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Abstract

In this article we introduce a method to construct G,—instantons on G;—manifolds arising
from Joyce’s generalised Kummer construction [Joyg6a; Joyg6b]. The method is based on
gluing ASD instantons over ALE spaces to flat bundles on G,-orbifolds of the form T7/T. We
use this construction to produce non-trivial examples of G;—instantons.

Changes to the published version This is a revision of the article [Wali3a], which has been
published in Geometry & Topology, volume 17, issue 4, in 2013. It corrects a few minor issues
and includes some additional material. Dominic Joyce pointed out to me in my PhD viva that
parts of the beginning of the discussion in Section 6 in [Wal13a] were not quite phrased correctly.
This is rectified in the current version; in particular, Definition 6.3 of the notion of gluing data
has been clarified. This version includes Theorem 1.6, which was already contained in my PhD
thesis [Wali3b, Theorem 2.4]. This theorem provides a first small step towards understanding
when Theorem 1.1 gives a complete description of all G,—instantons on certain topologically simple
bundles.

1 Introduction

The seminal paper [DT98] of Donaldson-Thomas has inspired a considerable amount of work
related to gauge theory in higher dimensions. Tian [Tiaoo] and Tao-Tian [TTo4] made significant
progress on important foundational analytical questions. Recent work of Donaldson-Segal [DS11]
and Haydys [Hay12] shed some light on the shape of the theories to be expected.

In this article we will focus on the study of gauge theory on G;—manifolds. These are 7-
manifolds equipped with a torsion-free G,—structure. The G,-structure allows us to define a
special class of connections, called G,-instantons (see Definition 3.1). These share many formal
properties with flat connections on 3—-manifolds and it is expected that there are G,—analogues
of those 3-manifold invariants that are related to “counting flat connections”, that is, the Casson
invariant, instanton Floer homology, etc.

So far non-trivial examples of G,—-instantons are rather rare. By exploiting the special geometry
of the known G;—manifolds some progress has been made recently. At the time of writing, there are



essentially two methods for constructing compact Gz—manifolds in the literature. Both yield G,-
manifolds close to degenerate limits. One is Kovalev’s twisted connected sum construction [Kovos],
which produces G;—manifolds with “long necks” from certain pairs of Calabi-Yau 3-folds with
asymptotically cylindrical ends. A technique for constructing G,-instantons on Kovalev’s G-
manifolds has recently been proposed by Sa Earp [Sa 15; Sa 11]. The other (and historically the
first) method for constructing G,—manifolds is due to Joyce [Joyg6a; Joyg6b] and is based on
desingularising G,—orbifolds. In this article we introduce a method to construct G,-instantons on
G;—-manifolds arising from Joyce’s construction.

To set up the framework for our construction, let us briefly review the geometry of Joyce’s
construction: Equip T7 with a flat G,-structure ¢ and let I be a finite group of diffeomorphisms of
T7 preserving ¢o. Then Y, := T7/T is a flat G,—orbifold. The singular set S of Y; can, in general, be
quite complicated. In this article we restrict to admissible G,—orbifolds Y. That is, we assume that
each of the connected components S; of S has a neighbourhood modelled on (T® X C?/G;)/H;. Here
G; is a non-trivial finite subgroup of SU(2) and H; is a finite group acting by isometries on T as well
as on C?/G;. Suppose we are given resolution datar = {(Xj, pj)} for Yy, that is, for each j, an ALE
space X; asymptotic to C*/G; together with an isometric action p; of H; on X; which is asymptotic
to the action of H; on C?/G;. Then using Joyce’s generalised Kummer construction [Joy9g6a;
Joyg6b] we can resolve the singularities in Yy and produce a compact 7-manifold Y together with
a family of torsion-free Gy—structures (¢:), ¢, )-

In this article we will construct G,-instantons over (Y, ¢;) given gluing data g compatible with
the resolution data r for Y;. The notion of gluing data will be defined carefully in Section 6. For
now, it suffices to say that g consists of

« a G-bundle E, over Y; together with a flat connection 6 and
« for each j, a G-bundle E; over X; together with a framed ASD instanton A;

as well as various auxiliary data satisfying a number of compatibility conditions. Here we take G
to be a compact connected semi-simple Lie group, for example, G = SO(3).

Theorem 1.1. Let Yy be an admissible flat Go—orbifold, let r be resolution data for Yy and let g be
compatible gluing data. Suppose that the flat connection 6 is acyclic and that the ASD instantons
Aj are infinitesimally rigid. Then there is a constant T" € (0, T] and a G-bundle E over Y as well as
foreacht € (0,T’) a connection A; on E that is an acyclic G,—instanton over (Y, ¢;). Moreover, the
adjoint bundle g associated with E satisfies

. 1
(12) p1(9E) = _;kj PD[S;] withk; = Az /x |Fa, |,

J

(13) and  (wz(sg). 2) = (w2(9,), )

for each > € Hy(X;)Hi < Hy(Y). Here [S;] € Hs(Y, Q) is the rational homology class arising from S;
and Hz(Xj)Hf denotes the H;—invariant part of Hy(X;); see Remark 4.11.



Remark 1.4. We will specify in Definition 3.11 and Definition 5.19, respectively, what it means for a
G;—instanton, and thus for a flat connection, being a particular instance of a G;—instanton, to be
acyclic and for an ASD instanton to be infinitesimally rigid.

Remark 1.5. We equip the adjoint bundles gg;, and gg with the inner product arising from the
negative of the Killing form on the Lie algebra g associated with G.

The proof of Theorem 1.1 is based on a gluing construction. The analysis involved is similar to
work on Spin(7)-instantons in Lewis’ DPhil thesis [Lew98], unpublished work of Brendle on the
Yang-Mills equation in higher dimension [Breo3] and Pacard-Ritoré’s work on the Allen-Cahn
equation [PRo3]. From a geometric perspective our result can be viewed as a higher-dimensional
analogue of Kronheimer’s work on ASD instantons on Kummer surfaces [Krog1].

Itis not too unreasonable to expect that under certain topological assumptions all G,—instantons
on G,-manifolds arsing from Joyce’s generalised Kummer construction close to the degenerate
limit come from a suitable generalisation of our construction. Optimistically, one could hope that
this will some day make the (so far conjectural) G, Casson invariant accessible to computation.
The following result is a first step in this direction.

Theorem 1.6. Let Y, be an admissible Gy—orbifold all of whose singularities S; are modelled on
(T x C*/Z,)/Hj and let Y be the compact 7-manifold and let (§;); (o, ) be the family of torsion-free
G,-structures obtained via Joyce’s generalised Kummer construction from resolution data for Y.
Suppose that E is a SO(3)—bundle over Y with the property that

p(B) == Z pDIs))

J

where ¢; = 1 if Hy(X;)"i < Hy(Y) is non-trivial and wy(E) pairs non-trivially with Hz(Xj)Hf and
ej = 0 otherwise. Suppose that (A;)ie(, 1) is a family of connections on E such that A, is a Gy~
instanton over (Y, ¢;). Then there exists a SO(3)—bundle Ey over Y, together with a flat connection
0, such that away from the singular set of Yy the family of connections (A;) converges up to gauge
transformations to 0 in C°_on Yo\S as t tends to zero.

In order to prove that Theorem 1.1 gives a complete description of the moduli space of G,-
instantons under the hypothesis of Theorem 1.6 one additionally needs to control the behaviour
of the family (A;) on the resolution locus in Y; and on the neck region between the resolution
locus and the regular part of Y,. This appears to be technically very challenging. Moreover, one
would need to either understand under which conditions the flat connection 8 will be unobstructed
or extend Theorem 1.1 to handle the case of obstructed 6 as well. Instead of directly producing
G,—instantons this latter generalisation of Theorem 1.6 would give a local description of the moduli
space of G,—instantons in terms of a Kuranishi model.

Further directions In this article we have only considered the simplest case of Joyce’s generalised
Kummer construction. Joyce’s construction in [Joy96a] can also handle G,—orbifolds with singular



sets of codimension 6 which are resolved using ALE Calabi-Yau 3-folds. Using the work of Anda
Degeratu and myself on rigid HYM connections over ALE Calabi—Yau 3-folds arising as moduli
spaces of G—constellations on C* [DW16] much of the work in this chapter can be extended to this
situation. The latest version of Joyce’s construction [Joyoo] can handle very complicated singular
sets which require QALE Calabi-Yau 3—folds in order to be resolved. Generalising Theorem 1.1 to
this setting is a daunting task.

Using ideas from [Wali7] it seems reasonable to extend Theorem 1.1 roughly as follows. Suppose
that (Yy, ¢;) is a family of G;—manifolds, which degenerates to a (not necessarily) flat G,—orbifold
(Yo, ¢o) by bubbling of a family of ALE spaces X along an associative singular set S. Given a
Gs—instanton B over Y, one can construct a bundle 9 over S, whose fibre over x € S is a moduli
space of ASD instantons on the ALE space X,. If 3 is an unobstructed Fueter section of 9, i.e., the
linearisation of the Fueter operator at I has trivial cokernel, then one should be able to glue I and
B to produce a family of G;—instantons over (Y;, ¢;) for 0 < ¢t < 1. In the situation considered
in this article 9t has discrete fibres; hence, if a section J exists, it automatically satisfies the
Fueter equation and is unobstructed. At the time of writing all known examples of degenerations
of Gy—manifolds arise from Joyce’s generalised Kummer construction and thus have flat limits
(Yo, ¢o); however, forthcoming work of Dominic Joyce and Spiro Karigiannis is expected to produce
examples with non-flat limits.

Outline of the article Sections 2, 3, 4 and 5 contain some foundational material on G,—manifolds
and Gy—instantons as well as brief reviews of Joyce’s generalised Kummer construction and
Kronheimer and Nakajima’s work on ASD instantons on ALE spaces. The proof of Theorem 1.1
begins in earnest in Section 6, where we construct approximate G,—instantons from gluing data
and introduce weighted Holder spaces adapted to the problem at hand. In Section 7 we set up
the analytical problem underlying the proof of Theorem 1.1 and discuss a model for the linearised
problem. We complete the proof of Theorem 1.1 in Section 8. A number of concrete examples of
G;—instantons with G = SO(3) are constructed in Section 9. The proof of Theorem 1.6 is given in
Section 10.
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thesis at Imperial College London, supported by European Research Council Grant 247331. I am
grateful to my PhD supervisor Simon Donaldson his encouragement and support. Moreover, I
would like to thank the anonymous referee for helpful comments on an earlier version of this
article.

2 Review of G;—manifolds

In this section we recall some basic definitions and results in G,—geometry. For a more compre-
hensive treatment we refer the reader to Joyce’s book [Joyoo], specifically Chapter 10.



The Lie group G; can be defined as the subgroup of elements of GL(7) fixing the 3—form
(21) do = dx'? + dx™ + dx'®” + dx**0 — dx®7 — dx*? — dx>C.

Here dx/* is a shorthand for dx’ A dx/ A dx* and x1, . .., x; are standard coordinates on R’. The
particular choice of @ is not important. Any non-degenerate 3—form ¢ on R’ is equivalent to ¢
under a change of coordinates; see, for example, Salamon and Walpuski [SW17, Theorem 3.2]. Here
we say that ¢ is non-degenerate if for each non-zero vector u € R” the 2-form i(u)¢ on R” /(u) is
symplectic. It follows from the identity

(2.2) i(u)do A i(v)do A P = 6gr7(u, v)volgs

that any element of GL(7) which preserves ¢, also preserves the standard inner product ggz and
the standard volume form volgs on R”. Therefore, G, is a subgroup of SO(7). In particular, every
non-degenerate 3—form ¢ on a 7-dimensional vector space induces an inner product and an
orientation on this vector space. As an aside, we should point out here that non-degenerate
3—forms constitute one of two open orbits of GL(7) in A3(R”)*. For ¢ in the other open orbit, the
analogue of equation (2.2) yields an indefinite metric of signature (3, 4). In particular, if we take
u = v to be a light-like vector, then i(u)¢ is not a symplectic form on R7/{u).

From the above discussion it is clear that a non-degenerate 3—form ¢ on Y is equivalent to
a reduction of the structure group of TY from GL(7) to G, that is, a Go—structure. Moreover, ¢
induces a Riemannian metric g4 and an orientation on Y. The intrinsic torsion of the G,-structure
corresponding to ¢ can be identified with Vg, 4.

Definition 2.3. A G;—manifold is a 7-manifold Y equipped with a torsion-free G,-structure ¢,
that is,

Vg, = 0.

Remark 2.4. Analogously, one can define the general notion of a G,—orbifold. (For a thorough
discussion of orbifolds we recommend the book of Adem-Leida—Ruan [ALRo7].) In this article,
however, we will only encounter very simple G,—orbifolds of the form (Y /T, ¢) where (Y, ¢) is a
G;—-manifold and T' is a finite group of diffeomorphism of Y preserving ¢.

There is a plethora of reasons to be interested in G;—manifolds. G,—manifold have holonomy
group Hol(gs) C G, which appears as one of the exceptional cases in Berger’s classification
of holonomy groups of irreducible non-symmetric Riemannian manifolds [Berss, Theorem 3].
G;-manifolds are spin manifolds and carry (at least) one non-zero parallel spinor (see Joyce [Joyoo,
Proposition 10.1.6]) and, hence, are Ricci-flat and of relevance to theoretical physics. Moreover,
G;—-manifolds carry a pair of calibrations in the sense of Harvey-Lawson [HL82]: the associative
calibration ¢ and the coassociative calibration {y := *¢. This makes their submanifold geometry
very rich and interesting. Furthermore, it is very appealing to study gauge theory on G,—manifolds
as we will see in Section 3.

Example 2.5. The 7-torus T’ = R7/Z’ equipped with the G,-structure ¢, defined in (2.1) is a
G,—manifold.



Definition 2.6. A hyperkdhler manifold is a Riemannian manifold (X, g) together with a triple
(I1, I, I5) of parallel orthogonal complex structures satistying I I, = —LI; = L.

Remark 2.7. If (X, g, I1, I, I5) is a hyperkéhler manifold, then the metric g is Kahler with respect to
each of complex structures a;I; + ayl, + aslz with (ay, az, as) € S C R>.

Example 2.8. Let (X, g, 11, ;, I5) be a hyperkahler 4-manifold. For i = 1,2,3 denote by w; =
g(I; -, -) the Kéhler form associated with the complex structure I;. Choose an orthonormal triple
(61, 62, 8°) of constant 1-forms on T3. Then T? x X is a G,~manifold with torsion-free G,—structure
¢ defined by
$=8"AS* AN+ Awy + 82 Awy— 8 A ws.

The metric and the orientation on T3 x X induced by ¢ coincide with the product metric and the
product orientation. To see that, note that each cotangent space to X has a positive orthonormal
basis (e, . .., e*) with e’ = I;e°, for i = 1,2, 3, such that

w1 =eo/\el+e2/\63,
(2.9) wy=e"Ne? —el Aéd,

w3 =e" Aed +el Ael.
This immediately yields a orientation-preserving isometry Ty(T> x X) — R7 identifying ¢ with ¢,.
Note that in the current example the coassociative calibration ¢ := *¢ is given by

2.10 =1 AN + 82N Awr + 8 A A wy— 8 A S A ws.
2

Remark 2.11. The above examples have holonomy strictly contained in G,. This is clear from their
construction, but can also be seen as a consequence of their topology since a compact G,—manifold
(Y, ¢) satisfies Hol(gs) = G if and only if 71(Y) is finite; see Joyce [Joyoo, Proposition 10.2.2].

The following observation is central for the construction of G,—manifolds.

Theorem 2.12 (Fernandez and Gray [FG82, Theorem 4.9]). Let Y be a 7-manifold. Denote by
P c Q3(Y) the subspace of all non-degenerate 3—forms on Y and define®: P — Q*(Y) by

(2.13) O(¢) = >x<¢¢.
Here x4 is the Hodge x—operator associated with ¢. Then a Gy—structure ¢ is torsion-free if and only if
dp=0 and dO(¢)=0.

The key difficulty in constructing G,—manifolds comes from the fact that © is non-linear. It is
currently unknown which compact 7-manifolds do admit torsion-free G,—structures. All known
non-trivial compact examples arise by way of gluing constructions. One of those constructions
will be described in more detail in Section 4.

Before we move on, let us recall a few facts, going back at least to the work of Fernandez-
Gray [FG82], that will be useful in the following. We refer the interested reader to Salamon and
Walpuski [SW17, Theorem 8.4] for a detailed proof.



Proposition 2.14. There is a Gy—invariant orthogonal splitting
AR =A@ AL,
where
A ={w:x(0Ad) =20} and Ay ={w:=(wA¢)=-w}.

Moreover, A%, is the kernel of the map & — w A Y, where o ‘= ¢o, and can be identified with
gz C 50(7) = A%(R7)*.

3 Gauge theory on G;—manifolds
Let (Y, ¢) be a compact Go—manifold (or, more generally, a compact Gy—orbifold), let i := ©(¢)
and let E be a G-bundle over Y. Denote by &/(E) the space of connections on E.

Definition 3.1. A connection A € 9/(E) on E is called a Gy—instanton if it satisfies

(3'2) *(FA/\¢) = —Fy4.

These equations have first appeared in the physics literature (see Corrigan, Devchand, Fairlie,
and Nuyts [CDFN83]) and were later brought to a wider attention by Donaldson and Thomas
[DT98, Section 3]. (3.2) can be thought of as a 7-dimensional version of the anti-self-duality
condition familiar from dimension four. As we will discuss shortly, G,-instantons also have a
striking similarity with flat connections over 3—manifolds.

Example 3.3. Flat connections are G;—instantons.

Example 3.4. Let X be a hyperkahler manifold, let E be a G-bundle over X and let A be an ASD
instanton on E, that is, a connection on E whose curvature F4 is anti-self-dual. Then the pullback
of A to the G,—manifold T3 x X from Example 2.8 is a G,—instanton:

#(Fa A ¢) = *(FA ASYAS%A 53) =%y Fa = —F4.
Here we used that F4 A w; = 0 and *x denotes the Hodge *—operator on X.

Example 3.5. The Levi-Civita connection on a G,—manifold is a G, —-instanton. To see that, observe
that at each point we can think of the Riemannian curvature tensor R as an element of S?g, C
A? ® gl(7), since Hol(gy) C G,. But then it follows from Proposition 2.14 that «(R A ¢) = —R.

Since ¢ is closed, it follows from the Bianchi identity that G,-instantons are Yang—Mills
connections, that is, dZF ‘4 = 0. In fact, they are absolute minima of the Yang-Mills functional
YM: &/(E) — R, since

(3.6) YM(A) = /Y |[Fal?vol = %/Y |Fg + *(Fa A ¢)|*vol — /Y (FANFA) A&

and, by Chern-Weil theory, the second term is a topological constant depending only on E. The
energy identity (3.6) follows from a straight-forward computation using Proposition 2.14.



Proposition 3.7. Let A € 9/(E) be a connection on E. The following are equivalent:

1. A is Gy—instanton.
2. Asatisfiles FA AN = 0.
3. Thereisa & € Q%(Y,ag) such that
(3.8) # (Fg AY)+da& =0.

Proof. The equivalence of (1) and (2) follows immediately from Proposition 2.14. Obviously, (2)
implies (3). By the Bianchi identity and since dy/ = 0 it follows from (3) that d’,d4¢ = 0. Hence, by

integration by parts,
/ |daél? = / (dZdAg, §> =0.
Y Y
)

Therefore d4¢ = 0 and (3) implies (2). O

From Proposition 3.7 it becomes apparent that G,—instantons are rather similar to flat connec-
tions on 3—manifolds. In particular, if Ay is a G,—instanton on E, then there is a G, Chern-Simons
functional CSY : o/ (E) — R defined by

CSY(Ay + a) = /(a/\dAOa+ %a/\ [a/\a]> AY
Y

whose critical points are precisely the G,—instantons on E. It is not entirely unreasonable to expect
that some of the 3—manifold invariants arising from the Chern-Simons functional, like the Casson
invariant and instanton Floer homology, have G;—analogues. This idea goes back at least to the
seminal paper of Donaldson-Thomas [DT98] and is one of the main motivations for studying
G,—instantons. Since (3.2) is invariant under the action of the group & of gauge transformations
of E, we can consider the moduli space of G,-instantons on E over (Y, ¢):

M(E,§) = {Ae dE): Fany =0} /%.

Very roughly speaking, the conjectural G, Casson invariant should be obtained by “counting”
M (E, ¢). Whether there is a rigorous construction of such a G, Casson invariant and whether it
can, in fact, be arranged to be invariant under isotopies of the G,—structure is an open question.
A brief discussion of parts of this circle of ideas can be found in Donaldson and Segal [DS11,
Section 6].

It is customary in gauge theory to work with local slices of the gauge group action. A
particularly useful slicing condition is to require that B € 9/(E) be in Coulomb gauge with respect
to a fixed reference connection A € /(E), that is, d’,(B — A) = 0. (The importance of the Coulomb
gauge stems from the foundational work of Uhlenbeck [Uhl82a]. For a careful discussion of how
the Coulomb gauge is used in the construction moduli spaces we refer the reader to Donaldson
and Kronheimer [DKgo, Section 4.2].) For a fixed connection A € &/(E) we consider the system of
equations

(3.9) #(Fara ANY) +daseé =0 and dia=0



for £ € Q%(Y,qgg) and a € Q(Y, gg). This is simply (3.8) for A + a instead of A together with the
condition that A + a be in Coulomb gauge with respect to A. The linearisation L4: Q%(Y,gg) ®
Q(Y,ar) = Q°(Y,ag) ® Q'(Y, ag) of (3.9) is given by

0 d?
(3.10) Ly = (dA L /IédA)) .

This is a self-adjoint elliptic operator. If A € & (E) is a Gy—instanton, then Ly controls the
infinitesimal deformation theory of A as a G,-instanton.

Definition 3.11. A G,-instanton A is called acyclic if the operator L4 is invertible.

One can show that if every G,—instanton A on E is acyclic, then . (E, ¢) is, in fact, a smooth
zero-dimensional manifold, that is, a discrete set.

4 Joyce’s generalised Kummer construction

Equip T’ with a flat G, —structure ¢, as in Example 2.5, and let T be a finite group of diffeomorphisms
of T” preserving ¢,. Then Y, := T7/T is a flat G,—orbifold. Denote by S the singular set of Y; and
denote by S, ..., Sk its connected components.

Definition 4.1. Y} is called admissible if each S; has a neighbourhood isometric to a neighbourhood
of the singular set of (T°® X C?/G;)/H;. Here G; is a non-trivial finite subgroup of SU(2) and H; is
a finite group acting by isometries on T° as well as on C?/G;.

Let Y be an admissible flat G,—orbifold. Then there is a constant { > 0 such that if we denote
by T the set of points at distance less that { to S, then T decomposes into connected components
Ty, ..., Ty such that T; contains S; and is isometric to (T° X B;{/Gj)/Hj. On T; we can write

o =8"ANFFANS+ 8" ANwy + 5 Awy — 8 A ws,

where (51, 52, %) is an orthonormal triple of constant 1-forms on T° and where (w1, w,, w3) is the
triple of Kihler forms associated with the standard hyperkihler structure (g, I, I, I;) on C* = H.

Definition 4.2. Let G be a finite subgroup of SU(2). Then an ALE space asymptotic to C*/G is a
hyperkahler 4-manifold (X, g, I, I, I3) together with a continuous map 7: X — C?/G inducing a
diffeomorphism from X\771(0) to (C?\{0})/G such that

(4.3) Vk(n*g -g) = O(r_4_k) and V(I - L) = O(r_4_k)
asr > oofori=1,2,3and k > 0. Here r: CZ/Gj — [0, o0) denotes the radius function.

We will remove the singularity in Yy along S; by, roughly speaking, replacing each C?/G; with
an ALE space asymptotic to C*/G;. Due to work of Kronheimer [Kro89b; Kro89a], ALE spaces are
very well understood.



Theorem 4.4 (Kronheimer [Kro89a, Theorems 1.1, 1.2, and 1.3]). Let G be a non-trivial finite subgroup
of SU(2). Denote by X the real 4—manifold underlying the crepant resolution X /G. Then for each
three cohomology classes a1, as, a3 € H*(X,R) satisfying

(4-5) (a1(2), 02(2), a3(2)) £ 0 € R®

foreach ¥ € Hy(X,Z) withY - ¥ = -2 there is a unique ALE hyperkdhler structure on X for which
the cohomology classes of the Kihler forms [w;] are given by a;. Moreover, each ALE space asymptotic
to C?/G is diffeomorphic to X /G and its associated triple of Kdhler classes satisfies (.5).

Remark 4.6. The crepant resolution )2729 can be obtained from C?/G by a sequence of blow-
ups. The exceptional divisor E of X = )272} has irreducible components X, ...,Z. By the
McKay correspondence [McK80], these components form a basis of Hy(X,Z) and the matrix
with coefficients C;; = —[¥;] - [¥;] is the Cartan matrix associated with the Dynkin diagram
corresponding to G in the ADE classification of finite subgroups of SU(2).

Definition 4.7. A collection r = {(Xj, p;)} consisting of, for each j, an ALE space X; asymptotic
to C?/G; together with an isometric action p; of H; on X; which is asymptotic to the action of H;
on C?/G; is called resolution data for Y,.

Suppose we are given resolution datar = {(Xj, p;)}. Denote by 7;: X; — C?/G; the resolution
map for X;. For t > 0 define

(48) Tj,¢ = tTL'j ZXj — CZ/Gj

and set

(4.9) Tpp = (T° x 7} (BE/Gy)) /H; and T, = | Ty,
J

Using 7 ; we can replace each T; in Y, by T] + and thus obtain a compact 7-manifold Y;.

Remark 4.10. The diffeomorphism type of Y; is independent of ¢ > 0. Hence, we will sometimes
drop the label t and pretend to be working with a fixed 7-manifold Y. However, at various points
it will be important to remember the precise way in which Y; was constructed.

Remark 4.11. The (co)homology groups and the fundamental group of Y can relatively easily be
computed from the above construction, the latter being especially important in view of Remark 2.11.
In particular, it can be seen that every X € Hy(Xj,Z) invariant under the action of H; yields a
cohomology class > € Hy(Y,Z). Also each component of singular set S; gives rise to a rational
homology class

(4.12) [5;] = ——(1j.0)s (T % {x}) € Hy(Y. Q).

"~ |H;|

where 1,1 T? % ﬂji%(B% /Gj) — Y denotes the projection to TJ ¢ followed by the inclusion into Y
and x denotes a point in Jr]._}(B;{/GJ-).

10



On Tj ¢ there is a torsion-free G;—structure given by
b= 6V ASE NS+ 12T A djy + 126 N idjp — 1250 A i) 3.

Near the boundary of f‘j ; the 3—forms ¢ .+ and @ are close to each other. In order to patch them
together note that there are 1-forms g; ; ; on (C*\{0})/G; such that

(7). )@dji = @i +doji 1.

with Vij, ri = t*0(r737%) for k > 0; see [Joyoo, Theorem 8.2.3]. Now, fix a smooth non-decreasing
function y: [0,{] — [0, 1] such that y(s) = 0 for s < {/4 and y(s) = 1 for s > {/2 and set

@ p,i = t205j i —d(x(|mj¢]) - o t@] 1i)-

Then (7, ;).@;,¢,; and w; agree on r[{'/2, o) and we can define a 3-form ¢r € Q3(Y;) by ¢, = ¢y
on Yo\T; = Y;\T; and by

Gr = NSNS+ SNy + 6PN G~ ADjrs

on f"]t Define the function r,: Y; — [0,{] by

_ @)l forp =[x, )] € Tt
(4'13) ”t(P) i {g fOI‘p c Yt\,ft
and set
(4.14) Rt =Ty, nr'[{/4,{/2] and R, = UR e =14, 0)2].

Outside R; the 3—form d;t defines a torsion-free G,—structure, while on R; ; it satisfies Vk(d;t —¢; i) =
O(t*) for k > 0 and similarly, for each fixed ¢ > 0, on r;[¢, {] we have Vk(ggt — ¢o) = O(t*) for
k > 0. In particular, gzgt defines a Gy—structure on Y; provided t > 0 is sufficiently small.

We equip Y; with the Riemannian metric g; := ¢ b0 associated with qgt.

Remark 4.15. Note that on the complement of T the metric §; agrees with the flat metric go on
(T7/D\T and on T; ;\R; ; it agrees with the metric

2
g(&j’[ =grs ® t7gx;.
Here grs denotes the standard metric on R3 and 9x; denotes the metric on X;. Moreover, since the

map ¢ — g is smooth, on R; ; we have V¥(g, — grs @ t2gx;) = O(t*) for k > 0 and, for each fixed
e > 0,onr;![e,{] we have VE(G: — go) = O(t*) for k > 0
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Theorem 4.16 (Joyce [Joy96a, Theorems A and B] and [Joy96b, Theorem 2.2.1]). There are constants
T,c > 0 and for eacht € (0,T) a 2—form n; on Y; such that ¢, := ¢, + dn; defines a torsion-free
G, —structure and

(4.17) dnelle < ct'/2.

Remark 4.18. In view of Theorem 2.12 the above is tantamount to saying that one can solve the
non-linear partial differential equation

(4.19) d©(; +dp,) =0

with estimates on dn;. For small 7,, the dominant part of this equation is essentially the Laplacian
on 2—forms. Now, as t > 0 decreases the size of d@((}gt) becomes smaller and smaller, but at the
same time the mapping properties of the Laplacian degenerate. Solving (4.19) thus is a rather
delicate balancing act.

For our application we need to slightly strengthen the estimate in Theorem 4.16. Let w;(x, y) :=
t + min{r,(x), r;(y)}. For a Holder exponent & € (0, 1) define

|f(x) = f(W)l
[f]roeqr = sup wi(x, y)* ————,
Cor @) < (xg) ! d(x,y)*

1oy = 1 sy + v

for a tensor field f over U C Y;. Here we use parallel transport to compare the values of f at
various points of U. If U is unspecified, then we take U = Y;.

Proposition 4.20. The constants T,c > 0 in Theorem 4.16 can be chosen such that for allt € (0,T)
we have
1/2 2 1/2
Hd’““c&f‘ Sct and ”®(¢t) - @(d)j,t)”cgjta(j-j’t) set’.

For the proof of this result it will be helpful to note the following.

Proposition 4.21. For each p > 0 and K € Ny there exists a constant € > 0 such that the following
holds for allt € (0,T) and p € Y;: R := &(t + ri(p)) is less than the injectivity radius of (Y, g;) atp
and if we identify T,Y isometrically with R” and denote by sg: B; — Bg(p) the map obtained by
multiplication with R followed by the exponential map, then

(4.22) 0% (R™2spgi — grr)| < i
forallk € {0,...,K}. Here gg7 denotes the standard metric on R.

Proof. From Remark 4.15 it is clear that we can find ¢ > 0 such that the above statement holds for
all p € r;1[{/8,{]. Moreover, for p € r;'[0,{/8] inequality (4.22) is equivalent to

0% (R75%(gre @ gx;) = 9w7)| < 1,
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where R := (1 + |7j(y)]) and p = [(x, y)]. Because of (4.3) this holds for all £ < % as long as |7;(y)|
is sufficiently large, say, |7;(y)| > N. For |rj(y)| < N it can be arranged to hold by choosing ¢ > 0
sufficiently small. O

Proof of Proposition 4.20. Note that the second part follows from the first and the construction of
¢:, because O is a smooth map. To obtain the estimate on dr; recall from Joyce’s construction that
1; solves a non-linear partial differential equation that can be written schematically as

(4.23) d*dn, + P(dn;, Vdn,) = G(dn,...) and d'p; =0;

see Joyce [Joyg6a, Equation (33)].. The crucial points are that P(x, y) is a smooth function which
depends linearly on y and satisfies P(0,y) = 0 and that there is a constant ¢ > 0 such that

(4.24) 1G(dns, .. s < ct'/?,

Now, define

D;o = (d*o + P(dn;, Vo), do).
Since dn; is small provided T > 0 is small, this a small perturbation of the operator d* & d. We
extend D; to an operator from Q*(Y;) to itself by defining D;o = (d* ® d)o for o € QF(Y;) with

k # 3, so that it becomes an elliptic operator. We will now prove that there are constants ¢ > 0
and ¢ € (0, %) such that for all t € (0, T) and each p € Y, the following holds:

(4.25) R¥[0]coa By () < C(RID:0NLoBr(p)) + 10 l|L(Br(p)))

with R := &(t + r;(p)). From this the asserted bound on [dm]cg:;z follows at once using (4.17), (4.23)
and (4.24), since on Bg/»(p) we have w; < 2¢7IR.

For u > 0 choose ¢ > 0 according to Proposition 4.21 with K = 1. Let sg: BZ — Bg(p) be as in
Proposition 4.21. We define a rescaled operator l~)t,p : Q*(By) — Q*(By) by

Dy po = (R¥spt,s30)

for o € Q%(B;), where (z, 0) = Dy(sg')'o € Qk-1(B;) ® QF*1(B,). It follows from Theorem 4.16
and Proposition 4.21 that by choosing T, ¢ > 0 sufficiently small, we can arrange that for all
t € (0,T) and p € Y; the rescaled operator ﬁt,P is as close tod & d*: Q*(B;) — Q*(B;) as we
wish. In particular, we can arrange that the family of operators D; , is uniformly elliptic with
coefficients uniformly bounded in C!. Hence, by standard elliptic theory, we can find a constant
¢ > 0 independent of ¢t € (0,T) and p € Y; such that the following L? estimate holds:

||0||w1vq(31,2) < C(HDt,pU“L‘I(Bl) + llollLacay))-
Combined with the Sobolev embedding W9 — C%1=7/4 this yields

[o]coa(s,,) < c(IIDz, pollLe,) + lollL=,))

with ¢ > 0 independent of t € (0,T) and p € Y;. This, however, is equivalent to the estimate (4.25)
for the unscaled operator D;. O
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Remark 4.26. Proposition 4.20 can be viewed as a quantification of Joyce’s proof of the fact that n;
is smooth. In a similar fashion, one can also obtain estimates on higher Holder norms of dz;.

Remark 4.27. The kind of argument we used above goes back to work of [NW73, Theorem 3.1]. We
will encounter this line of reasoning again in the proofs of Proposition 5.10 and Proposition 7.11.

5 ASD instantons on ALE spaces

Let T be a finite subgroup of SU(2), let X be an ALE space asymptotic to C?/T and let E be a
G-bundle over X. We denote by o/(E) the space of connections on E.

Definition 5.1. A framing at infinity of E is a bundle isomorphism ®: E. |y — 7.E|y where E, is
a G-bundle over (C*\{0})/T and U is the complement of a compact neighbourhood of the singular
point in C?/T.

Let 0 be a flat connection on a G-bundle E., over (C?\{0})/T.

Definition 5.2. Let ®: Eo |y — m.E|y be a framing at infinity of E. Then a connection A € &/ (E)
is called asymptotic to 0 at rate § with respect to ® if

(5.3) V@A - 0) = 0(r°7F)
for all k > 0. Here V is the covariant derivative associated with 6.

Definition 5.4. A framed ASD instanton asymptotic to 0 (at rate §) is an ASD instanton A € &/ (E)
on E together with a framing at infinity ® of E such that A is asymptotic to 6 at rate § with respect
to ®. If no rate § is specified, then we take § = —3.

Proposition 5.5. Let A € 9/ (E) be an ASD instanton on E with finite energy, that is,

/ |[Fal?vol < oo,
X

then there is a G—bundle Eo, over (C*\{0})/T together with a flat connection 0 and a framing
®: Eo|y — m.E|y such that (5.3) holds with § = -3

Proof. We extend the argument in Donaldson and Kronheimer [DKgo, page 98]. The topological
space X := X U {co} can be given the structure of an orbifold whose atlas contains the charts of
X as well as a uniformising chart at infinity ¢: B,/T — X which is constructed as follows. Fix
an orientation reversing linear isometry o of R*. We let " act on B, by (g, x) — o~ !(g - o(x)) and
define ¢(0) := o0 and ¢(x) = 77! (c(x)/|x|?). If g denotes the metric on X, then the conformally
equivalent metric § := (1+]7|?)2g extends to X as an orbifold metric. The metric is not necessarily
smooth, but only C32: however, that does not cause any problems. One should think of X asa
conformal compactification of X in the same way that S* is a conformal compactification of R%.
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Since the equation F; = 0 as well as t}}e energy are conformally invariant, we can think
of A as a finite energy ASD instanton on (X\{co}, §). By Uhlenbeck’s removable singularities
theorem [Uhl82b, Theorem 4.1], the pullback of A to B.\{0} extends to a '-invariant ASD instanton
over all of B,. Hence, A extends to an ASD instanton A on an orbifold G-bundle E over X. Using
radial parallel transport from co we obtain a trivialisation of E over ¢(B,/T) in which the connection
matrix representing A vanishes at co = ¢(0). Denote by p: T — G the monodromy representation
associated with E|.. Associated with p there are a G-bundle E, over ¢((B.\{0})/T) and a flat
connection 0 on E,. The above trivialisation of E over ¢(B,/T') amounts to a bundle isomorphism
®: Ew — E lo(B.\ {0},r) and the fact that the connection matrix representing Avanishes at co = ¢(0)
implies that V¥(¢p*(®*(A) — 8)) = O(|x|'%) for all k > 0. By considering the action of the inversion
x - o(x)/|x|? on k—fold derivatives of 1-forms one sees that VK(®*A — §) = O(r—37F). |

Let us briefly discuss moduli spaces of framed ASD instantons on E asymptotic to 6. For a
detailed discussion we refer the reader to Nakajima’s beautiful article [Nakgo]. Fix a framing at
infinity @ of E, a rate § € (-3, —1) and denote by &/ (E, ) the space of all connections asymptotic
to 0 at rate § with respect to ®. Similarly, define €(E) to be the group of gauge transforma-
tions asymptotic to a constant element of G at infinity at rate § + 1 with respect to ®. Denote
by g : E(E) — G the homomorphism assigning to each gauge transformation its asymptotic
value at infinity and let &,(E) := ker g, C &(E) be the based gauge group consisting of gauge
transformations asymptotic to the identity. Then the space

M(E, 0) = {A € d(E,0) : F} = 0}/%y(E)

is called the moduli space of framed ASD instantons on E asymptotic to 0.

Remark 5.6. The space does not depend on the choice of § € (=3, —1). This is a consequence of
Proposition 5.5.

Remark 5.7. If we denote by p: T' — G the monodromy representation associated with 8 and by
G, = {g €G:gpgt= p} the stabiliser of p, then G, € G = Y(E)/%,(E) acts on M(E, 0).

Theorem 5.8 ([Nakgo, Theorem 2.6 and Proposition 5.1]). The moduli space M(E, 0) is a smooth
hyperkdhler manifold.

Formally, this can be seen as an infinite-dimensional instance of a hyperkéhler reduction (see
Hitchin, Karlhede, Lindstrém, and Roc¢ek [HKLR8&7]). The space &/ (E, 6) inherits a hyperkahler
structure from X and the action of the based gauge group &, has a hyperkédhler moment map
given by p(A) = F}. To make this rigorous one needs to set up a suitable Kuranishi model
for M(E, 0) along the lines of Donaldson and Kronheimer [DKgo, Section 4.2.5]. This can be
done using weighted Sobolev space completions of </ (E, ) and &y(E); see Nakajima [Nakgo,
Section 2] for a detailed discussion. An important role is played by the operator §4: Q(X,gg) —
Q%X,ar) ® Q*(X, gg) defined by

(5.9) da(a) = (dya, d}a)

which governs the infinitesimal deformation theory of the ASD instanton A.
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Proposition 5.10. Let A € 9/ (E) be a finite energy ASD instanton on E. Then the following holds.
1. Ifa € ker 84 decays to zero at infinity, then Vﬁa = O(|z|=>7%) forallk > 0.
2. If (£, w) € ker &), decays to zero at infinity, then (¢, w) = 0.

Remark 5.11. From the second part of this proposition one can deduce that the deformation theory of
framed finite energy ASD instantons is always unobstructed; hence, M(E, 0) is a smooth manifold
(see also [Nakgo, Proposition 5.1]). By the first part the tangent space of M(E, 0) at [A] agrees with
the L? kernel of §4 and thus the formal hyperkihler structure is indeed well-defined.

The proof of Proposition 5.10 rests on the following refined Kato inequality.

Proposition 5.12. Let A € 9/ (E) be an ASD instanton on E. If a € Q(X, gg) satisfies Saa = 0, then

(513) |dJal| < J%|VAa|
on the complement of the vanishing locus of a.

Proof. Recall that the Kato inequality follows from the Cauchy-Schwarz inequality | (Vaa, a) | <
|Vaal|a|. If Saa = 0, then it is not hard to see that equality can only hold if V 4a = 0. This shows
that (5.13) holds with some constant ¢ < 1 instead of \/ﬂ

To see that one can take € = \/3/_4 we follow an argument of Feehan [Feeo1, Section 3]; however,
also note that we could simply read off the value from the table given in Calderbank, Gauduchon,
and Herzlich [CGHoo, Appendix]. We can write §4 as a Dirac-type operator

daa = Z y(ei)Vfia.

Here (e;) is a local orthonormal frame and the Clifford multiplication y is defined by y(v)a =
(—ipa, (0" A a)*), where v* denotes the dual of v with respect to the metric on X. For x € X
with a(x) # 0 and d|a|(x) # 0 pick an orthonormal basis (e;) of T, X with e; := V|a|/|V|a]||. Since
daa = 0 and |y(v)a| = |vl|a|, we have

|dlal* = [V, lal* < [V2a

= [renvaal =| Y renvaa

|2

T3 Y Al

i>2

and therefore
aldlal[* = 4]Vl <3 )" |ViAa[* = 3|V aq|".
f

This finishes the proof. O
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Proof of Proposition 5.10. First of all note that (1) implies (2): if §7(¢, w) = 0, then d;d4¢ = 0 and
d}daé = [F}, £] = 0; therefore dg¢ = O(|z|™®). Thus integration by parts yields d4¢ = 0 and,
hence, & = 0. Similarly, one shows that w = 0.

We will first explain why (1) for k = 0 implies the asserted estimates for k > 0 as well. The
argument is similar to that in Proposition 4.20. For x € X set R = %(1 + |7 (x)|). We claim that
there is a constant ¢ = c¢(k) > 0 independent of x € X such that

(5.14) RMIVAall oo < ellallio(Brx)

for all a € ker 4. This clearly implies (1) for k > 0 given the statement for k = 0. For |7(x)|
sufficiently large, say |7 (x)| > Ry, the restriction of A to Bg(x) is arbitrarily close to a flat connection
by Proposition 5.5. We rescale to a ball of radius one and denote the rescaled connection by A and
the rescaling of 4 by Dy. Then the family of operators D, is uniformly elliptic with coefficients
uniformly bounded in C!. Therefore, there is a constant ¢ > 0 independent of x € X such that the
following Schauder estimates holds:

IV all (s, ,) < c(IDxallcras,) + lallies,).

If a is in the kernel of Dy, the first term vanishes. Rescaling this inequality yields (5.14) for
a € ker 84 and |m(x)| > R. For 1/2 < |7(x)| < Ry, (5.14) follows from standard Schauder estimates.

We now prove (1) for k = 0. Recall, for example, from Freed and Uhlenbeck [FUg1, Equa-
tion (6.25)], that the operator Sa: QUX,08) — Q%X,qr) @ QH(X,qg) defined by Sa(a) =
(d’,a, \/Ed;a) satisfies a Weitzenbdck formula of the form

(5.15) SZSAa =V, Vaa+ {Ric,a} + {F,,a}.

Here { -, - } denote certain universal bilinear forms, whose precise form, however, is not important
for our purposes and Ric denotes the Ricci tensor of X. In our situation, since X is hyperkahler
and thus Ricci flat, the second term vanishes. Now, suppose that §4a = 0 and thus SAa = 0. Then
Proposition 5.12, the identity

Alal? + 2|V 4al? = 2 <a, VZVAa>

(see [FUg1, Equation (6.18)]) and the Weitzenbdck formula (5.15) yield the following estimate on
the complement of the vanishing locus of a:

3Alal?® < |a|™3(Alal? + &|d|al]")
< lal™3(A]al? + 2|V aal?)
= 2|a|_4/3<a, VZVAa>
= 2|a|_4/3(<c§2c§Aa,a> +({F4,a},a))

< O(|x|™lal*”.
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In the last step we used Saa = 0 and |F;| = O(|z|~*), which is a consequence of Proposition 5.5.
Now, let U := {x € X : a(x) # 0} and set f := |a|*/*. We will show that f = O(||~%) which is
equivalent to the desired decay estimate for a. It follows from the above that on U,

cf

1+ |z|*

Af <

for some constant ¢ > 0. Since f is bounded, by [Joyoo, Theorem 8.3.6(a)], there is a g = O(|x|™")
such that

Ag— (Af)* onU
7= 0 on X\U.

Here (- )" denotes taking the positive part. Since g is superharmonic and decays to zero at infinity,
the maximum principle implies that g is non-negative. The function f — g is a subharmonic on
U, decays to zero at infinity and is non-positive on the boundary of U; hence, by the maximum
principle f < g and thus f < g = O(|z|™). Now, (Af)* = O(|z|™®) on U and an application
of [Joyoo, Theorem 8.3.6(b)] shows that we could, in fact, have chosen g such that g = O(|r|™2). It
follows that f = O(|z|™?) as desired. O

The dimension of M(E, 6) can be computed using the following index formula.

Theorem 5.16 (Nakajima [Nakgo, Theorem 2.7]). Let A be a framed ASD instanton asymptotic to 0.
Then the dimension of the L? kernel of 54 is given by

Z Xq(g) dlmq.

(5.17) dimker 84 = —2/ p1(9E) +
—trg

9€T\{ }

Here p1(ag) is the Chern—Weil representative of the first Pontryagin class of E and y, is the character
of T acting on g, the Lie algebra associated with G, via the monodromy representation p: I' — G of 0.

Proof. Let us briefly explain how to derive (5.17) from Nakajima’s formula, which can be written as

(5.18) dimkerds = — /X (dimg + p1(gg)) ch (S*) A(X)

+ dlmq + — E X (g)
IT | ’
gelr\{e}

trg

Here g' denotes the I'-invariant part of g, St denotes the positive spin bundle on X, and ch(S*)
and A(X) denote the Chern-Weil representatives of the Chern character of S* and the A—genus of
X, respectively.

If A is the product connection on the trivial bundle rank 1 bundle and a lies in the L? kernel
of 84, then it follows from the fact that X is Ricci-flat and the Weitzenbo6ck formula (5.15) that
V*Va = 0 and then by integration by parts, which is justified because of the decay asserted by
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Proposition 5.10, that Va = 0. Since a lies in L?, it necessarily vanishes. Therefore dimker §4 = 0

and (5.18) yields
N 1 t
/ch(s+)A(X)=1+ﬁ >
X getey <~ 19

By plugging this back into (5.18) we obtain

dimker 4 = —2/ p1(gg) + dimg' — dimg
X

1 . trg
+= > (n(9) - dimg) .
T gel{e} 2—trg
Since .
™ Z(}(g(g) - dimg) = dimg" - dimg,
IT|
ger
this leads to the index formula (5.17) given above. O

There is a very rich existence theory for ASD instantons on ALE spaces. Gocho-Nakajima [GN92]
observed that for each representation p: I' — U(n) there is a bundle R, over X together with
an ASD instanton A, asymptotic to the flat connection determined by p, and if o is a further
representation of ', then A ¢, = A, ® A,. Kronheimer—Nakajima [KNgo] took this as the starting
point for an ADHM construction of ASD instantons on ALE spaces. One important consequence
of their work is the following rigidity result.

Definition 5.19. An ASD instanton A is called infinitesimally rigid if the L? kernel of the linear
operator §4 is trivial.

Theorem 5.20 ([KN9go, Lemma 7.1]). For each p: T' — U(n) the ASD instanton A, is infinitesimally
rigid.

By combining this result applied to the regular representation with the index formula Kronheimer—
Nakajima derive a geometric version of the McKay correspondence [KNgo, Appendix A]. Let A(T')
denote the Dynkin diagram associated with I' in the ADE classification of the finite subgroups of
SU(2). Each vertex of A(T') corresponds to a non-trivial irreducible representation. We label these
by p1, ..., pr and denote the associated bundles by R; and the associated ASD instantons by A;.

Theorem 5.21 ([KNgo, Appendix A]). The harmonic 2—forms c¢;(R;) = i tr F4; form a basis of
L*H?*(X) = H*(X,R) and satisfy

/ c1(Ri) A er(Ry) = =(C )y,
X
where C is the Cartan matrix associated with A(T'). Moreover, there is an isometryk € Aut(Hy(X,Z), )

such that {c1(R;)} is dual to {k[Z;]}, where X; are the irreducible components of the exceptional
divisor E of X /T. If X is isomorphic to X /T' as a complex manifold, then x = id.
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This result is very useful for computing the index of §4 when A is constructed out of ASD
instantons of the form A, (by taking tensor products, direct sums, etc.).

Proposition 5.22. Let X be an ALE space asymptotic to C*/Zy. Denote by p;: Zy" — ‘U(1) the
irreducible representation defined by p;(£) = exp 2’”]5) Forn,m € Zy, let E,, , be the SO(3)—bundle
underlying R & (R), ® R,4m) and denote by A, ,, the ASD instanton on E, , induced by A, and
Anim. Then Ay, is infinitesimally rigid, asymptotic at infinity to the flat connection associated with

pPm and
1 (k —m)m
_ F 2 _ 2
SHZ/X| Anm| k

wa(8E, ) = c1(Rpsm) — c1(Rp) € H*(X,Z).

as well as

Proof. To see that A, ,, is infinitesimally rigid apply Theorem 5.20 to A, & Ap+r, and observe that
9E, » = R® (R}, ® R4 m) is a parallel subbundle of g, &%, .-

The energy of A, , can be computed using Theorem 5.21 or by noting that the first term in
the index formula (5.17) is precisely twice the energy and the second term is given by (—%)—times

k-1 .
Z )(g(g) dimg Z 1—cos(27rm.]§ck) _ (k- mym.
s 2—tryg 1—cos(2nj/k)
The statement about the second Stiefel-Whitney class is clear. m]

6 Approximate G,—instantons

Throughout this section, let Y; be an admissible G,~orbifold, let r = {(Xj, p;)} be resolution data
for Y, and denote by (Y;, ¢;):e(o, 1) the family of G,~manifolds obtained from r via Theorem 4.16.
Denote by ¢, := ©(¢;) the coassociative calibration on Y;. If § is a flat connection on a G-bundle
E, over Yy, then the monodromy of § around S; induces a representation y;: m1(Tj,x;) — G of
the orbifold fundamental group of T; based at x; € T;\S;. We set

Kj = 71'1(Tj,Xj)/Gj.

Both 7;(T;) and K; are extensions of H; (by Z* X G; and Z* respectively); however, they usually
do not split.

Remark 6.1. For a general definition of orbifold fundamental group we refer the reader to Adem,
Leida, and Ruan [ALRo7, Definition 1.50 and Section 2.2]. All orbifold fundamental groups 7;(X)
encountered in this article can be identified with the fundamental groups 7, (X™¢) of the regular
part of the orbifold in question. This is a consequence of the next proposition which is a special
case of [TTo4, Lemma 5.2].

20



Proposition 6.2. If B is an open ball in R" and S C B is a closed subset of Hausdorff codimension at
least four, then m1(B\S) = 1.

Proof. Note that for any given Lipschitz loop y : S' — B\S, the set of x € B\S such that the cone
C(y,x) = {lx,y(s)(t) : s, t € [0, 1]}, where £ ,(t) = (1 —t)x + ty, is contained in B\S has Hausdorff
codimension at least 2. Since any continuous loop is homotopic to a Lipschitz loop in B\S it follows
that any continuous loop is homotopic to a constant one. O

Definition 6.3. A collection g = ((Eo, 0), {(x}, fj)}, {(Ej, A}, p;)}) consisting of E, and 6 as above
as well as, for each j, the choice of

« apoint x; € T;\S; together with a framing fj: (Eo)x, — G of E at x;,

+ a G-bundle E; over X; together with a framed ASD instanton A; asymptotic at infinity to
the flat connection on the bundle E, ; over (C*\{0})/G; induced by the representation y; lG;
and

+ an action p; of K; on E; covering the action of K; on X induced by p;
is called gluing data compatible witht = {(Xj, p;)} if

+ the action p; of K; on E; preserves A; and is asymptotic at infinity, with respect to the
framing associated with Aj, to the action of K; on E. ;. Note that the action of H; on
Eu,j is induced from the action of 71(T}, x;) on the trivial bundle G x (C*\{0}) given by

h-(g.x) = ((uj(h) - g, h - x)).

We should point out here that it is by far not always possible to extend a choice of (Ey, ) and
{(Ej, A;j)} to compatible gluing data: the choice of p; is essentially dictated by 0; however, we
cannot always find an A; which is preserved by p;—in other words: the bundle 9t of moduli space
of ASD instantons has no section at all. This will become clearer from the discussion in Section 9.

Before we proceed to construct approximate G,—instantons, we introduce weighted Holder
norms. It will become more transparent over the course of the next two sections that these are
well adapted to the problem at hand. We define weight functions by

wi(x) =t +r(x) and wi(x,y) = min{w,(x), w;(y)}.

For t € (0,T), a Holder exponent a € (0, 1) and a weight parameter f € R we define

glf(x) = f(y)l
[ ] 0, = su w (X, )0( ﬁ 5
Hejzw depmmy 0 d(x,y)*

11l 0 = [we” Fll oy

k
||f||c§:f(u) = Z(; “V]fHL;O_J_J(U) +[V'f] cpe Uy
=
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Here f is a section of a vector bundle over U C Y; equipped with an inner product and a compatible
connection. On tensor bundles associated with Y; we use the metrics induced by g;; however,
in view of Proposition 4.20, we could equivalently use those induced by ¢, = qgt + dn;. We use
parallel transport to compare the value of f at different points in Y. If U is not specified, then we
take U = Y;. We denote by C;‘: the Banach space C*¢ equipped with the norm || - || cha

Remark 6.4. For fixed t € (0,T) and § € R, the norms || - || -x.« and are || - ||cx.« equivalent, but
not uniformly so as t > 0 tends to zero. p

Note that, if f = 1 + B, then
6. * o < Lo ° LA .
©5) I - glloge < Wf s - gl
Also for f > y we have
(65) gk < 0Pl

Proposition 6.7. Let g be gluing data compatible with r. Then there is a constant ¢ > 0 and for each
t € (0, T) a G-bundle E; overY; together with a connection A; satisfying

(6.8) |Fs, A %”C?’;ﬂ <t

Moreover, the adjoint bundle gg, associated with E; satisfies

(6.9) pi(g,) = — > k; PD[S;]  with k; := # / Fa [?
j Xj

and

(6.10) (wa(8E, ), [Z]) = (wa(gg;), [Z])

foreach [X] € Hz(Xj)Hf C Hy(Yy).

Proof. The choices of p; and m; define a lift of the action of Z* < H; on R® X X; to the pullback of
E; to R® X X;. Passing to the quotient yields a G-bundle over (T? x X;)/H; which we denote by
E;, by abuse of notation. It follows from the compatibility conditions that the pullback of A; to
R® X X; passes to the quotient and induces a connection on E; which we denote by A;, again by
abuse of notation.

Fix t € (0,T). Recall that in (4.14) we defined R; ; := fj,t Nr; ¢ /4,¢/2] with Tj,t and r; as
defined in (4.9) and (4.13), respectively. By the compatibility conditions the monodromy of A;
along S; on the fibre at infinity matches up with the monodromy of 6 along Ey|s;. Thus, via parallel
transport the framing of E, at x; and the framing of E; yield an identification of E| R;. with E;| Rj.:-
Patching E, and the E; via this identification yields the bundle E;.
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Under the identification of Eo|r;, with Ej|g; ,, we can write
(6~11) Aj =0+ aj with Vkaj = t2+kO(rt_3_k),

because of Remark 4.15 and Proposition 5.10. Fix a smooth non-increasing function y: [0,{] —
[0, 1] such that y(s) = 1 fors < {/4 and y(s) = 0 for s > (/2. Set y; := y o r;. After cutting off A;
to 0 + y; - a; it can be matched with 0 and we obtain the connection A, on the bundle E;.

To estimate F; A ¢, note that on Yt\Tt the connection A, is flat. Thus we can focus our
attention on Tj ;. By the definition of A; we have

XtZ—)(t

FA :)(tFAj+d)(t/\aj+ [aj/\aj].
The last two terms in this expression are supported in R; ; and of order t* in C*# by (6.11). By
Example 3.4 and Proposition 4.20 we have

IEa, A ilcsgy = 1B, A G =il < o1l
It follows from Proposition 5.5 and Remark 4.15 that
VEE,, = t#2*F0(r;*75).

This implies that

”Ffb”co4  (Tj.0) < ct?

and, hence,
||FAJHCE’22"[(TJ-J) sc

by (6.6) with ¢ > 0 independent of ¢ € (0, T). Now, putting everything together yields (6.8).

Letj,: T3 X JT_l(B /Gj) — Y be as in Remark 4.11. Then 1} , g, is isomorphic to the pullback
of gg; to T? x n‘t(B /G; ) This implies (6.10) by naturality of Stlefel -Whitney classes. To compute
pl(gE,) we use Chern—Well theory to represent it as p;(3g,) = — 5= > tr(F4, A Fi,). We can write
this as p1(gg,) = 2; pj, where p; are compactly supported 4-forms on fj ¢ Recalling the definition
of [S;]in (4.12) and considering the behaviour of Poincaré duality with respect to coverings we see
that in order to prove (6.9) we have to show

0 .pj = ki PD [T x {x}] € H{(T® x ;} (B}/Gj), R).

From our construction of A, it follows that the form 1 ,p; is the pullback of a compactly supported
4—form on Xj, which we can write as — == tr(F4 A; A Fi,) where A = Aj + a and, by slight abuse
of notation, @ = (1 = y;)a;. Consequently, Gebjisa multlple of PD[T3 X {x}]. To see that the
multiplicity is precisely k; we use the Chern-Simons 3—form (see Donaldson and Kronheimer
[DKgo, Equation (2.1.17)]) to write

tr (FAj /\FAj) —tr (FAj /\FAJ.) =dtr (a/\dAj(x+ %a/\ [a/\a]).
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By Proposition 5.10 the 1-form « decays sufficiently fast to conclude from Stokes’ theorem that

1 1 1 )
_@ thr(FAjAFAj):_@/)(jtr(FAj/\FAj):Q/);j|FAj| :k_]

This completes the proof. O

Remark 6.12. If we identify all Y; with one fixed Y, then the isomorphism type of the bundles E;
does not depend on t € (0, T). We can therefore think of them as one fixed G-bundle E over Y.

7 A model operator on R® x ALE

In order to prove Theorem 1.1 we need to find (&, a;) € (Q° & Q') (Y, gg, ) such that

(7'1) *y (FA,+at A wt) + df\,+a,§t =0

for t € (0,T’) provided T’ € (0, T] is sufficiently small. Here *, denotes the Hodge *—operator
associated with ¢,. Equation (7.1) together with the Coulomb gauge condition dz a; = 0 can be

written as
(7.2) Lia, + Qi(a,) + *t(FA, Ar) = 0.

Here we use the notation a, = (¢, a;), the linear operator L, := L A, s defined as in (3.10) with
¥ =y = *;¢; and Q; is defined by

(7:3) Qu(@) = 3 * (l[aAal A ) +[a,€].

The key to solving (7.2) is a good understanding of the linearisation L,. In this section, we study a
model for L; on r; ([0, {)).

Let X be an ALE space, let A be a G-bundle over X and let A be a finite energy ASD instanton
on E. Fix an orthonormal triple (&', §2, §°) of constant 1-forms on R® and denote by (w;, w2, @3)
the triple of Kihler forms associated with X. Consider R* X X as a G,—manifold as in Example 2.8.
Denote by pps: R* x X — R® and px: R® X X — X the projection onto the first and second
factor, respectively. Slightly abusing notation, we denote the respective pullbacks of E and A to
R3 x X via px by E and A as well. As in (3.10) we define L4 : Q°(R®> X X, gg) ® Q}(R® x X, ag) —
QUR® x X, gr) ® Q'(R® X X, gg) by

0o &
La= (dA A dA))

with ¢ as in (2.10).
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Proposition 7.4. If we iderztifypl"vT*R3 with py ATT*X via §' — wy, §° — wy, §° — —ws3 and
accordingly

Q' (R* x X, gp) ® Q'(R* X X, gg)
= QY (R*xX, p [ ROATT*X@T*X)®g¢|),

then the operator L5 can be written as Ly = F + D4, where

3
B (0 b4

F(, w,a) = ; ( — (0w, w;), 0;¢ - wi,Iiaia) and Dj = (5; 0 ) .

Here 54: QY(X,gr) — Q°%X, ar) ® Q¥(X, gg) denotes the linear operator defined in (5.9). Moreover,

545%
5454

where Ags = — 33_, 8? and 9; denotes taking the derivative of a section of p3 [(ROATT*X&T*X)®4E)]
in the direction of the i coordinate on R,

(7.5) LLa = Ags + (

Proof. 1t is a straight-forward computation to verify that Ly = F + D4. It is also easy to see that
F*F = Ags and that F*Dy + D, F = 0. This immediately implies (7.5). m|

To understand the properties of L4 we work with weighted Holder norms. We define weight
functions by
w(x) =1+ |m(px(x))| and w(x,y) = min{w(x), w(y)}.
Here 7: X — C?/G denotes the resolution map associated with the ALE space X. For a Holder
exponent « € (0, 1) and a weight parameter € R we define
) - f)

glf
[flevaqy =  sup  wixy)*” :
C'B ) d(x,y)<w(x,y) d(x, y)“

1 s = 1w ooy
k
ek = JZ 19/ f s ) + [V Flene w)-

Here f is a section of a vector bundle over U C R® X X equipped with an inner product and a
compatible connection. We use parallel transport to compare the values of f at different points.
If U is not specified, then we take U = Y;. We denote by CE’“ the subspace of elements f of the
Banach space CK% with | fllok.e < co and equip it with the norm || - [| -x.a-

Under the assumptions ofSection 6 and with g denoting compatibleﬁ gluing data suppose that
X = Xj and that A = A;. Define i;, : R* X ﬁjii(Bé/Gj) — fj’t by

5.1 (x,y) = [(tx, y)].
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For a parameter § € Rand a = (£,a) € Q°(Y;,ag,) ® Q'(Y;,gE,) we define

(7.6) sp.1(E @), y) = P71 (80,0 E, (15,0)" a).

Proposition 7.7. There is a constant ¢ > 0 such that fort € (0,T)
1 N « < o
P “Q“c;t (T.0) ”ﬂ;,tﬂ“dﬁ% (RSX”;lt(Bé/Gj)) S CHQHCEt (Tj.0)
—st . 1/2 i
IL:a Sﬁ—l,tLAjsﬂJQ”CZ:f’M(Tj,t) St ”g”c}ii(]}.’t)'

Proof. The map i; ; pulls back the metric on Tj,t associated with gzgt, that is g3, = grs ® tzng,
to t%(gps ® 9gx;)- This implies the first estimate in view of Remark 4.15. The second estimate is
immediate from the construction of A; and Proposition 4.20. m]

Proposition 7.8. Let f € (—3,0). Thena € C};“ is in the kernel of L : C};"‘ — C%’f‘l if and only if it
is given by the pullback of an element of the L? kernel of 54 toR® x X.

The proof of Proposition 7.8 relies on the following lemma which we will prove in the Ap-
pendix A.

Definition 7.9. A Riemannian manifold X is said to be of bounded geometry if it is complete, its
Riemann curvature tensor is bounded from above and its injectivity radius is bounded from below.
A vector bundle over X is said to be of bounded geometry if it has trivialisations over balls of a
fixed radius such that the transitions functions and all of their derivatives are uniformly bounded.
We say that a complete oriented Riemannian manifold X has subexponential volume growth if for
each x € X the function r — vol(B,(x)) grows subexponentially, that is, vol(B,(x)) = o(exp(cr))
as r — oo for every ¢ > 0.

Lemma 7.10. Let E be a vector bundle of bounded geometry over a Riemannian manifold X of bounded
geometry and with subexponential volume growth, and suppose that D: C*(X,E) — C*(X,E) isa
uniformly elliptic operator of second order whose coefficients and their first derivatives are uniformly
bounded, that is non-negative, such that (Da,a) > 0 for alla € W>*(X, E), and formally self-adjoint.
Ifa € C*(R" X X, E) satisfies

(ARn + D)a =0

and ||al|r~ is finite, then a is constant in the R" —direction, that is a(x, y) = a(y). Here, by slight abuse
of notation, we denote the pullback of E toR" X X by E as well.

Proof of Proposition 7.8. Suppose a € Ck“ satisfies Lya = 0. Then g is smooth by elliptic regularity
and satisfies L’,Laa = 0. By Definition 4.2 and by Proposition 5.5 both R?® x X and gg have
bounded geometry. Moreover, by Proposition 7.4, L, Ly = Ags + D’ D4 and D, D4 is non-negative,
self-adjoint, uniformly elliptic of second order and its coefficients and their first derivatives are
uniformly bounded as can be seen from Proposition 5.5. Therefore, we can apply Lemma 7.10 to
conclude that a is invariant under translations in the R*~direction and, hence, by Proposition 5.10
and Proposition 7.4 must be the pullback of an element in the L? kernel of 4. m]
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Proposition 7.11. For § € R there is a constant ¢ > 0 such that
., < L , + o0).
lalleye < e(Lagllcse + lalls

Proof. This is a standard result; see Remark 4.27.
The desired estimate is local in the sense that is enough to prove estimates of the form

lalleyeq < e(ILagllcy + llals)

with ¢ > 0 independent of i, where {U;} is a suitable open cover of R® x X.

Fix R > 0 suitably large and set Uy := {(x,y) € R®* X X : |7(x)| < R}. Then there clearly is a
constant ¢ > 0 such that the above estimate holds for U; = Uj. Pick a sequence (x;,y;) € R® x X
such that r; := |7(y;)| > R and the balls U; := B,,5(x;, y;) cover the complement of Uy. On U;, we
have a Schauder estimate of the form

lallzswy + rilalcnawy, + rillVadll oy, + i [Vaa] coe,
< C(ri||LA£”L°°(V,~) + rl.”a [LAQ] coavy) T ||Q||L°°(V,—))

where V; = B, /4(x;,y;) and a = (£, a). By arguing as in Proposition 4.20 and Proposition 5.10 one
shows that the constant ¢ > 0 can be chosen to work for all i simultaneously. Since on V; we have
%r,- < w < 2r;, multiplying the above Schauder estimate by r; P yields the desired local estimate.

O

8 Deforming to genuine G,—instantons

We continue with the assumptions of Section 6 and we suppose that the connection A, on G-bundle
E; over Y; was constructed using Proposition 6.7 from a choice of compatible gluing data g. In this
section we will prove the following result which will complete the proof of Theorem 1.1.

Proposition 8.1. Suppose that 0 is acyclic and that each A; is infinitesimally rigid. Then there are
constants T’ € (0, T] andc > 0 as well as, for eacht € (0,T'), a, = (&, a;) € Q°(Y;,05,)0 Q" (Y1, 9E,)
such that

(82) *y (FAt+at/\¢t)+dA~t+at§t:0
and||a,||cre < ct'/2. Moreover, the Go—instanton A; = A; + a; is acyclic.
1t

As discussed in Section 7 it is crucial to understand the properties of the linear operator L;.
The key to proving Proposition 8.1 is the following result.

Proposition 8.3. Given € (=3, 0) there are constants T’ € (0,T] and ¢ > 0 such that fort € (0,T")
we have

HQHCE,L: < CHLIQHCféi,t'
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Before we move on to prove this, let us quickly show how it is used to establish Proposition 8.1.
Recall the following elementary consequence of Banach’s fixed point theorem.

Lemma 8.4 ([DK9o, Lemma 7.2.23]). Let X be a Banach space and let T: X — X be a smooth map
with T(0) = 0. Suppose there is a constant ¢ > 0 such that

ITx = Tyll < c(llx]l + [lyIDllx — yll.
Then ify € X satisfies ||y|| < =, there exists a unique x € X with ||x|| < solvmg
x+Tx =y.
Moreover, this x € X satisfies ||x|| < 2||y]|.

Proof of Proposition 8.1 assuming Proposition 8.3. By Proposition 8.3 the operator L;: Cl’a -
o _,; 1s injective and has closed range. Therefore its cokernel is isomorphic to the kernel of
the dual operator L;. By elliptic regularity any element in the kernel of L} is smooth and thus,
since L; is formally self-adjoint, an element in the kernel of L;, which is trivial. This shows that
L; is invertible. Denote its inverse by R; : cﬂ’ft - Ci’ft.

If we set a, := R;b,, then (8.2) becomes

(85) Qt + Ql’(RtQt) = =¥ (FAt A ‘,bt)
It follows from Proposition 8.3 and (6.5) that

10:(Reb,) - Qt(RtQZ)HCg,Zal < c(llé1 lee.e + IIQzllcg,Zat) 16y = by llco.e
with a constant ¢ > 0 independent of t € (0, T). Since by Proposition 6.7

||FAt A ¢t||CE’2?’[ <ct'?,

Lemma 8.4 provides us with, for each t € (0,T”), a solution b, of (8.5) satisfying ||b, ||C0 « < ctt/?
provided T’ € (0, T] was chosen sufficiently small. Then

Q[ = (’ft’at) = Rtét € Ci,ft

is the desired solution of (8.2) and satisfies ||a, ||C1 « <ctl/?

It follows from elliptic regularity that a; and tflus A, = A, + a; is smooth. To see that A, is
acyclic, that is, L, is injective, note that ||R;La, — id||cte < ct'/? and thus Ly, is invertible for
t € (0,T") provided T” € (0, T] was chosen sufficiently small |

Before embarking on the proof of Proposition 8.3, it will be helpful to make a few observations.
On Y,\T, the operators L, and Ly agree. For fixed ¢ > 0, the norms || - ||Ck (1 [e,00)) ATE uniformly
equlvalent to the corresponding unweighted Holder norms. Moreover the restriction of L; to
r;![e, o) becomes arbitrarily close to Ly restricted to {x € Y, : d(x,S) > ¢} as t goes to zero. These
observations and standard Schauder estimates combined with Proposition 7.7 and Proposition 7.11
yield the following Schauder estimate.
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Proposition 8.6. Given § € R there is a constant ¢ > 0 such that for allt € (0,T) we have
L, < L , X + L .
lalleser < e(ILiallcne + lally

This reduces the proof of Proposition 8.3 to the following statement.

Proposition 8.7. Given € (—3,0) there are constants T’ € (0,T) and ¢ > 0 such that for all
t € (0,T") the following holds:
lalz, < cliZealcse .

Proof. Suppose not. Then there exists a sequence (g;) and a null-sequence (;) such that

1
lglles, =1 and ”Ltic_lillc%j"l,ti <5

Hence, by Proposition 8.6, we have
(838) laleye < 2.

Pick x; € Yy, such that
we, (xi) P la;(x;)| = 1.

After passing to a subsequence we can assume that one of the following three cases occurs. We
will rule out all of them, thus proving the proposition.

Case 1. The sequence (x;) accumulates on the regular part of Yy: limry,(x;) > 0.

Let K be a compact subset of Yy\S. We can view K as a subset of Y;. As t goes to zero, the
metric on K induced from the metric on Y; converges to the metric on Yy, similarly we can identify
Eo|x with E;|x and via this identification A, converges to 6 on K. By (8.8) the sequence (g, |x) is
uniformly bounded in C%. We can thus extract a convergent subsequence using Arzela—Ascoli.
Using a diagonal sequence argument over a sequence of compact sets (K;) exhausting Y, \S we can
pass to a further subsequence which converges in C "2 6 a limit a € Q'(Yo\S, a5, ® Q1 (Yo\S, g, ).

loc
This limit satisfies
(8.9) la| <c-d(-,S)f
as well as
Lga = 0.

Since § > -3, it follows from (8.9) that a satisfies Lga = 0 in the sense of distributions on all of Y}
and, therefore, is smooth by elliptic regularity. Because 6 is assumed to be acyclic, a must be zero.
However, by passing to a further subsequence we can arrange that (x;) converges to some point
x € Yp\S. At this point we have |a|(x) = d(x, S)? # 0. This is a contradiction.

Case 2. The sequence (x;) accumulates on one of the ALE spaces: limr;,(x;)/t; < oo.
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There is no loss in assuming that each x; lies in T; ;, for some fixed j. With Sp,¢; asin (7.6)
we define @, := sp ,,4; and denote by %; a lift of x; to R? x nj_}(B‘é /Gj). This rescaled sequence
satisfies, in the notation of Section 7,

Jacye <t and 1+ mGe)) P la) >

as well as
(8:10) 1Ll < 211

Arguing as in the previous case, we can extract a subsequence of (a;) which converges to a limit

ace C;a/z in Cll(;f/z on R? X X. It follows from (8.10) that a satisfies

La = 0.

By Proposition 7.8, a must be zero since f € (=3,0) and A; is infinitesimally rigid. However,
by translation we can arrange that the R®*~component of X; is zero and thus we can view X; as
a point in X;. Then the condition limd;,(x;)/t; < co translates to lim |r;(X;)| < co. Therefore,
we can assume without loss of generality that X; converges to some point x € X;. But then
la(x)| = %(1 + |7tj(5c)|)/3 > 0, which contradicts a = 0.

Case 3. The sequence (x;) accumulates on one of the necks: limr;,(x;) = 0 and limr,(x;)/t; = co.

As in the previous case, we rescale to obtain (@;) and (x;), and we arrange it so that the
R?-component of X; is zero. Since limd,,(x;)/t; = oo, we have lim |r;(x;)| = oo. Fix a sequence
(R;) tending to infinity such that ; := R;/|r;(x;)| goes to zero. Using ;: X — C?/G, we can
think of the sets R® x (CZ\B‘I*QI,) /G;j as subsets of R* X Xj. Restricting to these sets and rescaling
everything by 1/|;(%;)| we obtain, without changing notation, g, € Q° (R*> x (C*\B;,)/G;) &
Q' (R* x (C*\B}.)/G;) and %; € C*\Bj, satisfying

lallcre < 8 and 15| 1a,(5)] > §
as well as
Id, ey < 4/
Here the norms || - ||ck-« are defined like those in Section 7 except with the weight function now

defined by w(x,y) := |y| for (x,y) € R® x C*/G;. The operator L is defined by
L(&,a) = (d*a,d& + (Yo A da))

with g := 1 A w1 + 82 A 8> Awp + 8% A8 Awy — 8 AS* A ws and w; € Q(C?) as in Section 4.

. . l,a/2 .
As before, we can extract a subsequence converging in G’ /2 {0 a limit

ae Q"R x (C*\{0})/G)) ® Q'(R® x (C*\{0})/G))
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satisfying
(8.11) la| < cwf

as well as
La=0.

Since f > -3, it follows from (8.11) that a satisfies La = 0 in the sense of distributions on all of
R® X C?/G; and therefore a is smooth by elliptic regularity. It also follows from (8.11) that both
a and Va are uniformly bounded: This is clear outside a tubular neighbourhood of R* x {0}. If
Bj is a ball of radius one centred at some point in R* x {0}, then (8.11) gives a uniform bound on
llallLe(B,), for some fixed p € (1, o). Using elliptic estimates this yields a uniform Wk? estimate
on the ball of radius one-half; hence, using Sobolev embedding, uniform bounds on a and Va.
Because L*L = Aps + Acs, if follows from Lemma 7.10 that a is invariant under translations in
the R*~direction. Thus we can think of the components of a as harmonic functions on C?. Since
B < 0, they decay to zero at infinity and thus vanish identically. However, we know that |x;| = 1
and thus a subsequence of (x;) converges to a point ¥ € C?/G; with |x| = 1 at which |a|(x) > i,
contradicting a = 0. O

9 Examples with G = SO(3)

We will now explain how to use Theorem 1.1 to construct a few concrete examples of G,—instantons
on the G,—manifolds from [Joyoo, Sections 12.3 and 12.4]. The flat G,-structure ¢, on T’ given by
(2.1) is preserved by a, B,y € Diff(T”) defined by

a(XI,. . 'ax7) = (x19x2ax3’ —X4, —X5, =X, _x7)’
ﬁ(xl" . ',x7) = (x17_x2$ —X3, X4, XS,% — X6, _x7)’
y(x1, ..., x7) = ( — X1, X2, —X3, X4, —X5, X6, % - x7).

It is easy to see that T = (a, f,y) = Z5.

To understand the singular set S of T7 /T note that the only elements of T' having fixed points
are a, ff and y. The fixed point set of each of these elements consists of 16 copies of T>. The group
(B,y) acts freely on the set of T° fixed by @ and {(a, y) acts freely on the set of T° fixed by f, while
af € {a, B) acts trivially on the set of T> fixed by y. It follows that S consists of 8 copies of T°
coming from the fixed points of @ and 8 and 8 copies of T®/Z,. Near the copies of T° the singular
set is modelled on T? x C?/Z, while near the copies of T®/Z, it is modelled on (T° x C?/Z,)/Z,
where the action of Z, on T® X C?/Z, is given by

(xlaXZax37 i(zh ZZ)) = (xlaxZax3 + %a i(Zl’ _22))~

The 8 copies of T° can be desingularised by any choice of 8 ALE spaces asymptotic to C?/Z,. To
desingularise the copies of T%/Z, we need to chose ALE spaces which admit an isometric action
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of Z, asymptotic to the action Z; on C?/Z, given by +(z1, z5) > *(z1, —z,). Two possible choices
are the resolution of C?/Z, or a smoothing of C?/Z,. See Joyce [Joyoo, pages 313-314] for details.

We construct our examples on desingularisations of quotients of T /T. To this end we define
01,02, 03 € Diff(T7) by

. 1 1 1

o1(X1, ..., x7) = (thz, 5 T X3,5 +X4,5 + xs,xé,x7),
o 1 1

oo(X1, ... 5X7) = (Xl, 3 T X2,X3,5 + X4,X57X6,X7),
(1 1 1

o3(x1, ..., X7) = (5 + X1, X2, X3, X4, 5 + X5, 5 + x6,X7)-

The elements o; commute with all elements of I" and thus act on T7 /T. Moreover, this action is
free.

Example 9.1. Let A := (03, 03). By analysing how A acts on the singular set of T7/T one can see
that the singular set of Y, := T’ /(T x A) consists of one copy of T, denoted by S;, and 6 copies of
T3/Z,, denoted by S,, ..., S;. S; has a neighbourhood modelled on T? x C?/Z,, while S,, . .., Ss
have neighbourhoods modelled on (T® x C?/Z,)/Z, where Z, acts by +(z1, z5) — *(z1, —z2) on
C?/Z,. As before, S; can be desingularised by any choice of an ALE space asymptotic to C?/Z,.
Ss, ..., S can be desingularised by the resolution of C?/Z;, or a smoothing of C?/Z,.

To compute the orbifold fundamental group 1 (Yy), note that it is isomorphic to the fundamental
group 71(Y\S) of the regular part of Y;. Denote by p: R” — Y the canonical projection. Then
p: p 1 (Yo\S) — Yp\S is a universal cover. Up to conjugation we can therefore identify ;(Y,) with
the group of deck transformations

Jl'l(Y()) = <(X, ﬁ, Y,02,03,T1,..., T7> C AH(7) = GL(7) < R7.

Here we think of «, f3, y, 02, 03 as elements of Aff(7) defined by the formulae above and r; translates
the i'h coordinate of R7 by one. The group 7;(Y;) is a non-split extension

02" - m(Yy) oTxA—0.

To work out the orbifold fundamental group 7;(T;) of T, again up to conjugation, one simply has
to understand the subgroup of deck transformations preserving a fixed component of p~'(T;) C
p1(Yp\S). In this way one can compute

7T1(T1) = (0!, 71, T2, T3> s

m(Ty) = (B, o3a, 74, T4, T5) m(Ts) = (130, 03¢, 71, T4, T5)
7T1(T4) = <Y, 05,59 02, T4,TG>, 7T1(T5) = <T3)’, 7305,5, 02, T4,T6>,
m1(Te) = {15y, 15t P, 02, T4, Ts) m(T7) = {1375y, 13750 3, 02, T4, T6) -

Here 7, does not appear explicitly in ;(T}), for j = 4,...,7, because 022 = TyT4.
Denote by V := <a, b,cla® =b*=c*=1,ab= c> = 72 the Klein four-group. V can be thought
of as a subgroup of SO(3): a = diag(1,-1,-1), b = diag(-1,1,-1) and ¢ = diag(-1,-1,1). We
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define p: m(Yy) —» V < SO(3) by

B.y,t1,...,T7 1, o a,

oy > a, o3 — b.
To see that the flat connection 6 induced by p is acyclic we use the following observation.

Proposition 9.2. A flat connection 6 on a G-bundle Ey over a flat G,—orbifold Yy corresponding to
a representation p: m(Yy) — G is acyclic if and only if the induced representation of m1(Yy) on
g ® (R” ® g) has no non-zero fixed vectors.

Proof. Since Yj is flat as a Riemannian orbifold and 0 is a flat connection
LyLg = V,Vy.

Therefore, all elements in the kernel of Ly are actually parallel sections of the bundle gg, & (T*Y, ®
ag,) and these are in one-to-one correspondence with fixed vectors of the representation of 7;(Y)
ong ® (R’ ®g). ]

The elements o, and o3 act trivially on R” and their action on $0(3) has no common non-zero
fixed vectors. Therefore the action of 7;(Yp) on g ® (R’ ® g) has no non-zero fixed vector and thus
0 is acyclic.

The monodromy representation pj|g, : G; = Z; — SO(3) associated with the flat connection 0
is non-trivial only for j = 1. Let A; := A ; be the infinitesimally rigid ASD instanton on E; := Ey ;
given in Proposition 5.22. For j = 2,...,6 we choose A; to be the product connection on the
trivial SO(3)-bundle E;. We take p; to be trivial. For j = 2,...,6 we can choose p; accordingly to
satisfy the compatibility conditions. Thus we obtain examples of G;—instantons on each of the
desingularisations of Y by appealing to Theorem 1.1.

Note that any choice of resolution data for T7 /(T X A) lifts to an A-invariant choice of resolution
data for T7/T. We can then carry out Joyce’s generalised Kummer construction in a A-invariant
way and lift up the G;—instanton constructed above. However, we could not have constructed this
G,—instanton directly using Theorem 1.1, since the lift of 6 to T” /T is not acyclic.

Example 9.3. Here is a more complicated example. Let Y, := T”/(T x A) be as before. Define
p: 7T1(Y0) -V C SO(S) by

YoTiseoonT7 > 1, a - a, B — b,

oy — b, 03 > a.

Again, the resulting flat connection 6 is acyclic. For j = 1,2,3 let A; := Ag; be the rigid ASD
instanton on E; := E, ;. By adapting the framings of E; and E3, we can arrange that A, and As are
asymptotic at infinity to the flat connection with monodromy given by b € V. For j = 4,...,7
let A; be the product connection on the trivial bundle E;. To be able to extend this to compatible
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gluing data we need a lift p; of the action of Z; on X to E; preserving A; and acting trivially on
the framing at infinity for j = 2, 3. If X; is a smoothing of C?/Z,, then the Z, action on X ; does lift
to E; preserving A;. However, the action does not lift if X; is the resolution of C?/Z;. The reason
for this is that in the first case the action of Z, on H(X, R) is given by the identity, while in the
second case it acts via multiplication by —1; see Joyce [Joyoo, pages 313—314]. Thus we can only
find compatible gluing data if we resolve both S, and S; using a smoothing of C?/Z,.

Here is a small modification of this example. Define p: m1(Yy) — V < SO(3) by

YsTlse-.sT7 1, o a, B—b,

oy — b, 03 > C.

To find compatible gluing data, one simply has to compose p; as above with multiplication by
b € G(E)), for j = 2,3.

Example 9.4. Let B := (01,05,03) and Yy := T7/(T x B). Then the singular set of Y; consists
of 4 copies of T3/Z,, denoted by Si,...,Ss, each of which has a neighbourhood modelled on
(T® x C%/Z,)/Z; where Z; acts on C%/Z, by +(z1,22) — #+(z1,—z;). The orbifold fundamental
group m1(Yy) is given by

7T1(Y0) = <0{, ﬁ, Y501,02,03,T1, ..., T7> C AE(7)
Up to conjugation the fundamental groups of the neighbourhoods T; of S; are given by

m(Th) = (@, 75 '15 ' fo10203, 71, 72, 73) , m(Ty) = (B, 03,71, 74, T5) ,

m1(T3) =y, ap, 02, T4, T6) » m1(Ty) = (t3y, 30, 02, T4, Tg) -
Define p: m1(Yy) — V < SO(3) by

a,f,03,11,...,77 > 1, y—b

o] a, oy b.

The induced flat connection 6 is clearly acyclic. As before, for j = 3,4, we require S; to be
desingularised using a resolution of C?/Z; in order to be able to find a lift §;. Also note that, for
Jj = 3,4, now we have make to a non-trivial choice for p;, but this causes no problem since b € V
lies in &(E;) and preserves A;.

Again, the resulting G,—instanton can be lifted to appropriate o;—invariant desingularisations
of T7 /(T x A); however we could not have constructed the lifted G,-instanton directly, since the
lift of 6 to T” /(T X A) it is not acyclic.

This list of examples is not exhaustive. The reader will have no difficulty finding more examples
by modifying the ones given above.
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10 Proof of Theorem 1.6

The key to proving Theorem 1.6 is the following observation.

Proposition 10.1. Let X denote an ALE space asymptotic to C*/Z,, let E be a SO(3)—bundle with
non-trivial wy(E) and let D C X be a discrete subset. Then every connection A on E|x\p satisfies

YM(A) :/ |Fal? > 4r®.
X\D

Equality is achieved if and only if A is gauge equivalent to the rigid ASD instanton A, from
Proposition 5.22.

The proof requires some knowledge of Sedlacek’s work on weak compactness in 4-dimensional
gauge theory [Sed82]. For the reader’s benefit I will briefly recall his main results.

Theorem 10.2 (Sedlacek [Sed82, Theorem 3.1]). Let M be a Riemannian 4—-manifold and let E be
a G—bundle over M where G is a compact Lie group together with a fixed embedding G C U(n) C
C™". Suppose that (A;) is a sequence of connections on E whose energy is uniformly bounded, i.e.,
YM(A;) = ||[Fa,llrz < c for some fixed finite constant c. Then, after passing to a subsequence, there
exists a finite subset D C M and a cover {Uy} of M\D consisting of small geodesic balls over which E
is trivialised, such that on each U, the sequence (A;|y,) converges up to gauge transformations to a
connection A, € W-4(U,, T*U, ® gg) weakly in W2 and on Uap = Uy N Ug the connections A,
and Ag are related by a transition function gop € W*%(Uygp, G).

Sedlacek derived this result in a rather straight-forward manner from the work of Uhlen-
beck [Uhl82a]. A proof of the same result using a different method can be found in Kessel’s PhD
thesis [Keso8, Chapter 3].

Definition 10.3. In the situation of Theorem 10.2 we say that the sequence (A;) converges weakly
to the W2 connection A = (Ay) on the W*? G-bundle E = (gqp).

In the case G = SO(3) the main result of [Sed82] can stated as follows.

Theorem 10.4 (Sedlacek). Let M be a Riemannian 4—manifold. Then for each w € H*(M, Z,) the
infimum

inf{YM(A) : A is a connection on a SO(3)—bundle E with w,(E) = w}
is attained. Denote this infimum by m(w).

Proof Sketch. Let (A;) be a sequence of connections on SO(3)-bundles E; with w,(E;) = w with
a limiting W12 connection A = (Ay) a on a W%2 SO(3)-bundle E = (gap)- Then each A, is
weakly Yang-Mills [Sed82, Theorem 4.1]; hence, each Aa and thus also each g, 5 is smooth [Seds2,
Proposition 4.2]. By Uhlenbeck’s removable singularities theorem [Uhl82b, Theorem 4.1] A extends
to a smooth connection A on a smooth bundle E over M. By lower semi-continuity of the Yang-
Mills functional under weak convergence, YM(A) < m(w). According to [Sed82, Theorem 5.5]
the second Stiefel-Whitney class is preserved in this limit procedure, i.e., wo(E) = w and thus
YM(A) = m(w). |
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Proof of Proposition 10.1. We already know that the asserted minimum is achieved for A = Ag ;.
Now, let A be any connection on a SO(3)-bundle E with non-trivial wy(E). By Theorem 10.4 we
may assume that the energy of A realises the infimum m(w) where w € H%(X, Z,) is the unique
non-trivial element. By Proposition 5.5 it follows that in some framing A is asymptotic to a flat
connection 6 over (C?\{0})/T. By Theorem 5.16 the L? index of &4 is given by

XSD(S)(_l) -3

indexd, = —2/ p1(A) +
. 4

Here yy(3) is the character of the representation of Z, on s0(3) associated with 6. Depending on
whether 0 is trivial or not the second summand, which we denote by ¢ in the following, is either 0
or —1. Since d4 is quaternionic linear, the index of 4 is divisible by four. We can write the energy
of A as

YM(A) = 2/ |F:1> = 87{2/ p1(A)
X X
= 2/ |F%|? + 47?(index 54 — ).
X

Ifindex 84 > 0, thenindex 84 > 4 and thus YM(A) > 16x2. Ifindex 84 < 0, thenindex 54 < —4 and
thus YM(A) > 1272, In both cases A cannot be a minimiser for the energy; therefore, index 54 = 0.
If ¢ = 0, then f X p1(A) = 0 and 0 is trivial; however, this is impossible: The whole situation is
conformally invariant and we may thus think of X as having a cylindrical end. Now, we can double
X to obtain a compact manifold W and construct a SO(3)-bundle F over this manifold which
coincides with E over one half of W and is trivial over the second half of W. This bundle will
have p;(F) = 0 and wy(F)? = 2 mod 4 which contradicts the identity p;(F) = w,(F)? mod 4, see
[DK9o, Equation (2.1.36)]. We therefore have ¢ = —1 which implies that YM(A) > 472, Moreover,
it follows that 6 has precisely one non-trivial parallel section, A is anti-self-dual and, hence,
dimker 54 = index 54 = 0 and 84 is invertible, say, from W12 to L?. The fact that 54 is invertible
can be used to extend the non-trivial parallel section of € to a non-trivial parallel section of E.
Therefore E is of the form R @ £ and A comes from a U(1) ASD instanton on £; hence, it must be
gauge equivalent as a SO(3) ASD instanton to Ay ;. O

The above combined with a contradiction argument based on Sedlacek’s work yields the
following.

Proposition 10.5. In the situation of Proposition 10.1 suppose that (U;) is an exhaustion of X by
increasing compact sets. Then for each ¢ > 0, there is an iy > 0 such that fori > iy the following
holds: If A is a smooth connection on E|y,, then

YM(A) = / |Fal? > 4n% —¢.
Ui
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Now, as in the hypothesis of Theorem 1.6, let Y, be an admissible G,—orbifold all of whose
singularities S; are modelled on (T?>xC?/Z,)/H; and let Y be compact 7-manifold and (¢, );(, 1) be
a family of torsion-free G,-structures on Y obtained via Joyce’s generalised Kummer construction
from resolution data for Yj. Suppose that E is a SO(3)-bundle over Y with the property that

)
(10.6) pi(E) = - ; - PDIS;]
where ¢; = 1 if Hy(X;)®/ ¢ Hy(Y) is non-trivial and w,(E) pairs non-trivially with Ha(X;)%
and ¢; = 0 otherwise. Suppose that (A;);¢(o,7) is a family of connections on E such that A; is a

G;—instanton over (Y, ¢;).
By (3.6), (10.6) and Theorem 4.16 we have

YM(A;) = 4r7° Z gjvol(S;) + O (tl/Z) .
J
Moreover, it follows from Proposition 10.5 that

™ (At|,;1[0,5§]) > 4n? Y evol(S;) - o(1)

with r; asin (4.13) and & € (0, 1/4] fixed, that is, the energy of A, is mostly concentrated inside the
resolution locus. Consequently, the energy outside the resolution locus goes to zero

(10.7) YM (At|r;1(5§,oo)) = o(1).

Theorem 10.8 (Nakajima [Nak88, Lemma 3.1]). Let M be a Riemannian n—manifold and let E be
a G—bundle over M. Then there are constants c, ry, &y > 0, such that the following holds. Let A be a
Yang—Mills connection on E. If x € M and 0 < r < ry are such that

(10.9) €= r4_"/ |[Fa|?vol < &,
By (x)

then

sup |Fal*(y) < cer™®.
yeBr(x)

Remark 10.10. This result is one of the cornerstones of compactness theory for the Yang-Mills
equation in higher dimensions. Its proof heavily relies on Price’s monotonicity formula [Pri83]
which says that the quantity ¢ = ¢(r) defined in (10.9) is (essentially) monotonically increasing in r.

It follows from (10.7) and Theorem 10.8 that on every fixed closed ball in Y,\S the L*-norm
of F4, will be arbitrarily small provided ¢t > 0 is sufficiently small; hence, we can put A; into
Uhlenbeck gauge [Uhl82a, Theorem 1.3]. In this gauge the G;-instanton equation becomes elliptic

37



and, using standard elliptic theory, one can show that on every closed ball in Y;\S there exist
gauge transformations (g;) such that (§;A;) converges to a flat connection on this ball. As in
[DKgo, Section 4.4.2] these local gauge transformations can be patched to yield global gauge
transformations (g;) such that (g;A;) converges to a flat connection 0 in Cj> (Yo\S).

From Proposition 6.2 it follows that 8 extends to an orbifold flat connection on Y;. This
completes the proof of Theorem 1.6. O

A An infinite-dimensional Liouville-type theorem

The following result is an abstraction of various results that have appeared in the literature, for ex-
ample, in Pacard-Ritoré’s work on the Allen—Cahn equation [PRo3, Corollary 7.5] and in Brendle’s
unpublished work on the Yang—Mills equation in higher dimension [Breos, Proposition 3.3].

Lemma A.1. Let E be a vector bundle of bounded geometry over a Riemannian manifold X of bounded
geometry and with subexponential volume growth, and suppose that D: C*(X,E) — C®(X,E) isa
uniformly elliptic operator of second order whose coefficients and their first derivatives are uniformly
bounded, that is non-negative, such that {Da, a) > 0 for alla € W*%(X, E), and formally self-adjoint.
Ifa € C*(R" X X, E) satisfies

(AgRn +D)a =0

and ||a||~ is finite, then a is constant in the R"—direction, that is a(x,y) = a(y). Here, by slight abuse
of notation, we denote the pullback of E toR" X X by E as well.

Here is a heuristic argument. Denote by d the partial Fourier transform of a in the R"-direction.
Then a solves (D+|k|?)d = 0. But D+ |k|? is invertible for k # 0. Thus @ is supported on {0} X X and
hence must be a linear combination of derivatives of various orders of I'(E)-valued —functions.
Reversing the Fourier transform shows that a must be a polynomial in R". But then it follows
from the assumptions that a is constant in the R"-direction. The actual proof will be slightly more
pedestrian.

First we need to set-up some notation. We fix a point p € X and denote by p: X — [0, )
a smoothing of the distance from p, as in Kordyukov [Korgi, Proposition 4.1]. For § € R we
introduce a weight function ws = e~%? and weighted Hilbert spaces Wg’Z(X , E) consisting of
locally integrable sections f such that ws - f lies in W%2(X, E) with inner product defined by
(-, - >W§’2 = (wg-, ws-)wsz2. As usual we set Lg(X, E) = Wg’z(X, E).

Proposition A.2. For each ko > 0 there is a constant ¢ = e(kg) > 0 such that for all § € (—¢,¢) and
k € [ko, o) the operator D + k*: W(SZ’Z(X, E) - L25(X, E) is an isomorphism. Moreover, for { > 0
there is a constant cy = c¢(kg) > 0 such that

(A.3) |0¢(D + k%) ally 2 < ce(t+ k) llallrg

for all k € [ko, ) and a € L5(X, E).
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Proof. By standard elliptic theory we have
lallwe: < c(lIDallzz + llallzz).
Since D is non-negative, we have
|Dallz: < ||(D+k*)d||,, and K?*allz < ||(D +k%)q|| .-
Putting everything together yields
lallyzz < et + 1/kDI|(D + k)l .

for k € [k, o). This implies that D + k?: W%2 — L? is an injective operator with closed range. It
is also surjective, since its co-kernel can be identified with the L? kernel of D + k? which is trivial.

We now argue as in [Korg1, Proposition 4.4]. Via the Hilbert space isomorphism W§? = W*?
defined by multiplication with ws the operator D+k?: W2? — L25 is equivalent to Ds+k?: W2? —
L? where Ds := wsDwj'. We can write Ds as

Ds =D + 5P5
with Ps: W22 — L? bounded independent of §. Therefore,
[((D+K?) = (Ds + K*)) (D + &) "a| . < 18le(1 + 1/k)lall 2.

If we choose ¢ = ¢(ky) > 0 sufficiently small, then for § € (—¢, ¢) the factor on the right-hand sight
is less than %; thus, the series

(D5 + k5 = (D+K) 7" Y [((D+K) = (D5 + k%) (D + k) ']’

i>0

converges and the operator norm of (Ds + k?)™! is bounded by 2¢(1 + 1/ kg). This establishes (A.3)
for £ = 0. For £ > 0, we have

¢ {+1
D +kY) " = Z Z cije kK [(D+K))
i=0 j=2
for universal constants c; j . Thus (A.3) for £ > 0 can be reduced to the case £ = 0. O

Lemma A.1 can now be proved using an argument similar to the one used by Brendle [Breos,
Proposition 3.3]. This is essentially the proof of the ingredients from classical distribution theory
used in the heuristic proof adapted to our infinite-dimensional setting.

Proof of Lemma A.1. We proceed in 3 steps.
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Step 1. Let y € S(R") be a fast decaying function whose Fourier transform y vanishes in By, (0) and
letb € L25(X, E) for some § € (—¢,¢) with e = e(ko). Then there exists a € S(R", WZ*(X, E)) such
that (Agn + D)a = yb.

We construct a € S(R", W52’2(X, E)) using Fourier synthesis. By assumption y(k) = 0 for
|k| < ko. For |k| > kg set
ar = (D+k|*)7'b.
and define
atry)i= [ R0 4L

Here £" denotes the n—dimensional Lebesgue measure on R”. Then
(Arn + D)a(x,y) = by.

Moreover, one can verify that x — ||a(x, - )||W§,2 is in S(R™) using a slight variation of the proof
that the Fourier transform maps fast decaying functions to fast decaying functions and the estimate
IIB,f&kIIW;z < ce(1+ KD NIz

Step 2. Let y € S(R") with y(0) = 0. Then there is a family (y.)e>o of fast decaying functions such
that y. vanishes on B.(0) and lim._ || Y. — xllz1 = 0.

Pick a smooth function p: R — [0, 1] such that p(k) = 0 for |k| < 1 and p(k) = 1 for |k| > 2.
Set y.(k) = p(|k|/¢) x(k) and denote its inverse Fourier transform by y.. Then y, clearly satisfies
the first part of the conclusion. To see that the second part also holds, note that from y(0) = 0 it
follows that

”Vn()’eé‘ - )?)”LZn/(Zn—l) = 0(81/2)

and therefore

Lxe = xllor < ”(1 + |x|)_n”L2n/(2n—1) : ”(1 + |x|)n()(£ - X)”LZn
< el e = Zlgzniens + ||V CGie = D 2nsen-n) = O(e"?),

where ¢ > 0 is a constant depending only on n. Here we used that the inverse Fourier transform is
a bounded linear map from L?*/"~1 to 2" and the Fourier transform’s behaviour with respect to
derivatives.

Step 3. Suppose that (Ar» + D)a = 0. Then forc € S*(R"),6 € R" and b € C°(X, E) we have
. (a(x,-),b) e 1 (o(x + ) — o(x)) dL"(x) = 0.

In particular, the conclusion of the lemma holds.
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Set y(x) = o(x + 8) — o(x). Then x(0) = 0. Let y, be as in Step 2. According to Step 1, for
each ¢ > 0 there is some small § > 0 and ¢, € S(R", W*Z(X, E)) such that (Ag» + D)c, = y.b. By
the assumptions on a and since X has subexponential volume growth we have

/Rn {a(x,-),b) y(x)dL"(x)
- lim /R alx,),b) xe(x) 4L (x)

= lim /R" /X (a(x,y), (Arn + D)c.) dL"(x)dvol(y)

£—0

= lim /n /X ((Arn + D)a(x,y), c.) dL"(x)dvol(y)

£—0

=0.

Since o, § and b are arbitrary, it follows that a is invariant in the R"”-direction. This finishes the

proof.

O

Remark A.4. 1t is clear from the proof that in Lemma 7.10 one can replace the assumptions that X
has subexponential volume growth and that ||a||;~ is finite by the assumption that ||a(x, -)|| 2 is
bounded independent of x € R” for all § > 0.
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