ψ|2 + f ·

( s
2 |Ψ|

2 + 2 〈FBΨ,Ψ〉 + 2 tan(α)−2 |µ(Ψ)|2 + 2|∇AΨ|2
)

=

ˆ
∂U

f · ∂ν |Ψ|
2 − ∂ν f · |Ψ|

2.

Here ν denotes the outward pointing normal vector �eld.

Proof. Combine (1.4), (2.6) and (2.8) to obtain

(2.12) 1
2∆|Ψ|

2 +
s

4 |Ψ|
2 + 〈FBΨ,Ψ〉 + tan(α)−2 |µ(Ψ)|2 + |∇AΨ|

2 = 0.

The identity (2.11) now follows from
ˆ
U
∆f · д − f · ∆д =

ˆ
∂U

f · ∂νд − ∂ν f · д

with д = |Ψ|2. �

Proof of Proposition 2.1. Apply Proposition 2.9 with f = 1 and U = M to obtain
ˆ
M
|∇AΨ|

2 6 −

ˆ
M

s

4 |Ψ|
2 + 〈FBΨ,Ψ〉 = O(1).

Combine this with Kato’s inequality and the Sobolev embeddingW 1,2 ↪→ L6 to obtain

‖Ψ‖L6 = O(1).

The operator ∆+ 1 is invertible and has a positive Green’s functionG , which has an expansion
of the form

G(x ,y) =
1

4π
e−d (x,y)

d(x ,y)
+O (d(x ,y)) .
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Apply Proposition 2.9 with f = G(x , ·) and U = M\Bσ (x), and pass to the limit σ = 0 to obtain

1
2 |Ψ|

2(x) +

ˆ
M
G(x , ·)

(
tan(α)−2 |µ(Ψ)|2 + |∇AΨ|

2) . ˆ
M
G(x , ·)|Ψ|2.

The right-hand side of this equation is O(1) because of the L6–bound on Ψ. Taking the supremum
of the left-hand side over all x ∈ M yields the desired bounds. �

3 Curvature controls Ψ

This section begins the proof of the more di�cult second part of Theorem 1.5.

De�nition 3.1. The critical radius ρ(x) of a connection A ∈ A(L) is de�ned by

ρ(x) B sup{r ∈ (0, r0] : r 1/2‖FA‖L2(Br (x )) 6 1}.

If the base-point x is obvious from the context and confusion is unlikely to arise, we will often
drop x from the notation and just write ρ.

Remark 3.2. While some constant must be chosen in the de�nition of ρ, the precise choice is
immaterial, since we are working with an abelian gauge group G = U(1). In general, 1 should be
replaced by the Uhlenbeck constant of G on M .

Proposition 3.3. Suppose (A,Ψ) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
satis�es

/DA⊗BΨ = 0.

If x ∈ M and δ ∈ (0, 1], then

r 1/2‖∇2
A⊗BΨ‖L2(B(1−δ )r (x )) 6 fδ

(
‖Ψ‖L∞(Br (x )), r

−1/2‖∇AΨ‖L2(Br (x )), r
1/2‖FA‖L2(Br (x ))

)
.

Here fδ is monotone increasing in all of its arguments. In particular, if (A,Ψ,α) ∈ A(L) ×

Γ
(
Hom(E, /S ⊗L)

)
× [0,π/2] is a solution of (1.4), then

ρ1/2‖∇2
A⊗BΨ‖L2(Bρ/2(x )) = O(1).

Proof. The statement is scale-invariant, so we might as well assume that Br (x) is a geodesic ball B1
of radius one (with an almost �at metric). Fix a cut-o� function χ which is supported in B1−δ/2 and
is equal to one in B1−δ . A straight-forward direct computation using integration by parts yields

ˆ
|∇2

A⊗B(χΨ)|
2 .

ˆ
|∇∗A⊗B∇A⊗B(χΨ)|

2

+ |FA⊗B | |∇A⊗B(χΨ)|
2 + |FA⊗B | |χΨ| |∇

2
A⊗B(χΨ)|.
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Since, as a consequence of the Weitzenböck formula (2.6),

∇∗A⊗B∇A⊗B(χΨ) = −
s

4 χΨ − FA⊗B(χΨ) − 2∇A⊗B
∇χ Ψ + (∆χ )Ψ,

we can write ˆ
|∇2

A⊗B(χΨ)|
2 .δ

ˆ
|FA⊗B |

2 |χΨ|2 + |FA⊗B | |∇A⊗B(χΨ)|
2

+ |FA⊗B | |χΨ| |∇
2
A⊗B(χΨ)|

+ |∇A⊗BΨ|
2 + |Ψ|2.

(3.4)

The �rst and the last two terms are already acceptable. The third term is bounded by

ε−1‖FA⊗B ‖
2
L2 ‖Ψ‖

2
L∞ + ε ‖∇

2
A⊗B(χΨ)‖

2
L2

for all ε > 0. The �rst term is acceptable and the second one can be rearranged to the left-hand
side of (3.4) provided ε is chosen su�ciently small. The second term can be bounded by

‖FA⊗B ‖L2 ‖∇A⊗B(χΨ)‖
2
L4 .

Using the Gagliardo–Nirenberg interpolation inequality

‖ f ‖L4 . ‖∇f ‖3/4L2 ‖ f ‖
1/4
L2

and Kato’s inequality we obtain

‖∇A⊗B(χΨ)‖
2
L4 . ‖∇

2
A⊗B(χΨ)‖

3/2
L2 ‖∇A⊗B(χΨ)‖

1/2
L2

6 ε ‖∇2
A⊗B(χΨ)‖

2
L2 + ε

−3‖∇A⊗B(χΨ)‖
2
L2

for all ε > 0. The �rst term can be rearranged to the left-hand side of (3.4) provided ε is chosen
su�ciently small and the second term is acceptable. �

4 A frequency function

In view of Proposition 3.3 the following result is the key to proving Theorem 1.5.

Proposition 4.1. There exists a constant ω > 0 such that for each solution (A,Ψ,α) ∈ A(L) ×

Γ
(
Hom(E, /S ⊗L)

)
× (0,π/2) of (1.4) we have

ρ(x) & min{1, |Ψ|1/ω (x)}.

The proof of this proposition will be given in Section 5. In this section we lay the groundwork
by introducing the following tool:
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De�nition 4.2. Given (A,Ψ,α) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
× (0,π/2), the frequency function

nx : (0, r0] → [0,∞) at x ∈ M is de�ned by

nx (r ) B
rHx (r )

hx (r )

with

Hx (r ) B

ˆ
Br (x )
|∇A⊗BΨ|

2 + tan(α)−2 |µ(Ψ)|2

and hx (r ) B

ˆ
∂Br (x )

|Ψ|2.

If the base-point x is obvious from the context and confusion is unlikely to arise, we will often
drop x from the notation and just write n, H and h.

Remark 4.3. The notion of frequency function, introduced by Almgren [Alm79], is important in
the study of singular/critical sets of elliptic partial di�erential equations, see, e.g., [HHL98; NV14].
Our frequency function is an adaptation of the one used by Taubes in [Tau13].

Throughout the rest of this section we will assume that (A,Ψ,α) ∈ A(L)×Γ
(
Hom(E, /S ⊗L)

)
×

(0,π/2) satis�es (1.4) and �x a point x ∈ M . We establish various important properties of the
frequency function. In particular, we show that:

• n is almost monotone increasing in r .

• n controls the growth of h.

• If |Ψ|(x) > 0, then n(r ) goes to zero as r goes to zero.

Moreover, we study the base-point dependence of n.

4.1 Almost monotonocity of n
Proposition 4.4. The derivative of the frequency is bounded below as follows

(4.5) n′(r ) > O(r )(1 + n(r )).

Before we embark on the proof, which occupies the remainder of this subsection, let us note
the following consequence:

Proposition 4.6. If 0 < s 6 r , then

(4.7) n(s) 6 eO(r
2−s2)n(r ) +O

(
r 2 − s2) .
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Proof. From (4.5) it follows that

∂r log(n(r ) + 1) > −2cr .

This integrates to
log(n(r ) + 1) − log(n(s) + 1) > −c(r 2 − s2),

i.e.,
n(s) + 1 6 ec(r

2−s2)(n(r ) + 1),

which directly implies (4.7). �

The derivative of the frequency is

(4.8) n′(r ) = H (r )

h(r )
+
rH ′(r )

h(r )
−
rh′(r )H (r )

h(r )2
;

hence, to prove Proposition 4.4 we need to better understand h′ and H ′. This is what is achieved
in the following.

Proposition 4.9. The derivative of h satis�es

(4.10) h′(r ) = 2h(r )/r +
ˆ
∂Br (x )

∂r |Ψ|
2 +O(r )h(r )

and

(4.11) h′(r ) =
(
2 + 2n(r ) +O(r 2)

)
h(r )/r .

Moreover,

(4.12)
ˆ
Br (x )
|Ψ|2 . rh(r ).

Proof. We proceed in four steps.

Step 1. The identity (4.10) is clear if the metric is �at near x ; the term O(r )h(r ) compensates for the
metric possibly being non-�at.

Step 2.
´
Br (x )
|Ψ|2 . (1 + n(r ))rh(r ).

Apply the following general fact
ˆ
Br (x )

d(x , ·)−2 f 2 . r−1
ˆ
∂Br (x )

f 2 +

ˆ
Br (x )
|df |2,

which can be proved using integration by parts and Cauchy–Schwarz, to f = |Ψ| and use Kato’s
inequality.
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Step 3. h′(r ) > 0.

Use Proposition 2.9 with U = Br (x) and f = 1 to write

(4.13)
ˆ
∂Br (x )

∂r |Ψ|
2 = 2H (r ) +O(1)

ˆ
Br (x )
|Ψ|2.

The estimate from Step 2 implies

h′(r ) =
(
1 +O(r 2)

)
(2 + 2n(r ))h(r )/r

which is non-negative because r 6 r0.

Step 4. Proof of (4.11) and (4.12).

The bound (4.12) follows directly from h′(r ) > 0. Using (4.12) in Step 3 instead of the estimate
from Step 2 immediately implies (4.11). �

Proposition 4.14. The derivative of H satis�es

H ′(r ) =
1
r
H (r ) +

ˆ
∂Br (x )

2|∇A⊗Br Ψ|2 + tan(α)−2 |i(∂r )µ(Ψ)|
2 +O

(
(1 + n(r ))h(r )

)
.

Here we think of µ(Ψ) as a 2–form via (1.3).

Proof. The punctured ball ÛBr0(x) B Br0(x)\{x} is foliated by the surfaces ∂Br (x) with normal
vector �eld ∂r . According to [BGM05, Section 3] the restriction of the spin bundle on ÛBr0(x) to
∂Br (x) can be identi�ed with the spin bundle on ∂Br (x) and if γ̃ , ∇̃ and /̃D denote the Cli�ord
multiplication, spin connection and Dirac operator on ∂Br (x) respectively, then for v ∈ T ∂Br (x):

γ (v) = −γ (∂r )γ̃ (v),

∇v = ∇̃v +
eO (r

2)

2r γ̃ (v) and

/D = γ (∂r )(∇r +
eO (r

2)

r
− /̃D).

(If the metric on Br0(x) is �at, then the mean curvature of ∂Br (x) is − 1
r . In general, there is a

correction term; hence, the term eO (r
2).) In particular, /DΨ = 0 is equivalent to

/̃DΨ = ∇rΨ +
eO (r

2)

r
Ψ.
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For Ψ a harmonic spinor on Br (x) we compute:
ˆ
∂Br (x )

|∇Ψ|2 − |∇rΨ|
2 =

ˆ
∂Br (x )

|∇̃Ψ +
eO (r

2)

2r γ̃ (·)Ψ|2

=

ˆ
∂Br (x )

|∇̃Ψ|2 −
eO (r

2)

r
〈 /̃DΨ,Ψ〉 +

eO (r
2)

2r 2 |Ψ|
2

=

ˆ
∂Br (x )

|∇̃Ψ|2 −
eO (r

2)

r
〈∇rΨ,Ψ〉 −

eO (r
2)

2r 2 |Ψ|
2.

Using the Weitzenböck formula (2.6) the �rst term can be written as
ˆ
∂Br (x )

|∇̃Ψ|2 =

ˆ
∂Br (x )

〈∇̃∗∇̃Ψ,Ψ〉

=

ˆ
∂Br (x )

| /̃DΨ|2 −
eO (r

2)

2r 2 |Ψ|
2

=

ˆ
∂Br (x )

|∇rΨ|
2 +

2eO (r 2)

r
〈∇rΨ,Ψ〉 +

eO (r
2)

2r 2 |Ψ|
2.

This combined with (4.13) and (4.12) proves the asserted identity ifA and B are product connections.
If A and B are not the product connection, the computation is identical up to changes in

notation and in the Weitzenböck formula two additional terms appear. The �rst is

−

ˆ
∂Br (x )

〈
FA |∂Br (x ), µ(Ψ)

〉
and the second can be estimated by O(1)h(r ). If (e1, e2) is a local positive orthonormal frame of
T ∂Br (x), then the integrand in the above expression is

1
2 〈FA(e1, e2)[γ̃ (e1), γ̃ (e2)], µ(Ψ)〉 = 〈FA(e1, e2)γ (∂r ), µ(Ψ)〉 .

To better understand this term, observe that if {·, ·} denotes the anti-commutator, then

µ(Ψ) =
∑
m

1
2 {µ(Ψ),γm}γm

and 〈γm ,γn〉 = 2δmn . Using FA = tan(α)−2µ(Ψ) we can write the integrand as tan(α)−2 times

1
2 |{µ(Ψ),γ (∂r )}|

2 = |µ(Ψ)|2 − |i(∂r )µ(Ψ)|
2.

This proves (4.14) in general. �
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Proof of Proposition 4.4. Plug (4.11) and (4.14) into (4.8) and use (4.13) and (4.12) to obtain

n(r )′ = 2r
h(r )

ˆ
∂Br (x )

|∇A⊗Br Ψ|2 + tan(α)−2 |i(∂r )µ(Ψ)|
2

−
2r

h(r )2

(ˆ
∂Br (x )

〈
∇A⊗Br Ψ,Ψ

〉)2

+O(r ) (1 + n(r )) .

By Cauchy–Schwarz the sum of the �rst and the third term is positive. This completes the
proof. �

4.2 n controls the growth of h

Proposition 4.15. If 0 < s < r , then

(4.16) h(r ) = eO (r
2) (r/s)2 exp

(
2
ˆ r

s
n(t)/t dt

)
h(s).

Proof. (4.11) can be written as

(logh(r ))′ = (2 + 2n(r ))/r +O(r ).

Integrating this yields (4.16). �

Corollary 4.17. If 0 < s < r , then
h(s) . (s/r )2h(r ).

In particular, if h(s) is positive, then so is h(r ); moreover, |Ψ|2(x) . h(r )/r 2.

Proposition 4.18. If 0 < s < r , then

eO (r
2)(s/r )e

O (r 2)(2+2n(r ))h(r ) 6 h(s) 6 eO (r
2)(s/r )e

O (r 2)(2+2n(s))h(r ).

Proof. Combine

h(s) = eO (r
2) (s/r )2 exp

(
−2
ˆ r

s
n(t)/t dt

)
h(r )

with ˆ r

s
n(t)/t dt 6

ˆ r

s

1
t

(
eO (r

2−t 2)n(r ) +O(r 2 − t2)
)

dt

6 −
(
eO (r

2)n(r ) +O(r 2)
)

log(s/r )

and
−

(
eO (r

2)n(s) +O(r 2)
)

log(s/r ) 6
ˆ r

s
n(t)/t dt .

The last two inequalities are consequences of Proposition 4.6. �
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4.3 |Ψ|(x) controls n
Proposition 4.19. If 0 < ω � 1 and

s .ω min{1, |Ψ|1/ω (x)},

then n(s) . ω.

Proof. By Proposition 2.1, h(r ) . r 2 and, by Corollary 4.17, hx (s) & s2 |Ψ|2(x). From Proposition 4.18
it follows that for s < r

(r/s)e
O (r 2)2n(s)+O (r 2) 6 c2 |Ψ|−2(x);

hence,

n(s) .
log(c |Ψ|−1(x))

log(r/s) +O(r 2).

If σ B c |Ψ|−1(x) 6 1, then the �rst term is non-positive and setting r = 2ω and s = ω yields the
asserted bound. If σ > 1, set r = ω and s = ωc−1/ω |Ψ|1/ω (x) = ωσ−1/ω to obtain

n(s) . ω +O(r 2) . ω . �

4.4 Dependence of n on the base-point

Proposition 4.20. For x ,y ∈ M and r > 0

hx (r ) .
2r + d(x ,y)

r
hy

(
2r + d(x ,y)

)
.

Proof. By Corollary 4.17 and (4.12)

rhx (r ) .

ˆ
B2r (x )

|Ψ|2 6

ˆ
B2r+d (x,y)(y)

|Ψ|2 .
(
2r + d(x ,y)

)
hy

(
2r + d(x ,y)

)
. �

Proposition 4.21. Suppose x ∈ M and r > 0 are such that nx (10r ) 6 1. If y ∈ Br (x), then
ny (5r ) . nx (10r ).

Proof. Since

ny (5r ) =
5rHy (5r )
hy (5r )

. nx (10r )hx (10r )
hy (5r )

,

it is key to control the latter quotient. Using Proposition 4.18 with nx (10r ) 6 1 as well as
Proposition 4.20

hx (10r ) . hx (r ) . hy (5r ). �
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5 n controls ρ(x)

In view of Proposition 4.19 it su�ces to prove the following in order to complete the proof of
Proposition 4.1.

Proposition 5.1. There areω, ρ0 > 0 such that for every solution (A,Ψ,α) ∈ A(L0)×Γ
(
Hom(E0, /S ⊗L)

)
×

(0,π/2) of (1.4)
if n(50r ) 6 ω, then ρ ≥ min{r , ρ0}.

5.1 Interior L2–bounds on the curvature

We �rst show that if the critical radius ρ and the frequency n(ρ) are very small, then so is the
renormalised L2–norm of FA on Bρ/2(x):

Proposition 5.2. Let (A,Ψ,α) ∈ A(L0) × Γ
(
Hom(E0, /S ⊗L)

)
× (0,π/2) be a solution of (1.4). For

any ε > 0, if
ρ �ε 1 and n(ρ) �ε 1,

then
ρ

ˆ
Bρ/2(x )

|FA |
2 6 ε .

Since
tan(α)2
h(ρ)

6

(
ρ

ˆ
Bρ (x )

|FA |
2

)−1

n(ρ) = n(ρ),

this is a direct consequence of the following.

Proposition 5.3. Denote by (Br ,д) a Riemannian 3–ball of radius r > 0, by L0 a U(1)–bundle
over Br , by E0 an SU(n)–bundle over Br and by B a connection on E0. Suppose that (A,Ψ,α) ∈
A(L0) × Γ

(
Hom(E0, /S ⊗L0)

)
× (0,π/2) satis�es (2.10). Set

e :=
r
´
Br
|∇A⊗BΨ|

2
´
∂Br
|Ψ|2

+ r 2‖Rд ‖L∞(Br ) + r
2‖FB ‖L∞(Br )

and τ := tan(α)√´
∂Br
|Ψ|2
.

Let δ ∈ (0, 1) and ε > 0. If

r 1/2‖FA‖L2(Br ) 6 1, e �δ,ε 1 and τ �δ,ε 1,

then
r 1/2‖FA‖L2(B(1−δ )r ) 6 ε .

14



The statement of Proposition 5.3 is invariant under rescaling Br , multiplying Ψ by a constant
and changing α—hence, tan(α)—accordingly so that (2.10) still holds. Therefore, it su�ces to
consider the case r = 1 and

´
∂Br
|Ψ|2 = 1. Throughout the rest of this subsection assume the

hypotheses of Proposition 5.3 with this normalisation.

Proposition 5.4. There are constants 0 < λ 6 Λ = Λ(δ ) such that in B1−δ

|Ψ| 6 Λ and if e �δ 1, then |Ψ| > λ.

Proof. We proceed in three steps.

Step 1. If e 6 1, then for each x ∈ B1

|Ψ|2(x) . d(x , ∂B1)
−2.

In particular, |Ψ| 6 Λ(δ ) = O(1/δ ).

We use a slight modi�cation of the argument used to prove Proposition 2.1. It follows from
(4.12) that ‖Ψ‖L2(B1) = O(1) and thus ‖|Ψ|‖W 1,2(B1) = O(1); hence, by Kato’s inequality and Sobolev
embedding we have ‖Ψ‖L6(B1) = O(1).

Let G denote the Green’s function for ∆ on B1. Fix x ∈ B1 and set f := G(x , ·). Then

f .
1

d(x , ·)
and |∇f | .

1
d(x , ·)2

.

Apply Proposition 2.9 with f as above and U = B1\Bσ (x), and pass to the limit σ = 0 to obtain

|Ψ|2(x) .

ˆ
B1

|Ψ|2

d(x , ·)
+ d(x , ∂B1)

−1
ˆ
∂B1

∂r |Ψ|
2 + d(x , ∂B1)

−2.

The �rst term is O(1) since ‖1/d(x , ·)‖L3/2(B1) = O(1). Applying Proposition 2.9 again with f = 1
and U = B1 gives

ˆ
∂B1

∂r |Ψ|
2 .

ˆ
B1

|Ψ|2 + |∇AΨ|
2 + τ−2 |µ(Ψ)|2 = O(1).

Here we have also used that

(5.5) ‖µ(Ψ)‖L2(B1) = τ
2‖FA‖L2(B1) 6 τ

2.

Step 2. We have [|Ψ|]C0,1/4(B1−δ )
.δ e

1/8.

Combining the Gagliardo–Nirenberg interpolation inequality

‖ f ‖L4(B1−δ ) .δ ‖∇f ‖
3/4
L2(B1−δ )

‖ f ‖1/4L2(B1−δ )
+ ‖ f ‖L2(B1−δ ),
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with Kato’s inequality, we obtain

(5.6)
‖∇A⊗BΨ‖L4(B1−δ ) .δ ‖∇|∇A⊗BΨ|‖

3/4
L2(B1−δ )

‖∇A⊗BΨ‖
1/4
L2(B1−δ )

+ ‖∇A⊗BΨ‖L2(B1−δ )

.δ e
1/8.

The asserted estimate now follows from Morrey’s inequality combined with Kato’s inequality.

Step 3. There is a constant λ > 0 such that if e �δ 1, then in B1−δ

|Ψ| > λ.

We know from Proposition 4.18 thatˆ
∂B1−δ

|Ψ|2 &

ˆ
∂B1

|Ψ|2 = 1,

which proves the lower bound on |Ψ| when combined with Step 2. �

Proposition 5.7. If e 6 1, then
‖µ(Ψ)‖L∞(B1−δ ) .δ τ

1/8.

Proof. Using Kato’s inequality, Proposition 5.4 and (5.6) we obtain

‖∇2 |µ(Ψ)|‖L2(B1−δ ) . ‖∇
2
A⊗BΨ‖L2(B1−δ )‖Ψ‖L∞(B1−δ ) + ‖∇A⊗BΨ‖

2
L4(B1−δ )

.δ 1.

Hence, using the Gagliardo–Nirenberg interpolation inequality

‖∇f ‖L4(B1−δ ) . ‖∇
2 f ‖7/8L2(B1−δ )

‖ f ‖1/8L2(B1−δ )
+ ‖ f ‖L2(B1−δ )

and Morrey’s inequality we obtain

‖|µ(Ψ)|‖C1/4(B1−δ )
.δ ‖|µ(Ψ)|‖W 1,4(B1−δ ) .δ τ

1/8. �

Proof of Proposition 5.3. By a straight-forward calculation

µ(µ(Ψ)Ψ,Ψ) =
1
2 |Ψ|

2µ(Ψ) + µ(Ψ) ◦ µ(Ψ) −
1
2 tr(µ(Ψ) ◦ µ(Ψ)) id/S .

Using this and the Weitzenböck formula (2.6) we get

∇∗∇µ(Ψ) = 2µ(∇∗A⊗B∇A⊗BΨ,Ψ) − 2 〈µ(∇A⊗BΨ,∇A⊗BΨ)〉

= −
(
τ−2 |Ψ|2 +

s

2

)
µ(Ψ)

+ 2τ−2µ(Ψ) ◦ µ(Ψ) − τ−2 tr(µ(Ψ) ◦ µ(Ψ)) id/S
− 2µ(FBΨ,Ψ) − 2 〈µ(∇A⊗BΨ,∇A⊗BΨ)〉 .
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where 〈·, ·〉 denotes the contraction T ∗M ⊗ T ∗M → R.
Fix a cut-o� function χ which is supported in B1−δ/2 and is equal to one in B1−δ . Then the

above yields ˆ
χ |∇µ(Ψ)|2 +

(
τ−2 |Ψ|2 +

s

2

)
χ |µ(Ψ)|2

=

ˆ
2χτ−2 〈µ(Ψ) ◦ µ(Ψ), µ(Ψ)〉 − 2χ 〈µ(FBΨ,Ψ), µ(Ψ)〉

− 2χ 〈〈µ(∇A⊗BΨ,∇A⊗BΨ)〉 , µ(Ψ)〉
− 〈∇A⊗B

∇χ µ(Ψ), µ(Ψ)〉

Since ‖µ(Ψ)‖L∞(B1−δ /2) .δ τ
1/8, the �rst term on the right hand side can be bounded by

cδτ
−2+1/8

ˆ
χ |µ(Ψ)|2.

Thus, using Proposition 5.4 and (5.6), for e �δ 1 and τ �δ 1, we obtainˆ
χ |µ(Ψ)|2 .δ τ

2
ˆ (
|FB | |Ψ|

2 + |∇A⊗BΨ|
2 + |Ψ| |∇A⊗BΨ|

)
|µ(Ψ)|

.δ τ
4(e + e1/4).

This implies the assertion because FA = τ
−2µ(Ψ). �

5.2 Proof of Proposition 5.1

If the assertion does not hold, then there exist solutions (A,Ψ,α) ∈ A(L) × Γ
(
Hom(E, /S ⊗L)

)
×

(0,π/2] of (1.4) and x ∈ M with ρ 6 ε and n(50ρ) 6 ε for arbitrarily small ε > 0. The next four
steps show that this is impossible.

Step 1. There is a point x ′ ∈ B2ρ(x )(x) such that

ρ(x ′) 6 ρ(x) and ρ(x ′) 6 2 min{ρ(y) : y ∈ Bρ(x ′)(x ′)}.

Construct a sequence xk inductively. Set x0 := x and assume that xk has been constructed. If

ρ(xk ) 6 2 min{ρ(y) : y ∈ Bρ(xk )(xk )},

then we set x ′ := xk . Otherwise we choose xk+1 ∈ Bρ(xk )(xk ) such that

ρ(xk+1) <
1
2ρ(xk ).

By construction we have ρ(xk+1) <
1

2k ρ(x). Since ρ(·) is bounded below for a �xed (A,Ψ,α), this
sequence must terminate for some k . Note that

d(x ,x ′) 6
k∑
i=0

ρ(xi ) 6 2ρ(x).
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Step 2. For each y ∈ Bρ(x ′)(x ′) we have ρ(y) . ε and ny (ρ(y)) . ε .

If y ∈ Bρ(x ′)(x ′), then B2ρ(x ′)(y) ⊃ Bρ(x ′)(x
′); hence,

ˆ

B2ρ (x ′)(y)

|FA |
2 >

1
ρ(x ′)

>
1

2ρ(x ′)

and therefore ρ(y) < 2ρ(x ′) 6 2ρ(x) . ε . Since y ∈ B5ρ(x )(x), we can apply Proposition 4.21 with
r = 5ρ(x) to deduce that ny (ρ(y)) 6 eO (ε

2)ny (25ρ(x)) +O(ε2) . nx (50ρ(x)) +O(ε2) . ε .

Step 3. There exists a �nite set {y1, . . . ,yk } ⊂ Bρ(x ′)(x
′) with k = O(1) such that⋃

Bρ(yi )/2(yi ) ⊃ Bρ(x ′)(x
′).

It follows from the �rst step that for each y ∈ Bρ(x ′)(x ′) we have ρ(y) > 1
2ρ(x

′). This implies
the existence of a �nite set {yi } with the desired properties.

Step 4. We prove the proposition.

By Proposition 5.2 and the previous steps
ˆ

Bρ (yi )/2(yi )

|FA |
2 .

ε

ρ(yi )
.

ε

ρ(x ′)
;

hence, ˆ

Bρ (x ′)(x ′)

|FA |
2 .

ε

ρ(x ′)
.

If ε � 1, this contradicts the de�nition of ρ(x ′). �

6 Convergence onM\Z

In this section we prove the following convergence result, which completes the proof of Theorem 1.5
(except for the statement regarding the size of Z ).

Proposition 6.1. In the situation of Theorem 1.5 if lim supαi = 0 and with |Ψ| as in Proposition 2.3
after passing to a further subsequence the following hold:

1. There is a constant γ > 0 such that |Ψi | converges to |Ψ| in C0,γ . In particular, the set
Z B |Ψ|−1(0) is closed.

2. There is a �at connectionA onL |M\Z withmonodromy inZ2 andΨ ∈ Γ
(
M\Z ,Hom(E, /S ⊗L)

)
such that (A,Ψ, 0) solves (1.4). OnM\Z up to gauge transformations Ai converges weakly in
W 1,2

loc to A and Ψi converges weakly inW 2,2
loc to Ψ.
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To prove this we need the following result.

Proposition 6.2. There is a constantγ > 0 such that whenever (A,Ψ,α) ∈ A(L)×Γ
(
Hom(E, /S ⊗L)

)
×

(0,π/2] is a solution of (1.4), then [|Ψ|]C0,γ = O(1).

Proof. Let x , y ∈ M . We need to uniformly control

| |Ψ|(x) − |Ψ|(y)|

d(x ,y)γ

for some γ > 0. Take ω > 0 as in Proposition 4.1. Without loss of generality we can assume that
d(x ,y) 6 ω and 0 , ν B |Ψ|(x) > |Ψ|(y). It follows from Proposition 4.1 that

(6.3) ρ(x) & min{1,ν1/ω }.

We distinguish two cases.

Case 1. d(x ,y)1/2 6 ρ(x)/2.

By combining Proposition 3.3 with Sobolev embedding, Morrey’s inequality with Kato’s
inequality we obtain

| |Ψ|(x) − |Ψ|(y)|

d(x ,y)1/2
. ‖∇A⊗BΨ‖L6(Bρ (x )/2) . ρ(x)

−1/2 . d(x ,y)−1/4;

hence,
| |Ψ|(x) − |Ψ|(y)|

d(x ,y)1/4
= O(1).

Case 2. d(x ,y)1/2 > ρ(x)/2.

If ν > 1, then by (6.3) we are in Case 1. Thus ν < 1 and it follows from (6.3) that

|Ψ|(y) 6 |Ψ|(x) . ρ(x)ω . d(x ,y)ω/2;

hence,
| |Ψ|(y) − |Ψ|(x)|

d(x ,y)ω/2
= O(1).

This proves the proposition with γ B min{ 1
4 ,

ω
2 }. �

Proof of Proposition 6.1. Proposition 6.2 immediately implies the �rst part of the proposition. We
prove the second part. If x ∈ M\Z , then, by Proposition 4.1, after passing to a subsequence the
critical radius ρi (x) of (Ai ,Ψi ,αi ) is bounded below by a constant, say, 2R > 0 depending only
on |Ψ|(x). By Proposition 6.2 we can also assume that |Ψi | is bounded away from zero on B2R(x),
after possibly making R smaller. Combining Proposition 5.3 and Proposition 4.19 yields L2–bounds
on FAi on balls covering BR(x); hence, by Proposition 3.3,W 2,2

Ai
–bounds on Ψi . After putting Ai in
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Uhlenbeck gauge on BR(x) and passing to a subsequence the sequence (Ai ,Ψi ) converges weakly
inW 1,2 ⊕W 2,2 to a limit (A,Ψ). The pair (A,Ψ) satis�es

/DA⊗BΨ = 0 and µ(Ψ) = 0.

The local gauge transformations can be patched to obtain a global gauge transformation on
M\Z , see [DK90, Section 4.2.2].

The fact that A has monodromy in Z2 follows from the discussion in Appendix A. �

7 Z is nowhere-dense

Since
´
M |Ψ|

2 = 1, we know that Z cannot be the entire space. To obtain more precise information
on Z it turns out to be helpful to apply the ideas from Section 4 to the limit (A,Ψ). Fix x ∈ M and
de�ne functions H ,h : [0, r0] → [0,∞) by

H (r ) B

ˆ
Br (x )
|∇A⊗BΨ|

2 and

h(r ) B

ˆ
∂Br (x )

|Ψ|2.

Here we extend |∇A⊗BΨ| by de�ning it to be zero on Z . If h(r ) > 0, de�ne

n(r ) B rH (r )

h(r )
.

Proposition 7.1. Denote by hi , Hi the (Ai ,Ψi ,αi ) version of h and H de�ned in De�nition 4.2.
The sequences of functions hi and Hi converge uniformly to h and H , respectively. In particular,
ni (r ) → n(r ) whenever h(r ) > 0.

Let us �rst explain how this implies the following.

Proposition 7.2. Z is nowhere-dense.

Proof. Choose R > 0 as large as possible, but so that BR(x) ⊂ Z . We know that R is �nite, because
Z is compact. By replacing x with a point close to the boundary of BR(x) we can assume that
R � 1. By construction of R there is an ε � 1 such that h(R + ε) > 0. In particular, n(R + ε) is
de�ned. It follows from Proposition 4.18 and Proposition 7.1 that R = 0. �

Proof of Proposition 7.1. That hi converges uniformly to h is a direct consequence of the C0,γ

convergence of |Ψi |. The proof of the corresponding statement for Hi has three steps.

Step 1. For ε ∈ (0, 1/2] set Zε B |Ψ|−1([0, ε]). The sequence of functions

Hε,i (r ) B

ˆ
Br (x )\Zε

|∇Ai ⊗BΨi |
2 + tan(αi )−2 |µ(Ψi )|

2
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converges uniformly to

Hε (r ) B

ˆ
Br \Zε

|∇A⊗BΨ|
2.

This follows from the facts that tan(αi )−1µ(Ψi ) = tan(αi )FAi converges to zero in L2(M\Zε )
and ∇Ai ⊗BΨi converges to ∇A⊗BΨ in L2(M\Zε ), see Proposition 6.1.

Step 2. There exists a λ > 0 such that
ˆ
Zε
|∇Ai ⊗BΨi |

2 + tan(αi )−2 |µ(Ψi )|
2 = O(ελ).

Fix a cut-o� function χ : R→ [0, 1] with χ (t) = 1 for t 6 1 and χ (t) = 0 for t > 2. Applying
Proposition 2.9 with f = χ (ε−1 |Ψi |) and U = M , integrating the resulting term with ∆|Ψ| by parts
once and using Kato’s inequality yields

ˆ
Zε
|∇Ai ⊗BΨi |

2 + tan(αi )−2 |µ(Ψi )|
2 6 cε2 + c

ˆ
Z2ε \Zε

|∇Ai ⊗BΨi |
2.

Denoting
f (ε) B

ˆ
Zε
|∇Ai ⊗BΨi |

2 + tan(αi )−2 |µ(Ψi )|
2

this can be written as
f (ε) 6 σ (ε2 + f (2ε))

with σ B c/(1 + c). Since f is bounded above and we can assume that σ > 1/2,

f (ε) 6 σε2
k−1∑
i=0
(4σ )i + σk f (2kε)

6 ε2σ

(
(4σ )k−1 − 1

4σ − 1

)
+ cσk

. ε2(4σ )k + σk .

With k B b− log ε/log 2c this gives

f (ε) . ε2−log(4σ )/log 2 + ε− logσ /log 2 . ελ

for some λ > 0 depending on σ only, since log(4σ )/log 2 < 2.

Step 3. The sequence of functions Hi converges uniformly to H .

Both |Hε (r ) − H (r )| and |Hε,i (r ) − Hi (r )| converge uniformly to zero as ε goes to zero, the
former by monotone convergence and the latter by Step 2; hence, the desired convergence follows
immediately from Step 1. �
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A Fueter sections of bundles of moduli spaces of ASD instantons

Recall from [DK90, Section 3.3] that if E denotes a Hermitian vector space of dimension n with
�xed determinant, /S+ denotes the positive spin representation of Spin(4) and L is a Hermitian
vector space of dimension one, then(

Hom(E, /S+ ⊗L)\{0}
)
///U(1) = M̊1,n

the moduli space of centred framed charge one SU(n) ASD instantons on R4.
In the situation of Section 1 we have bundles of the above data (which we denote by the same

letters) and can construct the bundle

M B (s × SU(E)) ×Spin(3)×SU(n) M̊1,n .

Here SU(E) is the principal SU(n)–bundle of oriented orthonormal frames of E and Spin(3) acts
via the inclusion of the �rst factor in Spin(4) = Spin+(3) × Spin−(3). Using the connections on s
and E we can associate to every section I ∈ Γ(M) its covariant derivative ∇I ∈ Ω1(I∗VM). Here
VM B (s × SU(E)) ×Spin(3)×SU(n) TM̊1,n is the vertical tangent bundle ofM. Moreover, there is a
Cli�ord multiplication γ : TM ⊗ I∗VM → I∗VM. Therefore, there is a natural non-linear Dirac
operator F, called the Fueter operator, which assigns to a section I ∈ Γ(M) the vertical vector �eld

FI B
3∑
i=1

γ (ei )∇eiI ∈ Γ(I
∗VM).

Proposition A.1. If A ∈ A(L) and Ψ ∈ Γ(M,Hom(E, /S ⊗L)) is a solution of

/DA⊗BΨ = 0 and

µ(Ψ) = 0.
(A.2)

and Ψ vanishes nowhere, then the induced section I ∈ Γ(M) solves FI = 0. Conversely, each Fueter
section I ∈ Γ(M) lifts to a solution (A,Ψ) of (A.2) for some L.

The proof is essentially the same as that of [Hay12, Proposition 4.1]. It is worthwhile to
explain how L and A are recovered from I: the U(1)–bundle µ−1(0) → M̊1,n has a canonical
connection given by orthogonal projection along the U(1)–orbits; hence, the U(1)–bundle L B

(s × SU(E)) ×Spin(3)×SU(n) µ
−1(0) → M inherits a connection A; and, �nally, L and A are obtained

via pullback:
L = I∗L and A = I∗A.

The following gives more information about A.

Proposition A.3. Let A ∈ A(L) and Ψ ∈ Γ(M,Hom(E, /S ⊗ L)) be a solution of (A.2). Denote
Z B Ψ−1(0). In this situation the following hold true:
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1. F B coim(Ψ) = ker(Ψ)⊥ is a rank 2 subbundle of E |M\Z .

2. The bundleK B det F has a square root
√
K. In particular, F̊ B F ⊗K−1/2 is an SU(2)–bundle.

3. The connection induced onL |M\Z ⊗K1/2 and the induced section Φ ∈ Γ(M\Z ,Hom(F̊ , /S ⊗
L ⊗K1/2)) satisfy (A.2) over M\Z with respect to the induced connection on F̊ . We have
|Φ| = |Ψ| overM\Z and, hence, |Φ| extends as a continuous function overM and Z = |Φ|−1(0).

4. The induced connection onL ⊗K1/2 is �at and has Z2–monodromy.

Proof. For each x ∈ M , µ−1(0)\{0} ⊂ Hom(E, /S ⊗L))x is acted upon transitively by R+ × U(Ex ).
In particular, it can be checked directly that for one (hence for all) non-zero Ψ ∈ µ−1(0) we have
rkΨ = 2.

The induced section Φ ∈ Γ(M,Hom(F , /S ⊗L)) de�nes an isomorphism F � /S ⊗L, hence
det F � det(/S ⊗L) � L⊗2. This implies (2).

The assertion made in (3) is a consequence of (A,Ψ) satisfying (A.2). Thus we are left with
proving (4) in the case n = 2. In this case, F = E, K is trivial and Φ = Ψ. To see that A is �at
with monodromy in Z2 note that the same is true for the canonical connection on µ−1(0) → M̊1,2:
note that R+ × U(2) acts transitively on µ−1(0), and the horizontal distribution is preserved by
R+ × SU(2) and therefore integrable, i.e., the canonical connection is �at. Since π1(M̊1,2) = Z2, the
monodromy of the canonical connection lies in Z2. �

Remark A.4. If L ⊗K1/2 carries a �at connection with monodromy in Z2, then it must be the
complexi�cation of a real line bundle l. Solutions to (1.4) with Spin–structure s and U(1)–bundle
L are in one-to-one correspondence with solutions with Spin–structure s ⊗ l and U(1)–bundle
L ⊗ (l ⊗ C). Therefore we can assign to each Fueter section I the unique Spin–structure s which
makes L ⊗K1/2 trivial.
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