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Abstract

We establish a Kobayashi–Hitchin correspondence between solutions of the extended

Bogomolny equation with a Dirac type singularity and Hecke modi�cations of Higgs

bundles. This correspondence was conjectured by Witten [Wit18, p. 668] and plays an

important role in the physical description of the the geometric Langlands program in terms

of 𝑆–duality for N = 4 super Yang–Mills theory in four dimensions.

1 Introduction

Kapustin and Witten [KW07] describe the geometric Langlands program in terms of 𝑆–duality

for N = 4 super Yang–Mills theory in four dimensions. At the heart of their description lies the

observation that every solution of the Bogomolny equation with a Dirac type singularity on

[0, 1] × Σ gives rise to a Hecke modi�cation of a holomorphic bundle over the Riemann surface

Σ via a scattering map construction [KW07, Section 9; Hur85]. Moreover, they anticipated that

this construction establishes a bijection between a suitable moduli space of singular monopoles

and the moduli space of Hecke modi�cations—similar to the Kobayashi–Hitchin correspondence

[Don85; Don87; UY86; LT95]. Their conjecture has been proved by Norbury [Nor11]; see also

Charbonneau and Hurtubise [CH11] and Mochizuki [Moc17].

In a recent article, Witten [Wit18] elaborates on the physical description of the geometric

Langlands program and emphasizes the importance of the relation between solutions to the

extended Bogomolny equationwith a Dirac type singularity on [0, 1]×Σ andHeckemodi�cations

of Higgs bundles. While Hecke modi�cations of holomorphic bundles have been studied

intensely for quite some time (see, e.g., [PS86; Zhu17]), interest in Hecke modi�cations of Higgs

bundles has only emerged recently. They do appear, for example, in Nakajima’s recent work on

a mathematical de�nition of Coulomb branches of 3–dimensional N = 4 gauge theories [Nak17,

Section 3].

The purpose of this article is to (a) give a precise statement of the Kobayashi–Hitchin

correspondence conjectured by Witten and (b) establish this correspondence. The upcoming

four sections review the notion of a Hecke modi�cation of a Higgs bundle, the extended

Bogomolny equation, Dirac type singularities, and the scattering map construction. The main

result of this article is stated as Theorem 5.10. The remaining �ve sections contain the proof of

this result.
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Our proof, like Norbury’s, heavily relies on the work of Simpson [Sim88]. However, unlike

Norbury, we cannot make use of the extensive prior work on Dirac type singularities for

solutions of the Bogomolny equation [Kro85; Pau98; MY17]. Instead, our singularity analysis is

based on ideas from recent work on tangent cones of singular Hermitian Yang–Mills connections

[JSW18; CS17]. Theorem 5.10 can be easily generalized to a Kobayashi–Hitchin correspondence

between solutions of the extended Bogomolny equation with multiple Dirac type singularities

and sequences of Hecke modi�cations of Higgs bundles. This result is stated as Theorem A.3

and proved in Appendix A. Moreover, although we do not provide details here, both of these

results can be further generalized to 𝐺C
Higgs bundles by �xing an embedding 𝐺 ⊂ U(𝑟 ), see

[Sim88, Proof of Proposition 8.2].
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2 Hecke modi�cations of Higgs bundles

In this section, we brie�y recall the notion of a Hecke modi�cation of a Higgs bundle. We refer

the reader to [Wit18, Section 4.5] for a more extensive discussion. Throughout this section, let

(Σ, 𝐼 ) be a closed Riemann surface and denote its canonical bundle by 𝐾Σ.

De�nition 2.1. AHiggs bundle over Σ is a pair (E, 𝜑) consisting of a holomorphic vector bundle

E over Σ and a holomorphic 1–form 𝜑 ∈ 𝐻 0(Σ, 𝐾Σ ⊗ End(E)) with values in End(E). •

Let (𝐸, 𝐻 ) be a Hermitian vector bundle over Σ. Given a holomorphic structure 𝜕 on 𝐸, there

exists a unique unitary connection 𝐴 ∈ A(𝐸, 𝐻 ) satisfying

∇0,1

𝐴
= 𝜕;

see, e.g., [Che95, Section 6]. Furthermore, every 𝜑 ∈ Ω1,0(Σ, End(𝐸)) can uniquely be written as

𝜑 =
1

2

(𝜙 − 𝑖𝐼𝜙)

with 𝜙 ∈ Ω1(Σ, 𝔲(𝐸, 𝐻 )). Here 𝐼 is the complex structure on Σ and 𝔲(𝐸, 𝐻 ) denotes the bundle
of skew-Hermitian endomorphism of (𝐸, 𝐻 ). It follows from the Kähler identities that 𝜑 is

holomorphic if and only if

(2.2) d𝐴𝜙 = 0 and d
∗
𝐴𝜙 = 0.

Remark 2.3. Hitchin [Hit87, Theorem 2.1 and Theorem 4.3] proved that a Higgs bundle (E, 𝜑)
of rank 𝑟 ≔ rkE admits a Hermitian metric 𝐻 such that (𝐴,𝜙) satis�es Hitchin’s equation

(2.4) 𝐹 ◦𝐴 − 1

2

[𝜙 ∧ 𝜙] = 0, d𝐴𝜙 = 0, and d
∗
𝐴𝜙 = 0
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if and only if it is 𝜇–polystable. Here 𝐹 ◦
𝐴
≔ 𝐹𝐴 − 1

𝑟
tr(𝐹𝐴)id𝐸 . Furthermore, if (E, 𝜑) is 𝜇–stable,

then imposing the additional condition that 𝐻 induces a given Hermitian metric on detE makes

it unique. ♣

De�nition 2.5. Let (E, 𝜑) be a Higgs bundle over Σ of rank 𝑟 . Let 𝑧0 ∈ Σ and k = (𝑘1, . . . , 𝑘𝑟 ) ∈ Z𝑟

satisfying

(2.6) 𝑘1 6 𝑘2 6 · · · 6 𝑘𝑟 .

A Hecke modi�cation of (E, 𝜑) at 𝑧0 of type k is a Higgs bundle (F, 𝜒) over Σ together with

an isomorphism

𝜂 : (E, 𝜑) |Σ\{𝑧0 } � (F, 𝜒) |Σ\{𝑧0 }
of Higgs bundles which, in suitable holomorphic trivializations near 𝑧0, is given by

diag(𝑧𝑘1, . . . , 𝑧𝑘𝑟 ) .

An isomorphism between two Hecke modi�cations (F1, 𝜒1;𝜂1) and (F2, 𝜒2;𝜂2) of (E, 𝜑) is an
isomorphism

𝜁 : (F1, 𝜒1) → (F2, 𝜒2)

such that

𝜂1 = 𝜂2𝜁 .

We denote by

MHecke(E, 𝜑 ; 𝑧0, k)

the set of all isomorphism classes of Hecke modi�cations of (E, 𝜑) at 𝑧0 of type k. •

Remark 2.7. If 𝜑 = 0, then the above reduces to the classical notion of a Hecke modi�cation of a

holomorphic vector bundle. ♣

3 Singular solutions of the extended Bogomolny equation

Throughout this section, let𝑀 be an oriented Riemannian 3–manifold (possibly with boundary)

and let (𝐸, 𝐻 ) be a Hermitian vector bundle over𝑀 .

De�nition 3.1. The extended Bogomolny equation is the following partial di�erential equation

for 𝐴 ∈ A(𝐸, 𝐻 ), 𝜙 ∈ Ω1(𝑀, 𝔲(𝐸, 𝐻 )), and 𝜉 ∈ Ω0(𝑀, 𝔲(𝐸, 𝐻 )):

𝐹𝐴 − 1

2

[𝜙 ∧ 𝜙] = ∗d𝐴𝜉,

d𝐴𝜙 − ∗[𝜉, 𝜙] = 0, and(3.2)

d
∗
𝐴𝜙 = 0. •

Remark 3.3. The extended Bogomolny equation arises from the Kapustin–Witten equation

[KW07] by dimensional reduction. It can be thought of as a complexi�cation of the Bogomolny

equation. In fact, for 𝜙 = 0, it reduces to the Bogomolny equation. ♣
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In this article, we are exclusively concerned with singular solutions of (3.2). The following

example is archetypical.

Example 3.4. Let 𝑘 ∈ Z. The holomorphic line bundle OC𝑃1 (𝑘) → C𝑃1 � 𝑆2 admits a metric 𝐻𝑘
whose associated connection 𝐵𝑘 satis�es

𝐹𝐵𝑘 = −𝑖𝑘
2

vol𝑆2 .

Denote by 𝜋 : R3\{0} → 𝑆2 the projection map and denote by 𝑟 : R3 → [0,∞) the distance to
the origin.

Given k ∈ Z𝑟 satisfying (2.6), set

(𝐸k, 𝐻k) ≔
𝑟⊕
𝑖=1

𝜋∗(OC𝑃1 (𝑘𝑖), 𝐻𝑘𝑖 ), 𝐴k ≔

𝑟⊕
𝑖=1

𝜋∗𝐵𝑘 , and 𝜉k ≔
1

2𝑟
diag(𝑖𝑘1, . . . , 𝑖𝑘𝑟 ) .

The pair (𝐴k, 𝜉k) is called the Dirac monopole of type k. It satis�es the Bogomolny equation

𝐹𝐴k = ∗d𝐴k𝜉k

and thus (3.2) with 𝜙 = 0. ♠

Henceforth, we suppose that
¯𝑀 is an oriented Riemannian 3–manifold, 𝑝 ∈ ¯𝑀 is an interior

point, and𝑀 is the complement of 𝑝 in 𝑀̄ . De�ne 𝑟 : 𝑀 → (0,∞) by

𝑟 (𝑥) ≔ 𝑑 (𝑥, 𝑝) .

Furthermore, we �x k ∈ Z𝑟 satisfying (2.6).

De�nition 3.5. A framing of (𝐸, 𝐻 ) at 𝑝 of type k is an isometry of Hermitian vector bundles

Ψ : exp
∗
𝑝 (𝐸, 𝐻 ) |𝐵𝜌 (0) → (𝐸k, 𝐻k) |𝐵𝜌 (0)

for some 𝜌 > 0. •

De�nition 3.6. Let Ψ be a framing of (𝐸, 𝐻 ) at 𝑝 of type k. A solution (𝐴,𝜙, 𝜉) of (3.2) on (𝐸, 𝐻 )
is said to have a Dirac type singularity at 𝑝 of type k if there exists an 𝛼 > 0 such that for every

𝑘 ∈ N0

∇𝑘𝐴k
(Ψ∗𝐴 −𝐴k) = 𝑂 (𝑟−𝑘−1+𝛼 ), ∇𝑘𝐴k

Ψ∗𝜙 = 𝑂 (𝑟−𝑘 ), and ∇𝑘𝐴k
(Ψ∗𝜉 − 𝜉k) = 𝑂 (𝑟−𝑘−1+𝛼 ).

A gauge transformation 𝑢 ∈ G(𝐸, 𝐻 ) is called singularity preserving if there exists a 𝑢𝑝 ∈
G(𝐸k, 𝐻k) satisfying

∇𝐴k𝑢𝑝 = 0 and (𝑢𝑝)∗𝜉k = 𝜉k
and an 𝛼 > 0 such that for every 𝑘 ∈ N0

∇𝑘𝐴k
(Ψ∗𝑢 − 𝑢𝑝) = 𝑂 (𝑟−𝑘+𝛼 ) . •

4



4 The extended Bogomolny equation over [0, 1] × Σ

Throughout the remainder of this article, we assume that the following are given:

(1) a closed Riemann surface (Σ, 𝐼 ),

(2) a Hermitian vector bundle (𝐸0, 𝐻0) over Σ,

(3) a solution (𝐴0, 𝜙0) of (2.2),

(4) (𝑦0, 𝑧0) ∈ (0, 1) × Σ, and

(5) k ∈ Z𝑟 satisfying (2.6).

Set

𝑀 ≔ [0, 1] × Σ\{(𝑦0, 𝑧0)}

Proposition 4.1. Given the above data, there exists a Hermitian vector bundle (𝐸, 𝐻 ) over𝑀 whose
restriction to {0} × Σ is isomorphic to (𝐸0, 𝐻0) together with a framing Ψ at (𝑦0, 𝑧0) of type k.
Moreover, any two such (𝐸, 𝐻 ;Ψ) are isomorphic.

Proof. There is a complex vector bundle 𝐸1 over Σ together with an isomorphism 𝜂 : 𝐸0 |Σ\{𝑧0 } �
𝐸1 |Σ\{𝑧0 } which can be written as diag(𝑧𝑘1, . . . , 𝑧𝑘𝑟 ) in suitable trivializations around 𝑧0. One

can construct 𝐸1 and 𝜂, for example, by modifying a Čech cocycle representing 𝐸0. The complex

vector bundle 𝐸 is now constructed by gluing via 𝜂 the pullback of 𝐸0 to [0, 𝑦0] × Σ\{(𝑦0, 𝑧0)}
and the pullback of 𝐸1 to [𝑦0, 1] × Σ\{(𝑦0, 𝑧0)}. Since 𝐸 is isomorphic near (𝑦0, 𝑧0) to 𝐸k, we can
�nd the desired Hermitian metric 𝐻 and framing Ψ. �

Henceforth, we �x a choice of

(𝐸, 𝐻 ;Ψ) .

De�nition 4.2. Denote byCEBE(𝐴0, 𝜙0;𝑦0, 𝑧0, k) the set of triples𝐴 ∈ A(𝐸, 𝐻 ),𝜙 ∈ Ω1(𝑀, 𝔲(𝐸, 𝐻 )),
and 𝜉 ∈ Ω0(𝑀, 𝔲(𝐸, 𝐻 )) satisfying the extended Bogomolny equation (3.2), as well as

(4.3) 𝑖 (𝜕𝑦)𝜙 = 0,

and the boundary conditions

(4.4) 𝐴| {0}×Σ = 𝐴0, 𝜙 | {0}×Σ = 𝜙0, and 𝜉 | {1}×Σ = 0.

Denote by

G ⊂ G(𝐸, 𝐻 )

the subgroup of singularity preserving unitary gauge transformations of (𝐸, 𝐻 ) which restrict

to the identity on {0} × Σ. Set

MEBE(𝐴0, 𝜙0;𝑦0, 𝑧0, k) ≔ CEBE(𝐴0, 𝜙0;𝑦0, 𝑧0, k)/G. •
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Remark 4.5. It is an interesting question to ask whether the condition (4.3) really does need to

be imposed. In a variant of our setup on 𝑆1 × Σ, this condition is automatically satis�ed; see

[He17, Corollary 4.7]. ♣
Remark 4.6. We refer the reader to [KW07, Section 10.1] for a discussion of the signi�cance

of the boundary conditions (4.4). It will become apparent in Section 7 and (9.2), that the

boundary conditions on (𝐴,𝜑, 𝜉) correspond to Dirichlet and Neumann boundary conditions

on a Hermitian metric. ♣

Proposition 4.7. Let 𝐴 ∈ A(𝐸, 𝐻 ), 𝜙 ∈ Ω1(𝑀, 𝔲(𝐸, 𝐻 )), and 𝜉 ∈ Ω0(𝑀, 𝔲(𝐸, 𝐻 )) and suppose
that (4.3) holds. Decompose 𝐴 as

∇𝐴 = 𝜕𝐴 + 𝜕𝐴 + d𝑦 ∧ ∇𝐴,𝜕𝑦

and write
𝜙 = 𝜑 − 𝜑∗ with 𝜑 ≔

1

2

(𝜙 − 𝑖𝐼𝜙) ∈ Γ(𝜋∗
Σ𝑇

∗Σ1,0 ⊗ End(𝐸)) .1

Set
𝔡𝑦 ≔ ∇𝐴,𝜕𝑦 − 𝑖𝜉 .

The extended Bogomolny equation (3.2) holds if and only if

𝜕𝐴𝜑 = 0, [𝔡𝑦, 𝜕𝐴] = 0, 𝔡𝑦𝜑 = 0, and(4.8)

𝑖Λ(𝐹𝐴 + [𝜑 ∧ 𝜑∗]) − 𝑖∇𝐴,𝜕𝑦𝜉 = 0.(4.9)

Proof. By the Kähler identities,

d
∗
𝐴𝜙 = 𝑖Λ(𝜕𝐴𝜑 + 𝜕𝐴𝜑∗) .

Since ∗Σ = −𝐼 , ∗Σ𝜑 = 𝑖𝜑 and thus

∗𝜑 = 𝑖d𝑦 ∧ 𝜑.

Therefore, the second equation of (3.2) is equivalent to

𝜕𝐴𝜑 − 𝜕𝐴𝜑∗ = 0,

∇𝐴,𝜕𝑦𝜑 − 𝑖 [𝜉, 𝜑] = 0, and

∇𝐴,𝜕𝑦𝜑∗ + 𝑖 [𝜉, 𝜑∗] = 0.

This shows that the last two equations of (3.2) are equivalent to the �rst and the last equations

of (4.8).

We have

𝐹𝐴 = 𝜕𝐴𝜕𝐴 + 𝜕𝐴𝜕𝐴 + d𝑦 ∧
(
[∇𝐴,𝜕𝑦 , 𝜕𝐴] + [∇𝐴,𝜕𝑦 , 𝜕𝐴]

)
,

1

2

[𝜙 ∧ 𝜙] = −[𝜑 ∧ 𝜑∗], and

∗d𝐴𝜉 = ∇𝐴,𝜕𝑦𝜉 · volΣ + 𝑖d𝑦 ∧ 𝜕𝐴𝜉 − 𝑖d𝑦 ∧ 𝜕𝐴𝜉 .

1This is possible because of (4.3).
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Therefore, the �rst equation of (3.2) is equivalent to

𝜕𝐴𝜕𝐴 + 𝜕𝐴𝜕𝐴 + [𝜑 ∧ 𝜑∗] − ∇𝐴,𝜕𝑦𝜉 · volΣ = 0,

[∇𝐴,𝜕𝑦 , 𝜕𝐴] − 𝑖𝜕𝐴𝜉 = 0, and

[∇𝐴,𝜕𝑦 , 𝜕𝐴] + 𝑖𝜕𝐴𝜉 = 0.

These are precisely the second equation in (4.8) as well as (4.9). �

5 The scattering map

De�nition 5.1. In the situation of Example 3.4, set

𝜕k ≔ 𝜕𝐴k and 𝔡𝑦,k ≔ ∇𝐴k,𝜕𝑦 − 𝑖𝜉k. •

De�nition 5.2. A parametrized Hecke modi�cation on (𝐸, 𝐻 ;Ψ) is a triple (𝜕, 𝜑, 𝔡𝑦) consisting
of:

(1) a complex linear map 𝜕 : Γ(𝐸) → Γ(Hom(𝜋∗
Σ𝑇Σ

0,1, 𝐸)),

(2) a section 𝜑 ∈ Γ(𝜋∗
Σ𝑇

∗Σ1,0 ⊗ End(𝐸)), and

(3) a complex linear map 𝔡𝑦 : Γ(𝐸) → Γ(𝐸)

such that the following hold:

(4) For every 𝑠 ∈ Γ(𝐸) and 𝑓 ∈ 𝐶∞(𝑀,C)

𝜕(𝑓 𝑠) = (𝜕Σ 𝑓 ) ⊗ 𝑠 + 𝑓 𝜕𝑠 and 𝔡𝑦 (𝑓 𝑠) = (𝜕𝑦 𝑓 )𝑠 + 𝑓 𝔡𝑦𝑠 .

(5) There exists an 𝛼 > 0 such that for every 𝑘 ∈ N0

(5.3)

∇𝑘𝐴k
(Ψ∗𝜕 − 𝜕k) = 𝑂 (𝑟−𝑘−1+𝛼 ), ∇𝑘𝐴k

Ψ∗𝜑 = 𝑂 (𝑟−𝑘 ), and

∇𝑘𝐴k
(Ψ∗𝔡𝑦 − 𝔡k𝑦) = 𝑂 (𝑟−𝑘−1+𝛼 ) .

(6) We have

•(5.4) 𝜕𝜑 = 0, [𝔡𝑦, 𝜕] = 0, and [𝔡𝑦, 𝜑] = 0.

The following observation is fundamental to this article.

Proposition 5.5 (Kapustin and Witten [KW07, Section 9.1]). Let (𝜕, 𝜑, 𝔡𝑦) be a parametrized
Hecke modi�cation. Denote by (E0, 𝜑0) and (E1, 𝜑1) the Higgs bundles induced by restriction to
{0} × Σ and {1} × Σ respectively. The parallel transport associated with the operator 𝔡𝑦 induces a
Hecke modi�cation

𝜎 : (E0, 𝜑0) |Σ\{𝑧0 } → (E1, 𝜑1) |Σ\{𝑧0 }
at 𝑧0 of type k.
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De�nition 5.6. We call 𝜎 the scattering map associated with (𝜕, 𝜑, 𝔡𝑦). •

For the reader’s convenience we recall the proof of Proposition 5.5 following [CH11].

Proposition 5.7 (Charbonneau and Hurtubise [CH11, Section 2.2]). The scattering map for the
Dirac monopole of type k is given by diag(𝑧𝑘1, . . . , 𝑧𝑘𝑟 ) in suitable holomorphic trivializations.

Proof. It su�ces to consider the case 𝑟 = 1. Set

𝑈± ≔ {(𝑦, 𝑧) ∈ R × C : 𝑧 = 0 =⇒ ±𝑦 > 0}.

There are trivializations 𝜏± : 𝜋∗OC𝑃1 (𝑘) |𝑈± � 𝑈± × C such that the following hold:

(1) The transition function 𝜏 : 𝑈+ ∩𝑈− → U(1) de�ned by

𝜏+ ◦ 𝜏−1− (𝑦, 𝑧; 𝜆) ≕ (𝑦, 𝑧, 𝜏 (𝑦, 𝑧)𝜆)

is given by

(𝑦, 𝑧) ↦→ (𝑧/|𝑧 |)𝑘 .

(2) The connection 𝐴 de�ned in Example 3.4 satis�es

∇𝐴± ≔ (𝜏±)∗∇𝐴 = d + 𝑘
4

(∓1 + 𝑦/𝑟 )𝑧d𝑧 − 𝑧d𝑧|𝑧 |2

for

𝑟 ≔
√︁
𝑦2 + |𝑧 |2.

The trivializations 𝜏± are not holomorphic. This can be recti�ed as follows. Since

d𝑟 =
1

2𝑟
(𝑧d𝑧 + 𝑧d𝑧 + 2𝑦d𝑦),

the gauge transformations

𝑢±(𝑦, 𝑧) ≔ (𝑟 ± 𝑦)±𝑘/2

satisfy

−(d𝑢±)𝑢−1± = ∓ 𝑘

2(𝑟 ± 𝑦) (d𝑟 ± d𝑦)

= ∓ 𝑘

4𝑟 (𝑟 ± 𝑦) (𝑧d𝑧 + 𝑧d𝑧 + 2(𝑦 ± 𝑟 )d𝑦)

=
𝑘

4

(∓1 + 𝑦/𝑟 )𝑧d𝑧 + 𝑧d𝑧|𝑧 |2 − 𝑘

2𝑟
d𝑦.

Therefore,

∇𝐴̃±
≔ (𝑢±)∗∇𝐴±

= ∇𝐴± − (d𝑢±)𝑢−1±

= d + 𝑘
2

(∓1 + 𝑦/𝑟 )𝑧d𝑧|𝑧 |2 − 𝑘

2𝑟
d𝑦.
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It follows that

𝜕𝐴̃±
= 𝜕 and ∇𝐴̃±,𝜕𝑦

+ 𝑘

2𝑟
= 𝜕𝑦 .

Hence, the trivializations𝑢±◦𝜏± are holomorphic and with respect to these the parallel transport

associated with ∇𝐴,𝜕𝑦 + 𝑖𝑘
2𝑟

from 𝑦 = −𝜀 to 𝑦 = 𝜀 is given by

𝑢+(𝜀, 𝑧) · 𝜏 (𝜀, 𝑧) · 𝑢−1− (−𝜀, 𝑧) = (𝑟 + 𝜀)𝑘/2
(
𝑧

|𝑧 |

)𝑘
(𝑟 − 𝜀)𝑘/2 = 𝑧𝑘 . �

Proof of Proposition 5.5. The fact that 𝜎 is holomorphic and preserves the Higgs �elds follows

directly from (5.4).

To prove that 𝜎 is given by diag(𝑧𝑘1, . . . , 𝑧𝑘𝑟 ) in suitable trivializations we follow Charbon-

neau and Hurtubise [CH11, Proposition 2.5]. It su�ces to consider a neighborhood of (𝑦0, 𝑧0)
which we identify with a neighborhood of the origin in R × C. Since 𝔡𝑦 = 𝔡𝑦,k +𝑂 (𝑟−1+𝛼 ), we
can construct a section 𝜏 of End(𝐸k) over [−𝜀, 0) × {0} satisfying

(5.8) 𝔡𝑦𝜏 = 𝜏𝔡𝑦,k and 𝜏 (·, 0) = idC𝑟 +𝑂 (𝑟𝛼 ) .

First extend 𝜏 (−𝜀, 0) to a section of End(𝐸k) over {−𝜀} × 𝐵𝜀 (0) satisfying

(5.9) 𝜕𝜏 = 𝜏𝜕k

and then further extend it to [−𝜀, 𝜀] × 𝐵𝜀 (0)\[0, 𝜀] × {0} by imposing the �rst part of (5.8). The

equation (5.9) continues to hold. Since 𝜏 is bounded around (0, 0), it extends to [−𝜀, 𝜀] × 𝐵𝜀 (0).
If 0 < 𝜀 � 1, then 𝜏 is invertible.

By construction, if 𝜎 denotes the parallel transport associated with 𝔡𝑦,k from 𝑦 = −𝜀 to 𝑦 = 𝜀,

then the corresponding parallel transport associated with 𝔡𝑦 is given by

𝜏 (𝜀, ·)𝜎𝜏 (−𝜀, ·)−1. �

In light of Proposition 5.7, this proves the assertion.

The preceding discussion constructs a map

CEBE(𝐴0, 𝜙0;𝑦0, 𝑧0, k) → MHecke(E0, 𝜑0; 𝑧0, k).

This map isG–invariant. The following is the main result of this article.

Theorem 5.10. The map

MEBE(𝐴0, 𝜙0;𝑦0, 𝑧0, k) → MHecke(E0, 𝜑0; 𝑧0, k)

induced by the scattering map construction is bijective.

The proof of this theorem occupies the remainder of this article.
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6 Parametrizing Hecke modi�cations

De�nition 6.1. Denote by (E0, 𝜑0) the Higgs bundle induced by (𝐴0, 𝜙0). Denote by

C
�
Hecke(E0, 𝜑0;𝑦0, 𝑧0, k)

the set of parametrized Hecke modi�cations agreeing with (E0, 𝜑0) at 𝑦 = 0. Denote by

GC ⊂ GC(𝐸)

the group of singularity preserving complex gauge transformations of 𝐸 which are the identity

at 𝑦 = 0. Here singularity preserving means the analogue of the condition in De�nition 3.6

holds.

Set

M
�
Hecke(E0, 𝜑0;𝑦0, 𝑧0, k) ≔ C

�
Hecke(E0, 𝜑0;𝑦0, 𝑧0, k)/GC. •

The �rst step in the proof of Theorem 5.10 is to show that every Hecke modi�cation of

(E0, 𝜑0) arises as the scattering map of a parametrized Hecke modi�cation.

Proposition 6.2. The map

(6.3) M
�Hecke(E0, 𝜑0;𝑦0, 𝑧0, k) → MHecke(E0, 𝜑0; 𝑧0, k)

induced by the scattering map construction is a bijection.

Proof. Let (E1, 𝜑1;𝜂) be a Hecke modi�cation of (E0, 𝜑0) at 𝑧0 of type k. Denote the complex

vector bundles underlyingE0 andE1 by 𝐸0 and 𝐸1. Denote the holomorphic structures onE0

andE1 by 𝜕0 and 𝜕1. The bundle 𝐸 is isomorphic to the bundle obtained by gluing the pullback

of 𝐸0 to [0, 𝑦0] × Σ\{(𝑦0, 𝑧0)} and the pullback of 𝐸1 to [𝑦0, 1] × Σ\{(𝑦0, 𝑧0)} via 𝜂. Therefore,
there is an operator 𝜕 : Γ(𝐸) → Γ(Hom(𝜋∗

Σ𝑇Σ
0,1, 𝐸)) on 𝐸 whose restriction to {𝑦} × Σ agrees

with 𝜕0 if 𝑦 < 𝑦0 and with 𝜕1 if 𝑦 > 𝑦0. There also is a section 𝜑 ∈ Γ(𝜋∗
Σ𝑇

∗Σ1,0 ⊗ End(𝐸)) whose
restriction to {𝑦} × Σ agrees 𝜑0 if 𝑦 < 𝑦0 and with 𝜑1 if 𝑦 > 𝑦0. De�ne 𝔡𝑦 : Γ(𝐸) → Γ(𝐸) to
be given by 𝜕𝑦 on both halves of the above decomposition of 𝐸. By construction, (𝜕, 𝜑, 𝔡𝑦)
is a parametrized Hecke modi�cation and the associated scattering map induces the Hecke

modi�cation (E1, 𝜑1;𝜂). This proves that the map (6.3) is surjective.

Let (𝜕, 𝜑, 𝔡𝑦) and ( ˜̄𝜕, 𝜑̃, ˜𝔡𝑦) be two parametrized Hecke modi�cation which induce the

Hecke modi�cations (E1, 𝜑1;𝜂) and ( ˜E1, 𝜑̃1;𝜂). Suppose that the latter are isomorphic via

𝜁 : (E1, 𝜑1) → ( ˜E1, 𝜑̃1). We can assume that both parametrized Hecke modi�cations are in

temporal gauge. Therefore, on [0, 𝑦0) × Σ they agree and are given by (𝜕0, 𝜑0, 𝜕𝑦); while on
(𝑦0, 1] × Σ

(𝜕, 𝜑, 𝔡𝑦) = (𝜕1, 𝜑1, 𝜕𝑦) and ( ˜̄𝜕, 𝜑̃, ˜𝔡𝑦) = ( ˜̄𝜕1, 𝜑̃1, 𝜕𝑦) .

The isomorphism 𝜁 intertwines 𝜕1 and
˜̄𝜕1 as well as 𝜑1 and 𝜑̃1 and commutes with the identi�-

cation of 𝐸0 and 𝐸1 respectively 𝐸1 over Σ\{𝑧0}. Therefore, it glues with the identity on 𝐸0 to a

gauge transformation inGC
relating (𝜕, 𝜑, 𝔡𝑦) and ( ˜̄𝜕, 𝜑̃, ˜𝔡𝑦). This proves that the map (6.3) is

injective. �
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7 Varying the Hermitian metric

The purpose of this section is to reduce Theorem 5.10 to a uniqueness and existence result for a

certain partial di�erential equation imposed on a Hermitian metric.

Proposition 7.1. Given a parametrized Hecke modi�cation (𝜕, 𝜑, 𝔡𝑦) on (𝐸, 𝐻 ), there are unique
𝐴𝐻 ∈ A(𝐸, 𝐻 ), 𝜙𝐻 ∈ Ω1(𝑀, 𝔲(𝐸, 𝐻 )), and 𝜉𝐻 ∈ Ω0(𝑀, 𝔲(𝐸, 𝐻 )) such that

(7.2) 𝜕 = ∇0,1

𝐴𝐻
, 𝜑 = 𝜙

1,0

𝐻
, and 𝔡𝑦 = ∇𝐴𝐻 ,𝜕𝑦 − 𝑖𝜉𝐻 .

Moreover, (𝐴𝐻 , 𝜙𝐻 , 𝜉𝐻 ) has a Dirac type singularity of type k at (𝑦0, 𝑧0).

Proof. This is analogous to the existence and uniqueness of the Chern connection. In fact, it

can be reduced to it; see Proposition 8.1. �

This proposition shows that Theorem 5.10 is equivalent to the bijectivity of the map{
(𝜕, 𝜑, 𝔡𝑦) ∈ C

�
Hecke(E0, 𝜑0;𝑦0, 𝑧0, k) : (4.9) and 𝜉𝐻 (1, ·) = 0

}
/G → M

�
Hecke(E0, 𝜑0;𝑦0, 𝑧0, k) .

This in turn is equivalent to the following for every parametrized Hecke modi�cation (𝜕, 𝜑, 𝔡𝑦):

(1) There exists a 𝑢 ∈ GC
such that 𝑢∗(𝜕, 𝜑, 𝔡𝑦) satis�es (4.9) and 𝜉𝐻 (1, ·) = 0.

(2) The equivalence class [𝑢] ∈ GC/G is unique.

The gauge transformed parametrized Hecke modi�cation 𝑢∗(𝜕, 𝜑, 𝔡𝑦) satis�es (4.9) and
𝜉𝐻 (1, ·) = 0 if and only if with respect to gauge transformed Hermitian metric

𝐾 ≔ 𝑢∗𝐻

the parametrized Hecke modi�cation (𝜕, 𝜑, 𝔡𝑦) satis�es (4.9) and 𝜉𝐾 (1, ·) = 0. Since 𝐾 = 𝑢∗𝐻
depends only on [𝑢] ∈ GC/G, the preceding discussion shows that Theorem 5.10 holds assuming

the following.

Proposition 7.3. Given (𝜕, 𝜑, 𝔡𝑦) a parametrized Hecke modi�cation, there exists a unique Hermi-
tian metric of the form 𝐾 = 𝑢∗𝐻 with 𝑢 ∈ GC such that (4.9) and 𝜉𝐾 (1, ·) = 0 hold.

8 Lift to dimension four

It will be convenient to lift the extended Bogomolny equation to dimension four, since this

allows us to directly make use of the work of Simpson [Sim88].

Proposition 8.1. Set
𝑋 ≔ 𝑆1 ×𝑀.

Denote by 𝛼 the coordinate on 𝑆1. Regard 𝑋 as a Kähler manifold equipped with the product metric
and the Kähler form

𝜔 = d𝛼 ∧ d𝑦 + volΣ .
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Denote by E the pullback of 𝐸 to 𝑋 . Given a parametrized Hecke modi�cation (𝜕, 𝜑, 𝔡𝑦), set

𝝏̄ ≔
1

2

(𝜕𝛼 + 𝑖d𝑦 · 𝔡𝑦) + 𝜕𝐸 and 𝝋 ≔ 𝜑.

The following hold:

(1) The operator 𝝏̄ de�nes a holomorphic structure on E; moreover,

𝝏̄𝝋 = 0 and 𝝋 ∧ 𝝋 = 0.

(2) Let K be the pullback of a Hermitian metric 𝐾 on 𝐸. Denote by 𝐴K the Chern connection
corresponding to 𝝏̄ with respect to K. The equation (4.9) holds if and only if

𝑖Λ(𝐹𝐴K + [𝝋 ∧ 𝝋∗,K]) = 0.

Proof. It follows from (4.8) that

𝝏̄2 = 𝜕2𝐸 + 𝑖d𝑦 ∧ [𝔡𝑦, 𝜕𝐸] = 0.

Consequently, 𝝏̄ de�nes a holomorphic structure. It also follows from (4.8) that 𝝏̄𝝋 = 0; while

𝝋 ∧ 𝝋 = 0 is obvious. This proves (1).

Denote by 𝜋 : 𝑋 → 𝑀 the projection map. A computation shows that

𝐴K = 𝜋∗𝐴𝐾 + d𝛼 ∧ (𝜕𝛼 + 𝜉𝐾 ) .

Therefore,

𝐹𝐴K = 𝐹𝐴𝐾 − d𝛼 ∧ d𝑦 · ∇𝐴𝐾 ,𝜕𝑦𝜉𝐾
and thus

𝑖Λ(𝐹𝐴K + [𝝋 ∧ 𝝋∗,K]) = 𝜋∗ [𝑖Λ(𝐹𝐴𝐾 + [𝜑 ∧ 𝜑∗,𝐾 ]) − 𝑖∇𝐴𝐾 ,𝜕𝑦𝜉𝐾
]
.

This proves (2). �

9 Uniqueness of 𝐾

Assume the situation of Proposition 7.3. Given a Hermitian metric 𝐾 on 𝐸, set

𝔪(𝐾) ≔ 𝑖Λ(𝐹𝐴𝐾 + [𝜑 ∧ 𝜑∗,𝐾 ]) − 𝑖∇𝐴𝐾 ,𝜕𝑦𝜉𝐾 .

Thus, (4.9) holds with respect to 𝐾 if and only if 𝔪(𝐾) = 0.

Proposition 9.1. For every Hermitian metric 𝐾 on 𝐸 and 𝑠 ∈ Γ(𝑖𝔲(𝐸, 𝐾)),

Δ tr 𝑠 = 2 tr(𝔪(𝐾𝑒𝑠) −𝔪(𝐾))

and
Δ log tr 𝑒𝑠 6 2|𝔪(𝐾𝑒𝑠) | + 2|𝔪(𝐾) |

Furthermore, if 𝑠 is trace-free, then 𝔪(𝐾𝑒𝑠) and 𝔪(𝐾) can be replaced by their trace-free parts.
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Proof. This follows from [Sim88, Lemma 3.1(c) and (d)] and Proposition 8.1. �

Proof of uniqueness in Proposition 7.3. Suppose 𝐾 and 𝐾𝑒𝑠 are two Hermitian metrics in theGC
–

orbit of 𝐻 such that 𝔪(𝐾) = 𝔪(𝐾𝑒𝑠) = 0 and 𝜉𝐾 (1, ·) = 𝜉𝐾𝑒𝑠 (1, ·) = 0. It follows from the

preceding proposition that tr 𝑠 is harmonic and log tr 𝑒𝑠 is subharmonic.

Since 𝐾 and 𝐾𝑒𝑠 are contained the the sameGC
–orbit,

𝑠 (0, ·) = 0 and |𝑠 | = 𝑂 (𝑟𝛼 ) .

for some 𝛼 > 0. The computation proving Proposition 7.1 shows that

(9.2) 𝜉𝐾𝑒𝑠 =
1

2

(
𝜉𝐾 + 𝑒−𝑠𝜉𝐾𝑒𝑠 − 𝑖𝑒−𝑠 (∇𝐴𝐾 ,𝜕𝑦𝑒𝑠)

)
.

Therefore,

∇𝐴𝐾 ,𝜕𝑦𝑠 (1, ·) = 0.

Since tr 𝑠 is harmonic, bounded, vanishes at 𝑦 = 0, and satis�es Neumann boundary con-

ditions at 𝑦 = 1, it follows that tr 𝑠 = 0. Furthermore, since log tr 𝑒𝑠 is subharmonic, the above

together with the maximum principle implies log tr 𝑒𝑠 6 log tr 𝑒0 = log rk𝐸. By the inequality

between arithmetic and geometric means,

tr 𝑒𝑠

rk𝐸
> 𝑒 tr 𝑠 = 1; that is: log tr 𝑒𝑠 > log rk𝐸

with equality if and only if 𝑠 = 0. �

10 Construction of 𝐾

This section is devoted to the construction of 𝐾 using the heat �ow method with boundary

conditions [Sim88; Don92]. The analysis of its behavior at the singularity is discussed in the

next section.

Proposition 10.1. Given a parametrized Hecke modi�cation, (𝜕, 𝜑, 𝔡𝑦) on (𝐸, 𝐻 ), there exists a
bounded section 𝑠 ∈ Γ(𝑖𝔲(𝐸, 𝐻 )) such that for 𝐾 ≔ 𝐻𝑒𝑠 both 𝔪(𝐾) = 0 and 𝜉𝐾 (1, ·) = 0 hold.

The proof requires the following result as a preparation.

Proposition 10.2. Assume the situation of Proposition 8.1. For 𝜀 > 0, set

𝑋𝜀 ≔ 𝑆1 × ([0, 1] × Σ\𝐵𝜀 (𝑦0, 𝑧0)) .

Denote the pullback of 𝐻 to 𝑋 by H. Suppose that

‖𝑖Λ(𝐹 ◦𝐴H
+ [𝝋 ∧ 𝝋∗,H])‖𝐿∞ < ∞.

The following hold:
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(1) Let 𝜀 > 0. There exists a unique solution (K𝜀𝑡 )𝑡 ∈[0,∞) of

(10.3) (K𝜀𝑡 )−1𝜕𝑡K𝜀𝑡 = −𝑖Λ(𝐹 ◦𝐴K𝜀𝑡
+ [𝝋 ∧ 𝝋∗,K𝜀𝑡 ])

on 𝑋𝜀 with initial condition
K𝜀
0
= H|𝑋𝜀

and subject to the boundary conditions

K𝜀𝑡 |𝑆1×{0}×Σ = H|𝑆1×{0}×Σ,
K𝜀𝑡 |𝑆1×𝜕𝐵𝜀 (𝑦0,𝑧0) = H|𝑆1×𝜕𝐵𝜀 (𝑦0,𝑧0) , and

(∇𝐴H,𝜕𝑦K
𝜀
𝑡 ) |𝑆1×{1}×Σ = 0.

(2) As 𝑡 → ∞, the Hermitian metrics K𝜀𝑡 converge in 𝐶
∞ to a solution K𝜀 of

𝑖Λ(𝐹 ◦K𝜀 + [𝝋 ∧ 𝝋∗,K𝜀 ]) = 0.

(3) The section 𝑠𝜀 ∈ Γ(𝑋𝜀, 𝑖𝔰𝔲(E,H)) de�ned by K𝜀 = H𝑒𝑠𝜀 is 𝑆1–invariant and satis�es

‖𝑠𝜀 ‖𝐿∞ . 1 as well as ‖𝑠𝜀 ‖𝐶𝑘 (𝑋𝛿 ) .𝑘,𝛿 1

for every 𝑘 ∈ N and 𝛿 > 𝜀.

Proof. (1) follows from Simpson [Sim88, Section 6].

Set

𝑓𝑡 ≔ |𝑖Λ(𝐹 ◦K𝑡 + [𝝋 ∧ 𝝋∗]) |2K𝑡 .

By a short computation, we have

(𝜕𝑡 + Δ) 𝑓𝑡 6 0.

The spectrum of Δ on 𝑋𝜀 with Dirichlet boundary conditions at 𝑦 = 0 and at distance 𝜀 to the

singularity as well as Neumann boundary conditions at 𝑦 = 0 is positive. Therefore, there are

𝑐, 𝜆 > 0 such that

‖ 𝑓𝑡 ‖𝐿∞ 6 𝑐𝑒−𝜆𝑡 .

Consequently,

sup

𝑝∈𝑋𝜀

ˆ ∞

0

√︁
𝑓𝑡d𝑡 < ∞

This means that the path K𝜀𝑡 has �nite length in the space of Hermitian metrics. (2) thus follows

from [Sim88, Lemma 6.4]. The 𝑆1–invariance of 𝑠𝜀 follows from the 𝑆1–invariance of the initial

condition.from [Sim88, Theorem 1].

Since 𝑠𝜀 is 𝑆
1
–invariant and trace-free, by Proposition 8.1 and Proposition 9.1,

Δ log tr(𝑒𝑠𝜀 ) 6 2|𝑖Λ(𝐹 ◦𝐴H
+ [𝝋 ∧ 𝝋∗,H]) |2.

Let 𝑓 be the solution of

Δ𝑓 = 2|𝑖Λ(𝐹 ◦𝐴H
+ [𝝋 ∧ 𝝋∗,H]) |2
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subject to the boundary conditions

𝑓 |𝑆1×{0}×Σ = 0 and 𝜕𝑦 𝑓 |𝑆1×{1}×Σ = 0.

Choose a constant 𝑐 such that 𝑓 + 𝑐 > 0. Set

𝑔 ≔ log tr(𝑒𝑠𝜀 ) − (𝑓 + 𝑐).

The function 𝑔 is subharmonic on 𝑋𝜀 . Thus it achieves its maximum on the boundary. On

𝑆1 × 𝜕𝐵𝜀 (𝑦0, 𝑧0) and 𝑆1 × {0} × Σ, the function 𝑔 is negative. At 𝑆1 × {1} × Σ, 𝜕𝑦 𝑓 = 0. By the

re�ection principle, the maximum is not achieved at 𝑦 = 1 unless 𝑔 is constant. It follows that

𝑔 6 0. This shows that |log tr(𝑒𝑠𝜀 ) | is bounded independent of 𝜀. Since 𝑠 is trace-free, it follows

that |𝑠𝜀 | is bounded independent of 𝜀. By [Sim88, Lemma 6.4], which is an extension of [Don85,

Lemma 19] with boundary conditions, and elliptic bootstrapping the asserted 𝐶𝑘 bounds on 𝑠𝜀
follow. �

Proof of Proposition 10.1. Without loss of generality we can assume that 𝐻 is such that 𝜉𝐻 van-

ishes at 𝑦 = 1.

There is a unique 𝑓 ∈ 𝐶∞( [0, 1] × Σ\{𝑦0, 𝑧0}) which satis�es

1

2

Δ𝑓 = tr(𝑖Λ𝐹𝐴𝐻 − 𝑖∇𝐴𝐻 ,𝜕𝑦𝜉𝐻 ),

is bounded, vanishes at 𝑦 = 0, and satis�es Neumann boundary conditions at 𝑦 = 0. A barrier

argument shows that |𝑓 | = 𝑂 (𝑟𝛼 ) for some 𝛼 > 0. Replacing 𝐻 with 𝐻𝑒 𝑓 , we may assume that

tr(𝑖Λ𝐹𝐴𝐻 − 𝑖∇𝐴𝐻 ,𝜕𝑦𝜉𝐻 ) = 0.

For every 𝑠 ∈ Γ(𝑖𝔰𝔲(𝐸, 𝐻 )), the above condition holds for 𝐻𝑒𝑠 instead of 𝐻 as well. Let 𝑠𝜀
be as in Proposition 10.2. Take the limit of 𝑠𝜀 on each 𝑋𝛿 as �rst 𝜀 tends to zero and then 𝛿 tends

to zero. This limit is the pullback of a section 𝑠 de�ned over [0, 1] × Σ\{𝑦0, 𝑧0} which has the

desired properties. Since ∇𝐴𝐻 ,𝜕𝑦𝑠 vanishes at 𝑦 = 1, it follows from (9.2) that 𝜉𝐾 vanishes at

𝑦 = 1. �

11 Singularity analysis

It remains to analyze the section 𝑠 constructed via Proposition 10.1 near the singularity. The

following result completes the proof of Proposition 7.3 and thus Theorem 5.10.

Proposition 11.1. Consider the unit ball 𝐵 ⊂ R × C with a metric 𝑔 = 𝑔0 +𝑂 (𝑟 2). Set ¤𝐵 ≔ 𝐵\{0}.
Let k ∈ Z𝑟 be such that (2.6) and let 𝛼 > 0. Let (𝜕, 𝜙, 𝔡𝑦) be a parametrized Hecke modi�cation on
(𝐸k, 𝐻k). If 𝑠 ∈ Γ(𝑖𝔲(𝐸k, 𝐻k)) is bounded and satis�es

𝔪(𝐻k𝑒
𝑠) = 0,

then there is an 𝛼 > 0 and 𝑠0 ∈ Γ(𝑖𝔲(𝐸k, 𝐻k)) such that

∇𝐴k𝑠0 = 0 and [𝜉k, 𝑠0] = 0
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and for every 𝑘 ∈ N0

∇𝑘𝐴k
(𝑠 − 𝑠0) = 𝑂 (𝑟−𝑘+𝛼 );

that is: 𝐻k𝑒
𝑠 = 𝑒

𝑠/2
∗ 𝐻k is in theGC–orbit of 𝐻k.

The proof of this result uses the technique developed in [JSW18]. Henceforth, we shall

assume the situation of Proposition 11.1. Moreover, we drop the subscript k from 𝐸k and 𝐻k to

simplify notation.

De�ne𝔙 : Γ(𝑖𝔲(𝐸, 𝐻 )) → Ω1( ¤𝐵, 𝑖𝔲(𝐸, 𝐻 )) × Γ(𝑖𝔲(𝐸, 𝐻 )) by

𝔙𝑠 ≔ (∇𝐴k𝑠, [𝜉k, 𝑠])

The following a priori Morrey estimate is the crucial ingredient of the proof of Proposition 11.1.

Proposition 11.2. For some 𝛼 > 0, we have
ˆ
𝐵𝑟

|𝔙𝑠 |2 . 𝑟 1+2𝛼 .

Proof of Proposition 11.1 assuming Proposition 11.2. Denote by 𝑠𝑟 the pullback of 𝑠 from 𝐵𝑟 to 𝐵.

By Proposition 11.2,

‖∇𝐴k𝑠𝑟 ‖𝐿2 (𝐵) + ‖[𝜉k, 𝑠𝑟 ] ‖𝐿2 (𝐵) . 𝑟𝛼 .

Denote by 𝔪𝑟 the map 𝔪 with respect to 𝑟−2 times the pullback of the Riemannian metric and

the parametrized Hecke modi�cation from 𝐵𝑟 to 𝐵. The equation 𝔪𝑟 (𝐻𝑒𝑠𝑟 ) = 0 can be written

schematically as

∇∗
𝐴𝐻

∇𝐴𝐻 𝑠𝑟 + 𝐵(∇𝐴𝐻 𝑠 ⊗ ∇𝐴𝐻 𝑠𝑟 ) = 𝐶 (𝔪𝑟 (𝐻 ))

where 𝐵 and 𝐶 are linear with coe�cients depending only on 𝑠 , but not its derivatives.

Set

𝑎 ≔ ∇𝐴𝐻 − ∇𝐴k,
ˆ𝜙 = 𝜙𝐻 − 𝜙k, and

ˆ𝜉 ≔ 𝜉𝐻 − 𝜉k.

It follows from (5.3) that, after possibly decreasing the value of 𝛼 > 0, for 𝑘 ∈ N0

(11.3) ∇𝑘𝐴k
𝑎 = 𝑂 (𝑟−𝑘−1+𝛼 ), ∇𝑘𝐴k

ˆ𝜙 = 𝑂 (𝑟−𝑘 ), and ∇𝑘𝐴k
ˆ𝜉 = 𝑂 (𝑟−𝑘−1+𝛼 ) .

Therefore, 𝔪𝑟 (𝐻 ) = 𝑂 (𝑟𝛼 ) on 𝐵\𝐵1/8.
As in [JSW18, Section 5], it follows from Bando–Siu’s interior estimates [BS94, Proposition

1; JW19, Theorem C.1] that for 𝑘 ∈ N0

‖∇𝐴k𝑠𝑟 ‖𝐶𝑘 (𝐵1/2\𝐵1/4) + ‖[𝜉k, 𝑠𝑟 ] ‖𝐶𝑘 (𝐵
1/2\𝐵1/4) .𝑘 𝑟

𝛼 .

Consequently, there is an 𝑠0 ∈ ker𝔙 such that for 𝑘 ∈ N0

‖∇𝑘𝐴k
(𝑠𝑟 − 𝑠0)‖𝐿∞ (𝐵

1/2\𝐵1/4) .𝑘 𝑟
𝛼 .

This translates to the asserted estimates for 𝑠 . �

The proof of Proposition 11.2 occupies the remainder of this section.
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11.1 A Neumann–Poincaré inequality

Denoting the radial coordinate by 𝑟 , we can write

𝔙𝑠 ≔ (d𝑟 · ∇𝜕𝑟 𝑠,𝔙𝑟𝑠)

for a family of operators 𝔙𝑟 : Γ(𝜕𝐵𝑟 , 𝑖𝔲(𝐸, 𝐻 )) → Ω1(𝜕𝐵𝑟 , 𝑖𝔲(𝐸, 𝐻 )) × Γ(𝜕𝐵𝑟 , 𝑖𝔲(𝐸, 𝐻 )). The
pullback of𝔙𝑟 to 𝜕𝐵 agrees with𝔙1. Consequently, we can identify

ker𝔙𝑟 = ker𝔙1 ≕ 𝑁 .

Denote by 𝜋𝑟 : Γ(𝜕𝐵𝑟 , 𝑖𝔲(𝐸, 𝐻 )) → 𝑁 the 𝐿2–orthogonal projection onto 𝑁 . Set

Π𝑟𝑠 ≔
1

𝑟

ˆ
2𝑟

𝑟

𝜋𝑡 (𝑠) d𝑡 .

Proposition 11.4. For every 𝑠 ∈ Γ(𝑖𝔲(𝐸, 𝐻 )) and 𝑟 ∈ [0, 1/2], we have

(11.5)

ˆ
𝐵2𝑟 \𝐵𝑟

|𝑠 − Π𝑟𝑠 |2 . 𝑟 2
ˆ
𝐵2𝑟 \𝐵𝑟

|𝔙𝑠 |2.

Proof. The proof is identical to that of [JSW18, Proposition 4.2]. For the readers convenience

we will reproduce the argument here.

Since (11.5) is scale invariant, we may assume 𝑟 = 1/2. Furthermore, it su�ces to prove the

cylindrical estimate

ˆ
1

1/2

ˆ
𝜕𝐵

|𝑠 (𝑡, 𝑥) − Π𝑠 (𝑡, ·) |2 d𝑥d𝑡 .
ˆ

1

1/2

ˆ
𝜕𝐵

|𝜕𝑡𝑠 (𝑡, 𝑥) |2 + |𝔙1𝑠 (𝑡, 𝑥) |2 d𝑥d𝑡

with 𝑠 denoting a section over [1/2, 1] × 𝜕𝐵,

𝜋 ≔ 𝜋1, and Π𝑠 ≔ 2

ˆ
1

1/2
𝜋𝑠 (𝑡, ·) d𝑡 .

To prove this inequality, we compute

ˆ
1

1/2

ˆ
𝜕𝐵

|𝑠 (𝑡, 𝑥) − Π𝑠 (𝑡, ·) |2d𝑥d𝑡

= 4

ˆ
1

1/2

ˆ
𝜕𝐵

����ˆ 1

1/2
𝑠 (𝑡, 𝑥) − 𝜋𝑠 (𝑢, ·) d𝑢

����2 d𝑥d𝑡
.

ˆ
1

1/2

ˆ
1

1/2

ˆ
𝜕𝐵

|𝑠 (𝑡, 𝑥) − 𝜋𝑠 (𝑢, ·) |2 d𝑥d𝑢d𝑡

.

ˆ
1

1/2

ˆ
1

1/2

ˆ
𝜕𝐵

|𝑠 (𝑡, 𝑥) − 𝜋𝑠 (𝑡, ·) |2 + |𝜋𝑠 (𝑡, ·) − 𝜋𝑠 (𝑢, ·) |2 d𝑥d𝑢d𝑡 .
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The �rst summand can be bounded as follows

ˆ
1

1/2

ˆ
1

1/2

ˆ
𝜕𝐵

|𝑠 (𝑡, 𝑥) − 𝜋𝑠 (𝑡, ·) |2 d𝑥d𝑡d𝑢 .
ˆ

1

1/2

ˆ
1

1/2

ˆ
𝜕𝐵

|𝔙1𝑠 (𝑡, 𝑥) |2 d𝑥d𝑡d𝑢

.

ˆ
1

1/2

ˆ
𝜕𝐵

|𝔙1𝑠 (𝑡, 𝑥) |2 d𝑥d𝑡 .

The second summand can be controlled as in the usual proof of the Neumann–Poincare inequal-

ity: We have

|𝜋𝑠 (𝑡, ·) − 𝜋𝑠 (𝑢, ·) | =
����ˆ 1

0

𝜕𝑣𝜋𝑠 (𝑡 + 𝑣 (𝑡 − 𝑢), ·) d𝑣
����

6

����ˆ 1

0

𝜋 (𝜕𝑡𝑠) (𝑡 + 𝑣 (𝑡 − 𝑢), ·) d𝑣
����

.

(ˆ
1

0

ˆ
𝜕𝐵

| (𝜕𝑡𝑠) (𝑡 + 𝑣 (𝑡 − 𝑢), 𝑥) |2 d𝑥d𝑣
)1/2

.

Plugging this into the second summand and symmetry considerations yield

ˆ
1

1/2

ˆ
1

1/2

ˆ
𝜕𝐵

|𝜋𝑠 (𝑡, ·) − 𝜋𝑠 (𝑢, ·) |2 d𝑥d𝑢d𝑡

.

ˆ
1

1/2

ˆ
1

1/2

ˆ
1

0

ˆ
𝜕𝐵

| (𝜕𝑡𝑠) (𝑡 + 𝑣 (𝑡 − 𝑢), 𝑥) |2 d𝑥d𝑣d𝑢d𝑡

.

ˆ
1

1/2

ˆ
𝜕𝐵

|𝜕𝑡𝑠 (𝑡, 𝑥) |2 d𝑥d𝑡 .

This �nishes the proof. �

11.2 A di�erential inequality

The following di�erential inequality for

𝑠𝑟 ≔ log

(
𝑒−Π𝑟 𝑠𝑒𝑠

)
.

lies at the heart of the proof of Proposition 11.2. By construction, the section 𝑠𝑟 is self-adjoint

with respect to 𝐻𝑒𝑠 as well as 𝐻𝑒Π𝑟 𝑠 , and

𝐻𝑒𝑠 =
(
𝐻𝑒Π𝑟 𝑠

)
𝑒𝑠𝑟 .

Proposition 11.6. The section 𝑠𝑟 satis�es

|𝔙𝑠 | . |𝔙𝑠𝑟 |, |𝑠𝑟 | . |𝑠 − Π𝑟𝑠 |, and |𝔙𝑠𝑟 |2 . 𝑟−2+𝛽 − Δ|𝑠𝑟 |2

for some 𝛽 > 0.

The proof relies on the following identity.
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Proposition 11.7. We have

〈𝔪(𝐻𝑒𝑠) −𝔪(𝐻 ), 𝑠〉 = 1

4

Δ|𝑠 |2 + 1

2

|𝜐 (−𝑠)∇𝐴𝐻 𝑠 |2 +
1

2

|𝜐 (−𝑠) [𝜙𝐻 , 𝑠] |2 +
1

2

|𝜐 (−𝑠) [𝜉𝐻 , 𝑠] |2

with

𝜐 (𝑠) =

√︄
𝑒ad𝑠 − id

ad𝑠

∈ End(𝔤𝔩(𝐸)) .

Proof. We prove the analogous formula in dimension four. We have

𝜕𝐴𝐻𝑒𝑠 = 𝑒
−𝑠𝜕𝐴𝐻 𝑒

𝑠 = 𝜕𝐻 + Υ(−𝑠)𝜕𝐻𝑠 and 𝜑∗,𝐻𝑒𝑠 = 𝑒−𝑠𝜑∗,𝐻𝑒𝑠

with

Υ(𝑠) = 𝑒ad𝑠 − id

ad𝑠

.

Set

𝐷 ≔ 𝜕 + 𝑖𝜑 and
¯𝐷𝐻 ≔ 𝜕𝐻 − 𝑖𝜑∗,𝐻 .

The above formula asserts that

¯𝐷𝐻𝑒𝑠 = 𝑒
−𝑠 ¯𝐷𝐻𝑒

𝑠 = ¯𝐷𝐻 + Υ(−𝑠) ¯𝐷𝐻𝑠 .

Since

𝐷 + ¯𝐷𝐻 = ∇𝐴𝐻 + 𝑖𝜙𝐻 ,

we have

𝔪(𝐻 ) = 1

2

𝑖Λ[𝐷, 𝐷̄𝐻 ] .

Therefore,

〈𝔪(𝐻𝑒𝑠) −𝔪(𝐻 ), 𝑠〉 = 𝑖Λ〈𝐷 (Υ(−𝑠)𝐷̄𝐻𝑠), 𝑠〉
= 𝑖Λ𝜕〈Υ(−𝑠)𝐷̄𝐻𝑠, 𝑠〉 + 𝑖Λ〈Υ(−𝑠)𝐷̄𝐻𝑠 ∧ 𝐷̄𝐻𝑠〉
= 𝜕∗〈𝐷̄𝐻𝑠, Υ(𝑠)𝑠〉 + |𝜐 (−𝑠)𝐷̄𝐻𝑠 |2

=
1

2

𝜕∗𝜕 |𝑠 |2 + |𝜐 (−𝑠) ¯𝐷𝐻𝑠 |2

=
1

4

Δ|𝑠 |2 + 1

2

|𝜐 (−𝑠) (∇𝐻 + 𝑖 [𝜙, ·])𝑠 |2. �

Proof of Proposition 11.6. The �rst two estimates are elementary. To prove the last estimate we

argue as follows. Set

𝑎 ≔ ∇𝐴𝐻 − ∇𝐴k and
ˆ𝜉 ≔ 𝜉𝐻 − 𝜉k.

By (11.3) and since Π𝑟𝑠 lies in the kernel of𝔙, for some 𝛽 > 0

|𝔙𝑠𝑟 |2 . |∇𝐴𝐻 𝑠𝑟 |2 + |[𝜉𝐻 , 𝑠𝑟 ] |2 + 𝑟−2+2𝛽

. |∇𝐴
𝐻𝑒Π𝑟 𝑠 𝑠𝑟

|2 + |[𝜉𝐻𝑒Π𝑟 𝑠 , 𝑠𝑟 ] |2 + 𝑟−2+2𝛽 .
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Therefore, it su�ces to estimate |∇𝐴
𝐻𝑒Π𝑟 𝑠 𝑠𝑟

|2 + |[𝜉𝐻𝑒Π𝑟 𝑠 , 𝑠𝑟 ] |2.
Since 𝑠𝑟 is bounded, 𝜐 (𝑠𝑟 ) is bounded away from zero. Hence, by Proposition 11.7 with 𝐻𝑒Π𝑟 𝑠

instead of 𝐻 and 𝑠𝑟 instead of 𝑠 ,

|∇𝐴
𝐻𝑒Π𝑟 𝑠

𝑠𝑟 |2 + |[𝜙𝐻𝑒Π𝑟 , 𝑠𝑟 ] |2 . |𝔪(𝐻𝑒𝑠) | + |𝔪(𝐻𝑒Π𝑟 𝑠) | − Δ|𝑠𝑟 |2.

It follows from (11.3) that |𝔪(𝐻 ) | = 𝑂 (𝑟−2+𝛽 ). Moreover, since Π𝑟𝑠 lies in the kernel of 𝔙,

|𝔪(𝐻𝑒Π𝑟 𝑠) | = 𝑂 (𝑟−2+𝛽 ). Furthermore, 𝔪(𝐻𝑒𝑠) = 0, Putting all of the above together yields the

asserted estimate. �

11.3 Proof of Proposition 11.2

Set

𝑔(𝑟 ) ≔
ˆ
𝐵𝑟

|𝑥 |−1 |𝔙𝑠 |2

with |𝑥 | denoting the distance to the center of the ball 𝐵𝑟 . The upcoming three steps show that

𝑔(𝑟 ) . 𝑟 2𝛼 for some 𝛼 > 0. This implies the assertion.

Step 1. The function |𝑥 |−1 |𝔙𝑠 |2 is integrable; in particular: 𝑔 6 𝑐 .

Fix a smooth function 𝜒 : [0,∞) → [0, 1] which is equal to one on [0, 1] and vanishes

outside [0, 2]. Set 𝜒𝑟 (·) ≔ 𝜒 ( |·|/𝑟 ). Denote by 𝐺 the Green’s function of 𝐵 centered at 0. For

𝑟 > 𝜀 > 0, using Proposition 11.6, we haveˆ
𝐵𝑟 \𝐵𝜀

|𝑥 |−1 |𝔙𝑠 |2 .
ˆ
𝐵2𝑟 \𝐵𝜀/2

𝜒𝑟 (1 − 𝜒𝜀/2)𝐺 (𝑟−2+𝛽 − Δ|𝑠𝑟 |2)

. 𝑟 𝛽 + 𝑟−3
ˆ
𝐵2𝑟 \𝐵𝑟

|𝑠𝑟 |2 + 𝜀−3
ˆ
𝐵𝜀\𝐵𝜀/2

|𝑠𝑟 |2.

Since 𝑠 is bounded, the right-hand side is bounded independent of 𝜀. This proves the integrability

of |𝑥 |−1 |𝔙𝑠 |2 and the yields a bound on 𝑔.

Step 2. There are constants 𝛾 ∈ [0, 1) and 𝑐 > 0 such that

𝑔(𝑟 ) 6 𝛾𝑔(2𝑟 ) + 𝑐𝑟 𝛽 .

Continue the inequality from the previous step using the Neumann–Poicaré estimate (11.5)

as ˆ
𝐵𝑟 \𝐵𝜀

|𝑥 |−1 |𝔙𝑠 |2 . 𝑟 𝛽 + 𝑟−3
ˆ
𝐵2𝑟 \𝐵𝑟

|𝑠 − Π𝑟𝑠 |2 + 𝜀−3
ˆ
𝐵𝜀\𝐵𝜀/2

|𝑠 − Π𝑟𝑠 |2

. 𝑟 𝛽 + 𝑟−1
ˆ
𝐵2𝑟 \𝐵𝑟

|𝔙𝑠 |2 + 𝜀−1
ˆ
𝐵𝜀\𝐵𝜀/2

|𝔙𝑠 |2

. 𝑟 𝛽 + 𝑔(2𝑟 ) − 𝑔(𝑟 ) + 𝑔(𝜀) .

By Lebesgue’s monotone convergence theorem, the last term vanishes as 𝜀 tends to zero.

Therefore,

𝑔(𝑟 ) . 𝑔(2𝑟 ) − 𝑔(𝑟 ) + 𝑟 𝛽
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Step 3. For some 𝛼 > 0, 𝑔 . 𝑟 2𝛼 .

This follows from the preceding steps by an elementary argument; see, e.g., [JW19, Step 3 in

the proof of Proposition C.2]. �

A Sequences of Hecke modi�cations

This appendix discusses the extension of Theorem 5.10 to sequences of Hecke modi�cations. Let

Σ be a closed Riemann surface, let (E0, 𝜑0) be a Higgs bundle over Σ of rank 𝑟 , let 𝑧1, . . . , 𝑧𝑛 ∈ Σ,
and let k1, . . . , k𝑛 ∈ Z𝑟 satisfying (2.6).

De�nition A.1. A sequence of Hecke modi�cations of (E0, 𝜑0) at 𝑧1, . . . , 𝑧𝑛 of type k1, . . . , k𝑛
consists of a Hecke modi�cation

𝜂𝑖 : (E𝑖−1, 𝜑𝑖−1) |Σ\{𝑧𝑖 } � (E𝑖 , 𝜑𝑖) |Σ\{𝑧𝑖 }

at 𝑧𝑖 of type k𝑖 for every 𝑖 = 1, . . . , 𝑛. An isomorphism between two sequences of Hecke

modi�cation (E𝑖 , 𝜑𝑖 ;𝜂𝑖)𝑛𝑖=1 and ( ˜E𝑖 , 𝜑̃𝑖 ;𝜂𝑖)𝑛𝑖=1 consists of an isomorphism

𝜁𝑖 : (E𝑖 , 𝜑𝑖) → ( ˜E𝑖 , 𝜑̃𝑖)

of Higgs bundles such that

𝜁𝑖−1𝜂𝑖 = 𝜂𝑖𝜁𝑖

for every 𝑖 = 1, . . . , 𝑛 and with 𝜁0 ≔ idE0
. We denote by

MHecke(E0, 𝜑0; 𝑧1, . . . , 𝑧𝑛, k1, . . . , k𝑛)

the set of all isomorphism classes of sequences of Hecke modi�cations of (E0, 𝜑0) at 𝑧1, . . . , 𝑧𝑛
of type k1, . . . , k𝑛 . •

Denote by 𝐸0 the complex vector bundle underlyingE0. Henceforth, we assume that 𝐻0 is a

Hermitian metric on 𝐸0. Furthermore, �x

0 < 𝑦1 < 𝑦2 < · · · < 𝑦𝑛 < 1.

As in Proposition 4.1, there exists a Hermitian vector bundle (𝐸, 𝐻 ) over

𝑀 ≔ [0, 1] × Σ\{(𝑦1, 𝑧1), . . . , (𝑦𝑛, 𝑧𝑛)}

together with a framing Ψ𝑖 at (𝑦𝑖 , 𝑧𝑖) of type k𝑖 for every 𝑖 = 1, . . . , 𝑛. Any two choices of

(𝐸, 𝐻 ;Ψ1, . . . ,Ψ𝑛) are isomorphic. Throughout the remainder of this appendix, we �x one such

choice.

De�nition A.2. Denote by CEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛) the set of triples

𝐴 ∈ A(𝐸, 𝐻 ), 𝜙 ∈ Ω1(𝑀, 𝔲(𝐸, 𝐻 )), and 𝜉 ∈ Ω0(𝑀, 𝔲(𝐸, 𝐻 ))
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satisfying the extended Bogomolny equation (3.2), as well as

𝑖 (𝜕𝑦)𝜙 = 0,

and the boundary conditions

𝐴| {0}×Σ = 𝐴0, 𝜙 | {0}×Σ = 𝜙0, and 𝜉 | {1}×Σ = 0.

Denote by

G ⊂ G(𝐸, 𝐻 )
the subgroup of unitary gauge transformations of (𝐸, 𝐻 ) which are singularity preserving at

(𝑦1, 𝑧1), . . . , (𝑦𝑛, 𝑧𝑛) and restrict to the identity on {0} × Σ. Set

MEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛) ≔ CEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛)/G. •

Let (𝐴,𝜙, 𝜉) ∈ CEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛). Let

𝑦1 < 𝑚1 < 𝑦2 < 𝑚2 < . . . < 𝑦𝑛 < 𝑚𝑛 ≔ 1.

The scattering map construction from Section 5 restricted to [0,𝑚1] ×Σ yields a Hecke modi�ca-

tion (E1, 𝜑1;𝜂1) of (E0, 𝜑0) at 𝑧1 of type k1. Similarly, we obtain a Hecke modi�cation (E𝑖 , 𝜑𝑖 ;𝜂1)
of (E𝑖−1, 𝜑𝑖−1) at 𝑧𝑖 of type k𝑖 for every 𝑖 = 1, . . . , 𝑛. A di�erent choice of 𝑚̃𝑖 ∈ (𝑦𝑖 , 𝑦𝑖+1) may yield

a di�erent Hecke modi�cation ( ˜E𝑖 , 𝜑̃𝑖 ;𝜂𝑖). However, these Hecke modi�cations are isomorphic

via the scattering map from𝑚𝑖 to 𝑚̃𝑖 . Therefore, we obtain a map

CEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛) → MHecke(E0, 𝜑0; 𝑧1, . . . , 𝑧𝑛, k1, . . . , k𝑛).

This map isG–invariant. We have the following extension of Theorem 5.10.

Theorem A.3. The map

MEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛) → MHecke(E0, 𝜑0; 𝑧1, . . . , 𝑧𝑛, k1, . . . , k𝑛)

induced by the scattering map construction is a bijection.

Proof. The proof is essentially the same as that of Theorem 5.10. The notion of parametrized

Hecke modi�cations can be extended to parametrized sequences of Hecke modi�cations yielding

a moduli space M
�
Hecke(E0, 𝜑0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛). As in the proof of Proposition 6.2,

one shows that the scattering map yields a bijection

M
�
Hecke(E0, 𝜑0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛) → MHecke(E0, 𝜑0; 𝑧1, . . . , 𝑧𝑛, k1, . . . , k𝑛) .

Finally, the arguments from Section 7, Section 8, Section 9, Section 10, and Section 11 show that

the obvious map

MEBE(𝐴0, 𝜙0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛) → M
�
Hecke(E0, 𝜑0;𝑦1, 𝑧1, . . . , 𝑦𝑛, 𝑧𝑛, k1, . . . , k𝑛)

is a bijection. �

Remark A.4. If 𝜑 = 0, then the above reduces to the notion of a sequence of Hecke modi�cations

of a holomorphic vector bundle; see, e.g., [Won13, Section 1.5.1; Boo18, Section 2.4]. ♣
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