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Abstract

We give a simple direct proof of uniqueness of tangent cones for singular projectively Hermi-

tian Yang–Mills connections on re�exive sheaves at isolated singularities modelled on a sum

of µ–stable holomorphic bundles over Pn−1
.

1 Introduction

A projectively Hermitian Yang–Mills (PHYM) connectionA over a Kähler manifoldX is a unitary

connection A on a Hermitian vector bundle (E,H ) over X satisfying

(1.1) F
0,2
A = 0 and iΛFA −

tr(iΛFA)

rkE
· idE = 0.

Since F
0,2
A = 0, E B (E, ¯∂A) is a holomorphic vector bundle, and A is the Chern connection of H .

A Hermitian metric H on a holomorphic vector bundle is called PHYM if its Chern connection

AH is PHYM. The celebrated Donaldson–Uhlenbeck–Yau Theorem [Don85; Don87; UY86] asserts

that a holomorphic vector bundle E on a compact Kähler manifold admits a PHYM metric if and

only if it is µ–polystable; moreover, any two PHYM metrics are related by an automorphism of

E and by multiplication with a conformal factor. If H is a PHYM metric, then the connection

A◦ on PU(E,H ), the principal PU(r )–bundle associated with (E,H ), induced by AH is Hermitian
Yang–Mills (HYM), that is, it satis�es F

0,2
A◦ = 0 and iΛFA◦ = 0; it depends only on the conformal

class of H . Conversely, any HYM connection A◦ on PU(E,H ) can be lifted to a PHYM connection

A; any two choices of lifts lead to isomorphic holomorphic vector bundlesE and conformal metrics

H .

An admissible PHYM connection is a PHYM connectionA on a Hermitian vector bundle (E,H )
over X\sing(A) with sing(A) a closed subset with locally �nite (2n − 4)–dimensional Hausdor�

measure and FA ∈ L
2

loc
(X ).1 Bando [Ban91] proved that if A is an admissible PHYM connection,

1It should be pointed out that our notion of admissible PHYM connection follows Bando and Siu [BS94] and not

Tian [Tia00]. The notion of admissible Yang–Mills connection introduced by Tian is stronger: it assumes that the

Hermitian vector bundle extends to all of X .
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then (E, ¯∂A) extends to X as a re�exive sheaf E with sing(E) ⊂ sing(A). Bando and Siu [BS94]

proved that a re�exive sheaf on a compact Kähler manifold admits an admissible PHYM metric if

and only if it is µ–polystable.

The technique used by Bando and Siu does not yield any information on the behaviour of

the admissible PHYM connection AH near the singularities of the re�exive sheaf E—not even at

isolated singularities. The simplest example of a re�exive sheaf on Cn
with an isolated singularity

at 0 is i∗σ
∗F with F a holomorphic vector bundle over Pn−1

; cf. Hartshorne [Har80, Example

1.9.1]. Here we use the obvious maps summarised in the following diagram:

Cn Cn\{0} S2n−1 Pn−1.
i π

σ

ρ

The main result of this article gives a description of PHYM connections near singularities modelled

on i∗σ
∗F with F a sum of µ–stable holomorphic vector bundles.

Theorem 1.2. Let ω = 1

2i
¯∂∂ |z |2 +O(|z |2) be a Kähler form on B̄R(0) ⊂ Cn . Let A be an admissible

PHYM connection on a Hermitian vector bundle (E,H ) over BR(0)\{0} with sing(A) = {0} and
(E, ¯∂A) � σ ∗F for some holomorphic vector bundle F over Pn−1. Denote by F the complex vector
bundle underlyingF.

IfF is a sum of µ–stable holomorphic vector bundles, then there exist a Hermitian metric K on
F , a connection A∗ on σ ∗(F ,K) which is the pullback of a connection on ρ∗(F ,K), and an isometry
(E,H ) � σ ∗(F ,K) such that with respect to this isometry we have

|z |k+1 |∇kA∗(A
◦ −A◦∗)| 6 Ck |z |

α for each k > 0.

The constants Ck ,α > 0 depend on ω,F, A|BR (0)\BR/2(0), and ‖FA‖L2(BR (0)).

Remark 1.3. Using a gauge theoretic Łojasiewicz–Simon gradient inequality, Yang [Yan03, Theorem

1] proved that the tangent cone to a stationary Yang–Mills connection—in particular, a PU(r ) HYM

connection—with an isolated singularity at x is unique provided

|FA | . d(x, ·)
−2.

In our situation, such a curvature bound can be obtained from Theorem 1.2. Our proof of this

result, however, proceeds more directly—without making use of Yang’s theorem.

The hypothesis that F be a sum of µ–stable holomorphic vector bundles is optimal. This is a

consequence of the following observation, which will be proved in Section 6.

Proposition 1.4. Let (F ,K) be a Hermitian vector bundle over Pn−1. If B is a unitary connection on
ρ∗(F ,K) such that A∗ B π ∗B is HYM with respect to ω0 B

1

2i
¯∂∂ |z |2, then there is a k ∈ N and, for

each j ∈ {1, . . . ,k}, there are µ j ∈ R, a Hermitian vector bundle (Fj ,Kj ) on Pn−1, and an irreducible
unitary connection Bj on Fj satisfying

F
0,2
Bj
= 0 and iΛFBj = (2n − 2)πµ j · idFj
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such that

F =
k⊕
j=1

Fj and B =
k⊕
j=1

ρ∗Bj + iµ j idρ∗Fj · θ .

Here θ denotes the standard contact structure2 on S2n−1. In particular,

E = (σ ∗F , ¯∂A∗) �
k⊕
j=1

σ ∗Fj

with Fj = (Fj , ¯∂Bj ) µ–stable.

To conclude the introduction we discuss two concrete examples in which Theorem 1.2 can be

applied.

Example 1.5 (Okonek, Schneider, and Spindler [OSS11, Example 1.1.13]). It follows from the Euler

sequence thatH 0(TP3(−1)) � C4
. Denote by sv ∈ H

0(TP3(−1)) the section corresponding tov ∈ C4
.

If v , 0, then the rank two sheaf E =Ev de�ned by

0→ OP3

sv
−−→ TP3(−1) →Ev → 0

is re�exive and sing(E) = {[v]}.
E is µ–stable. To see this, because µ(E) = 1/2, it su�ces to show that

Hom(OP3(k),E) = H 0(E(−k)) = 0 for each k > 1.

However, by inspection of the Euler sequence, H 0(E(−k)) � H 0(TP3(−k − 1)) = 0. It follows that

E admits a PHYM metric H with FH ∈ L2
and a unique singular point at [v] ∈ P3

. To see that

Theorem 1.2 applies, pick a standard a�ne neighborhood U � C3
in which [v] corresponds to 0.

In U , the Euler sequence becomes

0→ OC3

(1,z1,z2,z3)
−−−−−−−−→ O⊕4

C3
→ TP3(−1)|U → 0,

and sv = [(1, 0, 0, 0)]; hence,

0→ OC3

(z1,z2,z3)
−−−−−−−→ O⊕3

C3
→Ev |U → 0.

On C3\{0}, this is the pullback of the Euler sequence on P2
; therefore, Ev |U � i∗σ

∗TP2 .

2With respect to standard coordinates on Cn , the standard contact structure θ on S2n−1
is such that π∗θ =∑n

j=1
(z̄jdzj − zjdz̄j )/2i |z |

2
.
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Example 1.6. For t ∈ C, de�ne ft : OP3(−2)⊕2 → OP3(−1)⊕5
by

ft B

©­­­­­«
z0 0

z1 z0

z2 z1

t · z3 z2

0 z3

ª®®®®®¬
,

and denote by Et the cokernel of ft , i.e.,

(1.7) 0→ OP3(−2)⊕2
ft
−→ OP3(−1)⊕5 →Et → 0.

If t , 0, then Et is locally free; E0 is re�exive with sing(E0) = {[0 : 0 : 0 : 1]}. The proof of this is

analogous to that of the re�exivity of Ev from Example 1.5 given in [OSS11, Example 1.1.13].

For each t , H 0(Et ) = H 0(E∗t (−1)) = 0; hence, Et is µ–stable according to the criterion of

Okonek, Schneider, and Spindler [OSS11, Remark 1.2.6(b)]. The former vanishing is obvious since

H 0(OP3(−1)) = H 1(OP3(−2)) = 0. The latter follows by dualising (1.7), twisting by OP3(−1) and

observing that the induced map H 0(f ∗
0
) : H 0(OP3)⊕5 → H 0(OP3(1))⊕2

, which is given by(
z0 z1 z2 t · z3 0

0 z0 z1 z2 z3

)
,

is injective.

In a standard a�ne neighborhood U � C3
of [0 : 0 : 0 : 1], we have E0 |U � i∗σ

∗(TP2 ⊕ OP2(1)).

To see this, note that the cokernel of the map д : O⊕2

P2
→ OP2(1)⊕4 ⊕ OP2 de�ned by

д B

©­­­­­«
z0 0

z1 z0

z2 z1

0 z2

0 1

ª®®®®®¬
is TP2 ⊕ OP2(1).

Conventions and notation. Set Br B Br (0) and ÛBr B Br (0)\{0}. We denote by c > 0 a generic

constant, which depends only on F, ω, s |B1\B1/2
, H�, and ‖FH ‖L2(BR (0)) (which will be introduced

in the next section). Its value might change from one occurrence to the next. Should c depend

on further data we indicate this by a subscript. We write x . y for x 6 cy. The expression O(x)
denotes a quantity y with |y | . x . Since re�exive sheaves are locally free away from a closed

subset of complex codimension three, without loss of generality, we will assume throughout that

n > 3.
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2 Reduction to the metric setting

In the situation of Theorem 1.2, the Hermitian metric H on E corresponds to a PHYM metric on

σ ∗F via the isomorphism (E, ¯∂A) � σ ∗F. By slight abuse of notation, we will denote this metric

by H as well.

Denote by F1, . . . ,Fk the µ–stable summands of F. Denote by Kj the PHYM metric on Fj
with

iΛωFS FKj =
2π

(n − 2)!vol(Pn−1)
µ j · idFj = (2n − 2)πµ j · idFj

with ωFS denoting the integral Fubini study form and for µ j B µ(Fj ). The Kähler form ω0

associated with the standard Kähler metric on Cn
can be written as

(2.1) ω0 =
1

2i
¯∂∂ |z |2 = πr 2σ ∗ωFS + rdr ∧ π ∗θ

with θ as in Proposition 1.4. Therefore, we have

iΛω0
Fσ ∗Kj = (2n − 2)µ jr

−2 · idσ ∗Fj ,

and H�, j B r 2µ j · σ ∗Kj satis�es

iΛω0
FH�, j = iΛω0

Fσ ∗Kj + iΛω0

¯∂∂ log r 2µ j · idσ ∗Fj

= iΛω0
Fσ ∗Kj +

1

2

∆ log r 2µ j · idσ ∗Fj = 0.

Denote by A�, j the Chern connection associated with H�, j and by Bj the Chern connection

associated with Kj . The isometry r µ j : (σ ∗Fj ,H�, j ) → σ ∗(Fj ,Kj ) transforms A�, j into

A∗, j B (r
µ j )∗A�, j = σ

∗Bj + iµ j idσ ∗Fj · π
∗θ .

In particular,

A∗ B
k⊕
j=1

A∗, j

is the pullback of a connection B on S2n−1
. Moreover, A∗ is unitary with respect to

H∗ B
k⊕
j=1

σ ∗Kj .
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Proposition 2.2. Assume the above situation. Set H� B
⊕k

j=1
H�, j and �x R > 0. We have

(2.3)



|z |2+`∇`H�FH�

L∞(BR ) < ∞ for each ` > 0.

Proof. Using the isometry д B
⊕k

j=1
r µ j both assertions can be translated to corresponding

statements for A∗. The �rst assertion then follows since A∗ is the pullback of a connection B on

S2n−1
. �

In the situation of Theorem 1.2, after a conformal change, which does not a�ect A◦, we can

assume that detH = detH�. Setting

s B log(H−1

� H ) ∈ C∞( ÛBr , isu(σ
∗F ,H�))3

and ϒ(s) B
eads − 1

ads
,

we have

es/2∗ H = H� and es/2∗ A = A� + a

with a B
1

2

ϒ(−s/2)∂A�s −
1

2

ϒ(s/2) ¯∂A�s;

see, e.g., [JW18, Appendix A]. Moreover, with д B
⊕k

j=1
r µ j we have

д∗e
s/2
∗ A = A∗ + дaд

−1.

Since

|∇kA∗дaд
−1 |H∗ = |∇

k
H�a |H� for each k > 0,

Theorem 1.2 will be a consequence of Proposition 2.2 and the following result.

Theorem 2.4. Suppose ω = 1

2i
¯∂∂ |z |2 + O(|z |2) is a Kähler form on B̄R ⊂ Cn , E is a holomorphic

vector bundle over ÛBR , and H� is a Hermitian metric on E which is HYM with respect to ω0 and
satis�es (2.3). If H is an admissible HYM metric onE with sing(AH ) = {0} and detH = detH�, then

s B log(H−1

� H ) ∈ C∞( ÛBR, isu(π
∗F ,H�))

satis�es
|s | 6 C0 and |z |k |∇kH�s | 6 Ck |z |

α for each k > 1.

The constants Ck ,α > 0 depend on ω, H�, s |BR\BR/2 , and ‖FH ‖L2(BR ).

The next three sections of this paper are devoted to proving Theorem 2.4. Without loss of

generality, we will assume that the radius R is one. We set B B B1 and ÛB B ÛB1.

3If H ,K are two Hermitian inner products on a complex vector space V , then there is a unique endomorphism

T ∈ End(V ) which is self-adjoint with respect to H and K , has positive spectrum, and satis�es H (Tv,w) = K(v,w). It is

customary to denote T by H−1K , and thus log(H−1K) = log(T ).
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3 A priori C0 estimate

As a �rst step towards proving Theorem 2.4 we bound |s |, using an argument which is essentially

contained in Bando and Siu [BS94, Theorem 2(a) and (b)].

Proposition 3.1. We have |s | ∈ L∞(B) and ‖s‖L∞(B) 6 c .

Proof. The proof relies on the di�erential inequality

(3.2) ∆ log trH−1

0
H1 . |KH1

− KH0
|

for Hermitian metrics H0 and H1 with detH0 = detH1, and with

KH B iΛFH −
tr(iΛFH )

rkE
· idE ;

see [Siu87, p. 13] for a proof.

Step 1. We have log tr es ∈W 1,2(B) and ‖log tr es ‖W 1,2(B) 6 c .

Choose 1 6 i < j 6 n and de�ne the projection π : B → Cn−2
by

π (z) B (z1, . . . , ẑi , . . . ẑj , . . . , zn).

For ζ ∈ Cn−2
, denote by ∇ζ and ∆ζ the derivative and the Laplacian on the slice π−1(ζ ) respectively.

Set fζ B log tr es |π−1(ζ ). Applying (3.2) to H |π−1(ζ ) and H� |π−1(ζ ) we obtain

∆ζ fζ . |FH | + |FH� |.

Fix χ ∈ C∞(C2
; [0, 1]) such that χ (η) = 1 for |η | 6 1/2 and χ (η) = 0 for |η | > 1/

√
2. For

0 < |ζ | 6 1/
√

2 and ε > 0, we haveˆ
π−1(ζ )

|∇ζ (χ fζ )|
2 .

ˆ
π−1(ζ )

χ 2 fζ (|FH | + |FH� |) + 1

6 ε

ˆ
π−1(ζ )

|χ fζ |
2 + ε−1

ˆ
π−1(ζ )

|FH |
2 + |FH� |

2 + 1.

Using the Dirichlet–Poincaré inequality and rearranging, we obtainˆ
π−1(ζ )

|χ fζ |
2 + |∇ζ (χ fζ )|

2 .

ˆ
π−1(ζ )

|FH |
2 + |FH� |

2 + 1.

Integrating over 0 < |ζ | 6 1/
√

2 yieldsˆ
B
|log tr es |2 + |∇′ log tr es |2 .

ˆ
B
|FH |

2 + |FH� |
2 + 1

with ∇′ denoting the derivative along the �bres of π . Using (2.3) and n > 3, FH� ∈ L
2(B). Since the

choice of i, j de�ning π was arbitrary, the asserted inequality follows.
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Step 2. The di�erential inequality
∆ log tr es . |KH� |

holds on B in the sense of distributions.

Fix a smooth function χ : [0,∞) → [0, 1]which vanishes on [0, 1] and is equal to one on [2,∞).

Set χε B χ (|·|/ε). By (3.2), for ϕ ∈ C∞
0
(B), we have

ˆ
B
∆ϕ · log tr es = lim

ε→0

ˆ
B
χε · ∆ϕ · log tr es

.

ˆ
B
ϕ · |KH� | + lim

ε→0

ˆ
B
ϕ · (∆χε · log tr es − 2〈∇χε ,∇ log tr es 〉) .

Since n > 3, we have ‖χε ‖W 2,2(B) . ε2
. Because log tr es ∈ W 1,2(B) this shows that the limit

vanishes.

Step 3. We have log tr es ∈ L∞(B) and ‖log tr es ‖L∞(B) 6 c .

Since tr s = 0, we have |s | 6 rk(E) · log tr es ; in particular, log tr es is non-negative. By

hypothesis KH = 0. Since H� is HYM with respect to ω0 and |FH� | . |z |
−2

by hypothesis (2.3), we

have |KH� | 6 c . The asserted inequality thus follows from Step 2 via Moser iteration; see [GT01,

Theorem 8.1]. �

4 A priori Morrey estimates

The following decay estimate is the crucial ingredient of the proof of Theorem 2.4.

Proposition 4.1. There is a constant α > 0, such that for r ∈ [0, 1] we have
ˆ
Br
|∇H�s |

2 . r 2n−2+2α .

The proof of this proposition relies on a Neumann–Poincaré type inequality, which we describe

in what follows. Denote by ∇T ,r the connection on isu(E,H�)|∂Br induced by ∇H� . The linear

operator ∇T ,r : Γ(∂Br , isu(E,H�) → Ω1(∂Br , isu(E,H�) has a �nite dimensional kernel. Since ∇H�
is conical, we can identify4

ker∇T ,r = ker∇T ,1 C K .

Moreover, we can regard K as a subset of constant sections: K ⊂ Γ( ÛBr , isu(E,H�)). Denote by

πr : Γ(∂Br , isu(E,H�)) → K theL2
–orthogonal projection ontoK and de�neΠr : Γ( ÛB2r , isu(E,H�)) →

K by

Πrs B
1

r

ˆ
2r

r
πt (s |∂Bt ) dt .

4K can be determined explicitly from the from the decomposition of F into µ–stable summands, but we will not

need a precise description of K .
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Proposition 4.2. We have
ˆ
B2r \Br

|s − Πrs |
2 . r 2

ˆ
B2r \Br

|∇H�s |
2.

Proof. The asserted estimate is scale-invariant; hence, we may assume r = 1/2. To prove the

estimate in this case it su�ces to prove the cylindrical estimate

ˆ
1

1/2

ˆ
∂B
|s(t, x̂) − Πs(t, ·)|2 dx̂dt .

ˆ
1

1/2

ˆ
∂B
|∂ts(t, x̂)|

2 + |∇T s(t, x̂)|
2

dx̂dt

with s denoting a section over [1/2, 1] × ∂B, π B π1, Πs B 2

´
1

1/2
πs(t, ·) dt , and ∇T B ∇T ,1.

We compute

ˆ
1

1/2

ˆ
∂B
|s(t, x̂) − Πs(t, ·)|2dx̂dt

= 4

ˆ
1

1/2

ˆ
∂B

����ˆ 1

1/2

s(t, x̂) − πs(u, ·) du

����2 dx̂dt

.

ˆ
1

1/2

ˆ
1

1/2

ˆ
∂B
|s(t, x̂) − πs(u, ·)|2 dx̂dudt

.

ˆ
1

1/2

ˆ
1

1/2

ˆ
∂B
|s(t, x̂) − πs(t, ·)|2 + |πs(t, ·) − πs(u, ·)|2 dx̂dudt .

The �rst summand can be bounded as follows

ˆ
1

1/2

ˆ
1

1/2

ˆ
∂B
|s(t, x̂) − πs(t, ·)|2 dx̂dtdu .

ˆ
1

1/2

ˆ
1

1/2

ˆ
∂B
|∇T s(t, x̂)|

2

dx̂dtdu

.

ˆ
1

1/2

ˆ
∂B
|∇T s(t, x̂)|

2

dx̂dt .

The second summand can be controlled as in the usual proof of the Neumann–Poincaré inequality.

We have

|πs(t, ·) − πs(u, ·)| =

����ˆ 1

0

∂vπs(t +v(t − u), ·) dv

����
6

����ˆ 1

0

π (∂ts)(t +v(t − u), ·) dv

����
.

(ˆ
1

0

ˆ
∂B
|(∂ts)(t +v(t − u), x̂)|

2
dx̂dv

)1/2

.
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Plugging this into the second summand and symmetry considerations yield

ˆ
1

1/2

ˆ
1

1/2

ˆ
∂B
|πs(t, ·) − πs(u, ·)|2 dx̂dudt

.

ˆ
1

1/2

ˆ
1

1/2

ˆ
1

0

ˆ
∂B
|(∂ts)(t +v(t − u), x̂)|

2
dx̂dvdudt

.

ˆ
1

1/2

ˆ
∂B
|∂ts(t, x̂)|

2
dx̂dt .

This �nishes the proof. �

The proof of Proposition 4.1 also uses the following observation about

ŝr B log

(
e−Πr ses

)
.

By construction, the section ŝr is self-adjoint with respect to H�e
s

as well as H�e
Πr s

, and

H�e
s =

(
H�e

Πr s
)
e ŝr .

Proposition 4.3. The section ŝr satis�es

|∇H�s | . |∇H�ŝr |, |ŝr | . |s − Πrs |, and |∇H�ŝr |
2 . 1 − ∆|ŝr |

2.

Proof. The �rst two inequalities follow by elementary considerations.

Since s is bounded in L∞(B), Πrs is uniformly bounded and, consequently, so is ŝr . By [JW18,

Proposition A.9], we have

∆|ŝr |
2 + 2|υ(−ŝr )∇H�eΠr s ŝr |

2 . |KH�es | + |KH�eΠr s |

with

υ(−ŝr ) =

√
1 − e− adŝr

adŝr
∈ End(gl(E)).

H�e
s

is HYM; that is: KH�es = 0 Since Πrs is constant with respect to ∇H� , we have

KH�eΠr sr = iΛ
¯∂(eΠr s∂H�e

−Πr s ) = Ad(eΠr s )KH�,

which is bounded. Moreover, ∇H� and ∇H�eΠr s di�er by a bounded algebraic operator. Given this,

the third inequality follows using √
1 − e−x

x
&

1√
1 + |x |

,

‖KH� ‖L∞ 6 c , which is a consequence of (2.3), and the fact that H� is HYM with respect to ω0, and

the bound on |s | established in Proposition 3.1. �
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Proof of Proposition 4.1. Given the above discussion, the proof is very similar to that of [JW18,

Proposition C.2]. Nevertheless, for the reader’s convenience we provide the necessary details.

De�ne д : [0, 1/2] → [0,∞] by

д(r ) B

ˆ
Br
|z |2−2n |∇H�s |

2.

We will show that

д(r ) 6 cr 2α ,

which implies the asserted inequality.

Step 1. We have д 6 c .

Fix a smooth function χ : [0,∞) → [0, 1] which is equal to one on [0, 1] and vanishes outside

[0, 2]. Set χr (·) B χ (|·|/r ). For r > ε > 0, using Proposition 4.3 and Proposition 3.1, and with G
denoting Green’s function on B centered at 0, we have

ˆ
Br \Bε

|z |2−2n |∇H�s |
2 .

ˆ
Br \Bε

|z |2−2n |∇H�ŝr |
2

.

ˆ
B2r \Bε/2

χr (1 − χε/2)G(1 − ∆|ŝr |
2)

.

ˆ
B2r \Br

|z |−2n |s − Πrs |
2 + r 2 + ε−2n

ˆ
Bε \Bε/2

|s − Πrs |
2

6 c .

Step 2. There are constants γ ∈ [0, 1) and A > 0 such that

д(r ) 6 γд(2r ) +Ar 2.

Continuing the inequality from Step 1 using Proposition 4.2, we have

ˆ
Br \Bε

|z |2−2n |∇H�s |
2 .

ˆ
B2r \Br

|z |2−2n |∇H�s |
2 + r 2 + ε2−2n

ˆ
Bε \Bε/2

|∇H�s |
2

. д(2r ) − д(r ) + r 2 + д(ε).

By Lebesgue’s monotone convergence theorem, the last term vanishes as ε tends to zero; hence,

the asserted inequality follows with γ = c
c+1

and A = c .

Step 3. We have д 6 cr 2α for some α ∈ (0, 1).

This follows from Step 1 and Step 2 and as in [JW18, Step 3 in the proof of Proposition C.2]. �
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5 Proof of Theorem 2.4

For r > 0, de�nemr : Cn → Cn
bymr (z) B rz. Set

sr Bm∗r (s |B4r \Br /2) ∈ C
∞(B4\B1/2, isu(E,H∗)) and H�,r Bm∗rH�.

The metric H�,re
sr

is HYM with respect to ωr B r−2m∗rω and ‖FH�,r ‖Ck (B4\B1/2)
6 ck .

Proposition 3.1, (2.3) and interior estimates for HYM metrics [JW18, Theorem C.1] imply that

‖sr ‖Ck (B3\B3/4)
6 ck .

By Proposition 4.1, we have

‖∇H�,r sr ‖L2(B4\B1/2)
. rα .

Schematically, KH�,r esr = 0 can be written as

∇∗H�,r∇H�,r sr + B(∇H�,r s ⊗ ∇H�,r sr ) = C(KH�,r ),

where B andC are linear with coe�cients depending on s , but not on its derivatives; see, e.g., [JW18,

Proposition A.1]. Since ‖KH�,r ‖Ck (B3\B3/4)
6 ckr

2
, as in [JW18, Step 3 in the proof of Proposition

5.1], standard interior estimates imply that

‖∇kH�,r sr ‖L2(B2\B1) 6 ckr
α

and, hence, the asserted inequalities, for each k > 1. (The asserted inequality for k = 0 has already

be proven in Proposition 3.1.) �

6 Proof of Proposition 1.4

We will make use of the following general fact about connections over manifolds with free S1
–

actions.

Proposition 6.1. LetM be a manifold with a free S1–action. Denote the associated Killing �eld by
ξ ∈ Vect(M) and let q : M → M/S1 be the canonical projection. Suppose θ ∈ Ω1(M) is such that
θ (ξ ) = 1 and Lξθ = 0. Let A be a unitary connection on a Hermitian vector bundle (E,H ) overM . If
i(ξ )FA = 0, then there is a k ∈ N and, for each j ∈ {1, . . . ,k}, a Hermitian vector bundles (Fj ,Kj )

overM/S1 such that

E =
k⊕
j=1

Ej and H =
k⊕
j=1

Hj

with Ej B q∗Fj and Hj B q∗Kj ; moreover, the bundles Ej are parallel and, for each j ∈ {1, . . . ,k},
there are a unitary connection Bj on Fj and µ j ∈ R such that

A =
k⊕
j=1

q∗Bj + iµ j idEj · θ .

12



Proof. Denote by
˜ξ ∈ Vect(U(E)) the A–horizontal lift of ξ . This vector �eld integrates to an

R–action on U(E). Thinking of A as an u(r )–valued 1–form on U(E) and FA as an u(r )–valued

2–form on U(E), we have

L ˜ξA = i(
˜ξ )FA = 0;

hence, A is invariant with respect to the R–action on U(E).
The obstruction to the R–action on U (E) inducing an S1

–action is the action of 1 ∈ R and

corresponds to a gauge transformation gA ∈ G(U(E)) �xing A. If this obstruction vanishes, i.e.,

gA = idU(E), then E � q∗F with F = E/S1
and there is a connection A0 on F such that A = q∗A0.

If the obstruction does not vanish, we can decompose E into pairwise orthogonal parallel

subbundles Ej such that gA acts on Ej as multiplication with ei µ j for some µ j ∈ R. Set Ã B

A −
⊕k

j=1
iµ j idEj · θ . This connection also satis�es i( ˜ξ )FÃ = 0 ∈ Ω1(M, gE ) and the subbundles Ej

are also parallel with respect to Ej . Since gÃ = idE , the assertion follows. �

In the situation of Proposition 1.4, with ξ ∈ S2n−1
denoting the Killing �eld for the S1

–action

we have i(ξ )FA0
= 0; c.f., Tian [Tia00, discussion after Conjecture 2]. Therefore, we can write

A∗ =
k⊕
j=1

σ ∗Bj + iµ j idEj · π
∗θ .

Since dθ = 2πρ∗ωFS , we have

FA∗ =

k⊕
j=1

σ ∗FBj + 2πiµ j idEj · σ
∗ωFS .

Using (2.1), A∗ being HYM with respect to ω0 can be seen to be equivalent to

F
0,2
Bj
= 0 and iΛFBj = (2n − 2)πµ j · idEj .

The isomorphism E = (E, ¯∂A∗) �
⊕k

j=1
ρ∗Fj with Fj = (Fj , ¯∂Bj ) is given by д−1

with д B⊕k
j=1

r µ j . �
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