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Abstract

We prove the existence of singular harmonic Z2 spinors on 3–manifolds with 𝑏1 > 1. The

proof relies on a wall-crossing formula for solutions to the Seiberg–Witten equation with

two spinors. The existence of singular harmonic Z2 spinors and the shape of our wall-

crossing formula shed new light on recent observations made by Joyce [Joy17] regarding

Donaldson and Segal’s proposal for counting 𝐺2–instantons [DS11].

1 Introduction

The notion of a harmonic Z2 spinor was introduced by Taubes [Tau14] as an abstraction

of various limiting objects appearing in compacti�cations of moduli spaces of �at PSL2(C)–
connections over 3–manifolds [Tau13a] and solutions to the Kapustin–Witten equation [Tau13b],

the Vafa–Witten equation [Tau17], and the Seiberg–Witten equation with multiple spinors

[HW15; Tau16].

De�nition 1.1. Let𝑀 be a closed Riemannian manifold and S a Dirac bundle over𝑀 .1 Denote by

/𝐷 : Γ(S) → Γ(S) the associated Dirac operator. A Z2 spinor with values in S is a triple (𝑍, 𝔩,Ψ)
consisting of:

(1) a proper closed subset 𝑍 ⊂ 𝑀 ,

(2) a Euclidean line bundle 𝔩 → 𝑀\𝑍 , and

(3) a section Ψ ∈ Γ(𝑀\𝑍, S ⊗ 𝔩)

such that |Ψ| extends to a Hölder continuous function on 𝑀 with |Ψ|−1(0) = 𝑍 and |∇Ψ| ∈
𝐿2(𝑀\𝑍 ). We say that (𝑍, 𝔩,Ψ) is singular if 𝔩 does not extend to a Euclidean line bundle on𝑀 .

A Z2 spinor (𝑍, 𝔩,Ψ) is called harmonic if

/𝐷Ψ = 0

holds on𝑀\𝑍 . •
1A Dirac bundle is a bundle of Cli�ord modules together with a metric and a compatible connection; see, [LM89,

Chapter II, De�nition 5.2].
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Remark 1.2. Taubes [Tau14] proved that if 𝑀 is of dimension 3 or 4, then 𝑍 has Hausdor�

codimension at least 2. More recently, Zhang [Zha17] proved that 𝑍 is, in fact, recti�able. ♣
Remark 1.3. If 𝔩 extends to a Euclidean line bundle on𝑀 , then S ⊗ 𝔩 extends to a Dirac bundle

on𝑀 and Ψ extends to a harmonic spinor de�ned on all of𝑀 which takes values in S ⊗ 𝔩 and

vanishes precisely along 𝑍 . ♣
The harmonic Z2 spinors appearing as limits of �at PSL2(C)–connections over a 3–manifold

𝑀 take values in the bundle R ⊕ 𝑇 ∗𝑀 equipped with the Dirac operator

/𝐷 =

(
0 d

∗

d ∗d

)
.

The harmonic Z2 spinors appearing as limits of the Seiberg–Witten equation with two

spinors in dimension three take values in the Dirac bundle

S = Re(𝑆 ⊗ 𝐸) .

This bundle is constructed as follows. Denote by 𝑆 the spinor bundle of a spin structure 𝔰 on the

3–manifold𝑀 . Denote by 𝐸 a rank two Hermitian bundle with trivial determinant line bundle

Λ2

C𝐸 and equipped with a compatible connection. Both 𝑆 and 𝐸 are quaternionic vector bundles

and thus have complex anti-linear endomorphism 𝑗𝑆 , 𝑗𝐸 satisfying 𝑗2
𝑆
= −id𝑆 and 𝑗2

𝐸
= −id𝐸 ;

see also Appendix A. These endow the complex vector bundle 𝑆 ⊗ 𝐸 with a real structure:

𝑠 ⊗ 𝑒 ≔ 𝑗𝑠𝑠 ⊗ 𝑗𝐸𝑒 . The C–linear Dirac operator acting on Γ(𝑆 ⊗ 𝐸) preserves Γ(Re(𝑆 ⊗ 𝐸)) and
gives rise to an R–linear Dirac operator acting on Γ(Re(𝑆 ⊗ 𝐸)).

Henceforth, we specialize situation described in the previous paragraph. The Dirac operator

on Re(𝑆 ⊗ 𝐸), and thus also the notion of a harmonic Z2 spinor, depends on the choice of a

Riemannian metric on𝑀 and a connection on 𝐸.

De�nition 1.4. LetM𝑒𝑡 (𝑀) be the space of Riemannian metrics on𝑀 andA(𝐸) the space of
SU(2) connections on 𝐸. The space of parameters is

P ≔ M𝑒𝑡 (𝑀) ×A(𝐸)

equipped with the𝐶∞
topology. Given a spin structure 𝔰 on𝑀 and p ∈ P, we denote by /𝐷𝔰

p the

corresponding Dirac operator on Γ(Re(𝑆 ⊗ 𝐸)). We will say that a triple (𝑍, 𝔩,Ψ) is a harmonic

Z2 spinor with respect to p if it satis�es the conditions of De�nition 1.1 with /𝐷 = /𝐷𝔰
p. •

Question 1.5. For which parameters p ∈ P does there exist a singular harmonic Z2 spinor with

respect to p?

The answer to this question for non-singular harmonic Z2 spinors (that is: harmonic spinors)

is well-understood. Let W𝔰
be the set of p ∈ P for which dim ker /𝐷𝔰

p > 0. It is the closure of

W𝔰
1
, the set of p for which dim ker /𝐷𝔰

p = 1. Moreover, W𝔰
1
is a cooriented, codimension one

submanifold ofP andW𝔰\W𝔰
1
has codimension three. (See Proposition 9.2 and Proposition 9.10.)

The intersection number of a path (p𝑡 )𝑡 ∈[0,1] withW𝔰
1
is given by the spectral �ow of the path of

operators ( /𝐷𝔰
p𝑡 )𝑡 ∈[0,1] , de�ned by Atiyah, Patodi, and Singer [APS76, Section 7]. Therefore, along
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any path with non-zero spectral �ow there exists a parameter p★ such that dim ker /𝐷𝔰
p★ > 0.

Moreover, if the path is generic,2 then the kernel is spanned by a nowhere vanishing spinor

(because dim𝑀 < rank S; see De�nition 4.1 and Proposition 8.1).

By contrast, little is known about the existence of singular harmonic Z2 spinors. The only

examples known thus far have been obtained by means of complex geometry, on Riemannian

3–manifolds of the form𝑀 = 𝑆1 × Σ for a Riemann surface Σ; see [Tau13a, Theorem 1.2] in the

case S = R ⊕𝑇 ∗𝑀 and [Doa17, Section 3] in the case S = Re(𝑆 ⊗ 𝐸). We remedy this situation by

proving—in a rather indirect way—that 3-manifolds abound with singular harmonic Z2 spinors.

Theorem 1.6. For every closed, connected, oriented 3–manifold 𝑀 with 𝑏1(𝑀) > 1 there exist a
p★ ∈ P and a singular harmonic Z2 spinor with respect to p★. In fact, there is a closed subset
W𝑏 ⊂ P and a non-zero cohomology class 𝜔 ∈ 𝐻 1(P\W𝑏,Z) with the property that if (p𝑡 )𝑡 ∈𝑆1 is
a generic loop inP\W𝑏 and

𝜔 ( [p𝑡 ]) ≠ 0,

then there exists a singular harmonic Z2 spinor with respect to some p★ in (p𝑡 )𝑡 ∈𝑆1 .

Remark 1.7. The de�nition of W𝑏 is given in De�nition 9.1 and the precise meaning of a generic

loop is given in De�nition 4.1 and Proposition 2.6. ♣
Remark 1.8. Theorem 1.6 suggests that on 3–manifolds the appearance of singular harmonic

Z2 spinors is a codimension one phenomenon—as is the appearance of harmonic spinors. This

is in consensus with the work of Takahashi [Tak15; Tak17], who proved that the linearized

deformation theory of singular harmonic Z2 spinors with 𝑍 = 𝑆1 is an index zero Fredholm

problem (or index minus one, after scaling is taken into account). ♣
Remark 1.9. The assumption 𝑏1(𝑀) > 1 has to do with reducible solutions to the Seiberg–Witten

equation with two spinors. We expect a variant of the theorem to be true for 𝑏1(𝑀) ∈ {0, 1}
as well. In this case, one also has to take into account the wall-crossing caused by reducible

solutions which was studied in classical Seiberg–Witten theory by Chen [Che97] and Lim

[Lim00]. ♣
The proof of Theorem 1.6 relies on the wall-crossing formula for 𝑛(p), the signed count

of solutions to the Seiberg–Witten equation with two spinors. The number 𝑛(p) is de�ned
provided p is generic and there are no singular harmonic Z2 spinors with respect to p. The
wall-crossing formula, whose precise statement is Theorem 4.9, can be described as follows.

Let W𝔰
1,∅ be the set of p ∈ P for which ker /𝐷𝔰

p = R〈Ψ〉 with Ψ nowhere vanishing, and let

W1,∅ be the union of allW𝔰
1,∅ for all spin structures 𝔰. There is a closed subsetW𝑏 ⊂ P, as in

Theorem 1.6, such that W1,∅ is a closed, cooriented, codimension one submanifold of P\W𝑏 .

If (p𝑡 )𝑡 ∈[0,1] is a generic path in P\W𝑏 and there are no singular harmonic Z2 spinors with

respect to any p𝑡 with 𝑡 ∈ [0, 1], then the di�erence

𝑛(p1) − 𝑛(p0)

2Generic means from a residual subset of the space of objects in question. A subset of a topological space is

residual if it contains a countable intersection of open and dense subsets. Baire’s theorem asserts that a residual

subset of a complete metric space is dense.
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is equal to the intersection number of the path (p𝑡 )𝑡 ∈[0,1] with W1,∅. In particular, if (p𝑡 )𝑡 ∈𝑆1 is
a generic loop whose intersection number with W1,∅ is non-zero, then there must be a singular

harmonic Z2 spinor for some p★ in (p𝑡 ).
Remark 1.10. Although the wall-crossing for 𝑛(p) does occur when the spectrum of /𝐷𝔰

p crosses

zero, the contribution of a nowhere vanishing harmonic spinor to the wall-crossing formula

is not given by the sign of the spectral crossing but instead by the mod 2 topological degree

of the harmonic spinor, as in De�nition 4.8. Therefore, the wall-crossing formula is not given

by the spectral �ow. This should be contrasted with the wall-crossing phenomenon for the

classical Seiberg–Witten equation caused by reducible solutions, as in Remark 1.9. Indeed, the

wall-crossing described in this paper is a result of the non-compactness of the moduli spaces of

solutions and as such it is a new phenomenon, with no counterpart in classical Seiberg–Witten

theory. ♣
The cohomology class 𝜔 ∈ 𝐻 1(P\W𝑏,Z) in Theorem 1.6 is de�ned by intersecting loops

inP\W𝑏 withW1,∅. We prove that 𝜔 is non-trivial, by exhibiting a loop (p𝑡 )𝑡 ∈𝑆1 on which 𝜔

evaluates as ±2. In particular, P\W𝑏 is not simply-connected and we can take (p𝑡 )𝑡 ∈𝑆1 to be a

small loop linking W𝑏 .

Remark 1.11. The discussion in the article is related to an observation made by Joyce [Joy17,

Section 8.4] which points out potential issues with the Donaldson–Segal program for counting

𝐺2–instantons. We discuss this in detail in Appendix C. ♣
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Notation Here is a summary of various notations used throughout the article:

• We use 𝔴 to denote a spin
𝑐
structure. The associated complex spinor bundle is denoted

by𝑊 . The determinant line bundle of𝑊 is det𝑊 = Λ2

C𝑊 .

• For every p = (𝑔, 𝐵) in the parameter spaceP and for every connection 𝐴 ∈ A(det𝑊 )
we write

/𝐷𝐴,p : Γ(Hom(𝐸,𝑊 )) → Γ(Hom(𝐸,𝑊 ))

for the C–linear Dirac operator induced the connection 𝐵 on 𝐸 as well as the spin
𝑐
con-

nection on𝑊 , determined by𝐴 and the Levi–Civita connection of 𝑔. We will suppress the

subscript p from the notation when its presence is not relevant to the current discussion.

• We use 𝔰 (possibly with a subscript: 𝔰0, 𝔰1, etc.) to denote a spin structure on 𝑀 . The

associated spinor bundle is denoted by 𝑆𝔰 .
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• For every p = (𝑔, 𝐵) ∈ P we write

/𝐷𝔰
p : Γ(Re(𝑆𝔰 ⊗ 𝐸)) → Γ(Re(𝑆𝔰 ⊗ 𝐸))

for the R–linear Dirac operator induced by the spin connection on 𝑆𝔰 , associated with the

Levi–Civita connection of 𝑔, and the connection 𝐵 on 𝐸.

2 The Seiberg–Witten equation with two spinors

Fix a spin
𝑐
structure 𝔴 and denote its complex spinor bundle by𝑊 . Set

Z ≔ ker

(
d : Ω2(𝑀, 𝑖R) → Ω3(𝑀, 𝑖R)

)
.

De�nition 2.1. Let p = (𝑔, 𝐵) ∈ P and 𝜂 ∈ Z. The 𝜂–perturbed Seiberg–Witten equation with
two spinors is the following di�erential equation for (Ψ, 𝐴) ∈ Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ):

/𝐷𝐴Ψ = 0 and

1

2

𝐹𝐴 + 𝜂 = 𝜇 (Ψ) .
(2.2)

Here /𝐷𝐴 = /𝐷𝐴,p is the C–linear Dirac operator on Hom(𝐸,𝑊 ) and

𝜇 (Ψ) = 𝜇p(Ψ) ≔ ΨΨ∗ − 1

2

|Ψ|2 id𝑊

is a section of 𝑖𝔰𝔲(𝑊 ) which is identi�ed with an element of Ω2(𝑀, 𝑖R) using the Cli�ord

multiplication. Both equations depend on the choice of p and the second equation depends also

on the choice of 𝜂.3

LetG(det𝑊 ) be the gauge group of det𝑊 . For (p, 𝜂) ∈ P ×Z, we denote by

𝔐𝔴 (p, 𝜂) ≔
{
[Ψ, 𝐴] ∈ Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 )

G(det𝑊 ) :

(Ψ, 𝐴) satis�es (2.2)
with respect to p and 𝜂

}
the moduli space of solutions to (2.2). •

As discussed in [Doa17, Section 2.2; DW20, Section 2], the in�nitesimal deformation theory

of (2.2) around a solution (Ψ, 𝐴), is controlled by the linear operator

𝐿Ψ,𝐴 = 𝐿Ψ,𝐴,p : Γ(Hom(𝐸,𝑊 )) ⊕ Ω1(𝑀, 𝑖R) ⊕ Ω0(𝑀, 𝑖R)
→ Γ(Hom(𝐸,𝑊 )) ⊕ Ω1(𝑀, 𝑖R) ⊕ Ω0(𝑀, 𝑖R)

de�ned by

𝐿Ψ,𝐴,p ≔

(
− /𝐷𝐴,p −𝔞Ψ,p
−𝔞∗Ψ,p 𝔡p

)
(2.3)

3While the equation (2.2) makes sense for any 𝜂 ∈ Ω2 (𝑀, 𝑖R), the existence of a solution implies that d𝜂 = 0; see

[Doa17, Proposition 2.4; DW20, Proposition A.4]. Thus, we consider only 𝜂 ∈ Z.
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with

(2.4) 𝔡 = 𝔡p ≔

(
∗d d

d
∗

)
and 𝔞Ψ = 𝔞Ψ,p ≔

(
𝛾 (·)Ψ 𝜌 (·)Ψ

)
.4

Here 𝛾 is the Cli�ord multiplication by elements of 𝑇 ∗𝑀 ⊗ 𝑖R and 𝜌 is the linearized action of

the gauge group: pointwise multiplication by elements of 𝑖R. The Hodge star operator ∗ and 𝛾
both depend on p, but we have suppressed this dependence in the notation.

De�nition 2.5. We say that a solution (Ψ, 𝐴) of (2.2) is irreducible if Ψ ≠ 0, and unobstructed
if 𝐿Ψ,𝐴 is invertible. •

If (Ψ, 𝐴) is irreducible and unobstructed, then it represents an isolated point in𝔐𝔴 (p, 𝜂);
see [Doa17, Proposition 2.13; DW20, Proposition 1.25].

Proposition 2.6 ([Doa17, Proposition 2.28]). If 𝑏1(𝑀) > 0, then for every (p, 𝜂) from a residual
subset ofP ×Z all solutions to (2.2) are irreducible and unobstructed.

For every (p, 𝜂) as in Proposition 2.6, the moduli space 𝔐𝔴 (p, 𝜂) is a zero-dimensional

manifold. It can be oriented as explained in [Doa17, Section 2.6]. The following discussion

outlines the orientation procedure.

Proposition 2.7. Let (Ψ𝑡 , 𝐴𝑡 , p𝑡 )𝑡 ∈[0,1] be a path in Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ) ×P The value of
the spectral �ow

SF

(
(𝐿Ψ𝑡 ,𝐴𝑡 ,p𝑡 )𝑡 ∈[0,1]

)
∈ Z

only depends on (Ψ0, 𝐴0, p0) and (Ψ1, 𝐴1, p1).

Convention 2.8. If (𝐷𝑡 )𝑡 ∈[0,1] is a path of self-adjoint Fredholm operators with 𝐷0 or 𝐷1 not

invertible, we de�ne SF

(
(𝐷𝑡 )𝑡 ∈[0,1]

)
≔ (𝐷𝑡 + 𝜆)𝑡 ∈[0,1] for 0 < 𝜆 � 1. This convention was

introduced by Atiyah, Patodi, and Singer [APS76, Section 7].

Proof of Proposition 2.7. Since the spectral �ow is homotopy invariant, this is a consequence of

the fact that Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ) ×P is contractible. �

De�nition 2.9. For (Ψ0, 𝐴0, p0) and (Ψ1, 𝐴1, p1) ∈ Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ) ×P, we de�ne

the orientation transport

OT ((Ψ0, 𝐴0, p0), (Ψ1, 𝐴1, p1)) ≔ (−1)SF( (𝐿Ψ𝑡 ,𝐴𝑡 ,p𝑡 )𝑡∈[0,1]),

for path (Ψ𝑡 , 𝐴𝑡 , p𝑡 )𝑡 ∈[0,1] from (Ψ0, 𝐴0, p0) to (Ψ1, 𝐴1, p1). •

Remark 2.10. The orientation transport can be alternatively de�ned using the determinant

line bundle of the family of Fredholm operators (𝐿Ψ,𝐴,p) as (Ψ, 𝐴, p) varies in Γ(Hom(𝐸,𝑊 )) ×
A(det𝑊 ) × P. This point of view is explained in detail in Appendix B as it is needed in a

technical, but crucial, part in the proof of Proposition 6.4. ♣

4This linearization is obtained by writing a connection near 𝐴0 as 𝐴0 + 2𝑎.
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Since the spectral �ow is additive with respect to path composition, we have

OT ((Ψ0, 𝐴0, p0), (Ψ2, 𝐴2, p2))
= OT ((Ψ0, 𝐴0, p0), (Ψ1, 𝐴1, p1)) · OT ((Ψ1, 𝐴1, p1), (Ψ2, 𝐴2, p2)) .

(2.11)

Proposition 2.12.

(1) For every (𝐴0, p0) and (𝐴1, p1) ∈ A(det𝑊 ) ×P, we have

OT((0, 𝐴0, p0), (0, 𝐴1, p1)) = +1.

(2) For every (Ψ, 𝐴, p) ∈ Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ) ×P and every 𝑢 ∈ G(det𝑊 ), we have

OT((Ψ, 𝐴, p), (𝑢 · Ψ, 𝑢 · 𝐴, p)) = +1.

Proof. Observe that
𝐿0,𝐴𝑖 ,p𝑖 = /𝐷𝐴𝑖 ,p𝑖 ⊕ 𝔡p𝑖

where /𝐷𝐴𝑖 ,p𝑖 is a complex-linear Dirac operator on Hom(𝐸,𝑊 ) and 𝔡p𝑖 is de�ned in (2.4). Let

(𝐴𝑡 , p𝑡 )𝑡 ∈[0,1] be a path in A(det𝑊 ) × P joining (𝐴0, p0) and (𝐴1, p1). The spectral �ow of

( /𝐷𝐴𝑡 ,p𝑡 )𝑡 ∈[0,1] is even because the operators /𝐷𝐴𝑡 ,p𝑡 are complex linear. The spectral �ow of

(𝔡p𝑡 )𝑡 ∈[0,1] is trivial because the dimension of the kernel of 𝔡p𝑡 is 1+𝑏1(𝑀) and does not depend
on 𝑡 ∈ [0, 1]. This proves (1).

We prove (2). Choose a path (Ψ𝑡 , 𝐴𝑡 )𝑡 ∈[0,1] from (Ψ, 𝐴) to (𝑢 · Ψ, 𝑢 · 𝐴). The spetral �ow
SF(𝐿Ψ𝑡 ,𝐴𝑡

) can be computed using a theorem of Atiyah–Patodi–Singer [APS76, Section 7] as

follows. Denote by W+ → 𝑆1 ×𝑀 the mapping cylinder of 𝑢, that is, the bundle obtained from

pulling-back𝑊 to [0, 1] ×𝑀 and identifying the �bers over {0} ×𝑀 and {1} ×𝑀 using 𝑢. W+

is in fact the positive spinor bundle of a spin
𝑐
structure on the 4–manifold 𝑋 ≔ 𝑆1 ×𝑀 . The

path of operators 𝜕𝑡 − 𝐿Ψ𝑡 ,𝐴𝑡
glues to an operator L acting on Γ(𝑋,Hom(𝐸,W+)) ⊕ Ω1(𝑋, 𝑖R).

Here we use the identi�cation Λ1𝑇 ∗𝑋 = Λ0𝑇 ∗𝑀 ⊕ Λ1𝑇 ∗𝑀 . The Atiyah–Patodi–Singer Index

Theorem asserts that

SF(𝐿Ψ𝑡 ,𝐴𝑡
) = index L.

The operator L is seen to be homotopic through Fredholm operators to the direct sum of a

complex-linear Dirac operator and the operator

d
+ + d

∗
: Ω1(𝑋, 𝑖R) → Ω+(𝑋, 𝑖R) ⊕ Ω0(𝑋, 𝑖R) .

The index of this operator is 𝑏1(𝑋 ) − 1 − 𝑏+(𝑋 ). For 𝑋 = 𝑆1 ×𝑀 we have 𝑏+(𝑋 ) = 𝑏1(𝑀) and
𝑏1(𝑋 ) = 𝑏1(𝑀) + 1, so 𝑏1(𝑋 ) − 1 − 𝑏+(𝑋 ) = 0. We conclude that the index of L is even. This

concludes the proof of (2). �

Proposition 2.12 and (2.11) show that the following de�nition is independent of any of the

choices being made.

De�nition 2.13. For [Ψ, 𝐴] ∈ 𝔐𝔴 (p, 𝜂), we de�ne

sign[Ψ, 𝐴] ≔ OT((0, 𝐴0, p0), (Ψ, 𝐴, p)),

for any choice of (𝐴0, p0) ∈ A(det𝑊 ) ×P. •
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Aswewill see shortly, if (p, 𝜂) is generic, and under the assumption that there are no singular

harmonic Z2 spinors with respect to p, then 𝔐𝔴 (p, 𝜂) is a compact, oriented, zero-dimensional

manifold, that is: a �nite set of points with prescribed signs. In this situation, we de�ne

(2.14) 𝑛𝔴 (p, 𝜂) ≔
∑︁

[Ψ,𝐴] ∈𝔐𝔴 (p,𝜂)
sign[Ψ, 𝐴],

the signed count of solutions to the Seiberg–Witten equation with two spinors.

3 Compactness of the moduli space

In general, 𝔐𝔴 (p, 𝜂) might be non-compact; and even if it is compact for given (p, 𝜂), compact-

ness might still fail as (p, 𝜂) varies. This can only happen when, along a sequence of solutions

to (2.2), the 𝐿2–norm of the spinors goes to in�nity. The following result describes in which

sense one can still take a rescaled limit in this situation.

Theorem 3.1 ([HW15, Theorem 1.5]). Let (p𝑖 , 𝜂𝑖) be a sequence inP×Zwhich converges to (p, 𝜂) in
𝐶∞. Let (Ψ𝑖 , 𝐴𝑖) be a sequence of solutions of (2.2)with respect to (p𝑖 , 𝜂𝑖). If lim sup𝑖→∞‖Ψ𝑖 ‖𝐿2 = ∞,
then after rescaling Ψ̃𝑖 = Ψ𝑖/‖Ψ𝑖 ‖𝐿2 and passing to a subsequence the following hold:

(1) The subset

𝑍 ≔

{
𝑥 ∈ 𝑀 : lim sup

𝑖→∞
|Ψ̃𝑖 (𝑥) | = 0

}
is closed and nowhere-dense. (In fact,𝑍 has Hausdor� dimension at most one [Tau14, Theorem
1.2].)

(2) There exist Ψ ∈ Γ(𝑀\𝑍,Hom(𝐸,𝑊 )) and a connection 𝐴 on det𝑊 |𝑀\𝑍 satisfying the
limiting equation

(3.2) /𝐷𝐴Ψ = 0 and 𝜇 (Ψ) = 0

on𝑀\𝑍 with respect to p. The pointwise norm |Ψ| extends to a Hölder continuous function
on all of𝑀 and

𝑍 = |Ψ|−1(0).

Moreover, 𝐴 is �at with monodromy in Z2.

(3) On 𝑀\𝑍 , up to gauge transformations, Ψ̃𝑖 weakly converges to Ψ in𝑊 2,2

loc
and 𝐴𝑖 weakly

converges to 𝐴 in𝑊 1,2

loc
. There is a constant 𝛾 > 0 such that |Ψ̃𝑖 | converges to |Ψ| in 𝐶0,𝛾 (𝑀).

We expect that the convergence (Ψ̃𝑖 , 𝐴𝑖) → (Ψ, 𝐴) can be improved to 𝐶∞
loc

on 𝑀\𝑍 ;
cf. [Doa18, Theorem 1.5]. In Section 5, we will show that this is indeed the case if 𝑍 is empty.

The following proposition will give us a concrete understanding of solutions to the limiting

equation (3.2) which are de�ned on all of𝑀 , that is: for which the set 𝑍 is empty. It is a special

case of the Haydys correspondence.
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Proposition 3.3 (cf. [HW15, Appendix A]). If (Ψ, 𝐴) ∈ Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ) is a solution
of (3.2) and Ψ is nowhere vanishing, then:

(1) det𝑊 is trivial; in particular, 𝔴 is induced by a spin structure.

(2) After a gauge transformation we can assume that 𝐴 is the product connection and there
exists a unique spin structure 𝔰 inducing 𝔴 and such that Ψ takes values in Re(𝐸 ⊗ 𝑆𝔰) ⊂
Γ(Hom(𝐸,𝑊 )). Here 𝑆𝔰 is the spinor bundle of 𝔰.

(3) Ψ lies in the kernel of /𝐷𝔰
p : Γ(Re(𝑆𝔰 ⊗ 𝐸)) → Γ(Re(𝑆𝔰 ⊗ 𝐸)).

Moreover, any nowhere vanishing element in ker /𝐷𝔰
p for any spin structure 𝔰 inducing 𝔴 gives rise

to a solution of (3.2).

Remark 3.4. The set of spin structures is a torsor over𝐻 1(𝑀,Z2) while the set of spin𝑐 structures
is a torsor over 𝐻 2(𝑀,𝑍 ). If 𝛽 : 𝐻 1(𝑀,Z2) → 𝐻 2(𝑀,Z) denotes the Bockstein homomorphism

in the exact sequence

· · · → 𝐻 1(𝑀,Z2)
𝛽
−→ 𝐻 2(𝑀,Z) 2×−−→ 𝐻 2(𝑀,Z) → · · · ,

then the set of a all spin structures 𝔰 inducing the spin𝑐 structure𝔴 is a torsor over ker 𝛽 . The set

of all spin
𝑐
structures𝔴 with trivial determinant is a torsor over ker 2×, the 2–torsion subgroup

of 𝐻 2(𝑀,Z). ♣

Proof of Proposition 3.3. Fix a spin structure 𝔰0 and a Hermitian line bundle 𝐿 which induce 𝔴;

in particular,𝑊 = 𝑆𝔰0 ⊗ 𝐿 and 𝐴 induces a connection 𝐴0 on 𝐿. By Proposition A.1,

HomC(C2,H)///U(1) =
(
Re(H ⊗C C2)\{0}

)
/Z2;

hence, Ψ gives rise to a section 𝑠 ∈ Γ(𝔛) with

𝔛 =
(
Re(𝑆𝔰0 ⊗ 𝐸)\{0}

)
/Z2

satisfying the Fueter equation, that is: local lifts of 𝑠 to Re(H ⊗C C2) satisfy the Dirac equation.

The Haydys correspondence [DW20, Proposition 3.2] asserts that:

• any 𝑠 ∈ Γ(𝔛) can be lifted; that is: there exist a Hermitian line bundle𝐿,Ψ ∈ Γ(Hom(𝐸, 𝑆𝔰0⊗
𝐿)) = Γ(Hom(𝐸,𝑊 )), as well as 𝐴0 ∈ A(𝐿) satisfying (3.2), and

• 𝐿 is determined by 𝑠 up to isomorphism and any two lifts of 𝑠 are related by a unique

gauge transformation inG(𝐿).

We claim that 𝑠 can, in fact, be lifted to a section Ψ̃ ∈ Γ(Re(𝐸 ⊗ 𝑆𝔰0) ⊗ 𝔩) for some Euclidean

line bundle 𝔩. To see this, cover 𝑀 with a �nite collection of open balls (𝑈𝛼 ) and trivialize

Re(𝑆𝔰0 ⊗ 𝐸) over each𝑈𝛼 . On𝑈𝛼 the section 𝑠 is given by a smooth function𝑈𝛼 → (R4\{0})/Z2

which can be lifted to a map Ψ̃𝛼 : 𝑈𝛼 → R4\{0}. Over the intersection𝑈𝛼 ∩𝑈𝛽 of two di�erent

balls𝑈𝛼 ,𝑈𝛽 , we have Ψ̃𝛼 = 𝑓𝛼𝛽 Ψ̃𝛽 for a local constant function 𝑓𝛼𝛽 : 𝑈𝛼 ∩𝑈𝛽 → {−1, +1}. The
collection (𝑓𝛼𝛽 ) is a Čech cocycle with values in Z2 and de�nes a Z2–bundle on 𝑀 . Let 𝔩 be
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the associated Euclidean line bundle, The collection of local sections (Ψ̃𝛼 ) de�nes a section
Ψ̃ ∈ Γ(Re(𝑆𝔰0 ⊗ 𝐸) ⊗ 𝔩) as we wanted to show.

Set
˜𝐿 ≔ 𝔩 ⊗R C. By Proposition A.1,

Re(𝐸 ⊗ 𝑆𝔰0) ⊗ 𝔩 ⊂ 𝜇−1(0) ⊂ Hom(𝐸, 𝑆𝔰0 ⊗ ˜𝐿) = Hom(𝐸,𝑊 );

and if
˜𝐴 ∈ A( ˜𝐿) denotes the connection induced by the canonical connection on 𝔩, then

/𝐷𝐴̃Ψ̃ = 0.

It thus follows from the Haydys correspondence that 𝐿 � 𝔩 ⊗RC and, after this identi�cation

has been made and a suitable gauge transformation has been applied, Ψ = Ψ̃ and 𝐴0 = ˜𝐴. This

shows that det𝑊 = 𝐿2 is trivial and 𝔴 is induced by the spin structure 𝔰 obtained by twisting

𝔰0 with 𝔩. �

De�nition 3.5. Denote byPreg ⊂ P the subset consisting of those p for which the real Dirac

operator, introduced at the end of Section 1,

(3.6) /𝐷𝔰
p : Γ(Re(𝑆𝔰 ⊗ 𝐸)) → Γ(Re(𝑆𝔰 ⊗ 𝐸))

is invertible for all spin structures 𝔰. Set

Q ≔ P ×Z,

and denote by

Qreg ⊂ Q

the subset consisting of those (p, 𝜂) for which p ∈ Preg
and every solution (Ψ, 𝐴) of (2.2) with

respect to (p, 𝜂) is irreducible and unobstructed. •

Proposition 3.7 ([Doa17, Theorem 2.32; Ang96, Theorem 1.5; Mai97, Theorem 1.2]). If 𝑏1(𝑀) > 0,
then Qreg is residual in Q.

Proposition 3.8. If (p, 𝜂) ∈ Qreg and there are no singular harmonic Z2 spinors with respect to p,
then 𝔐𝔴 (p, 𝜂) is compact. In particular, 𝑛𝔴 (p, 𝜂) ∈ Z as in (2.14) is de�ned.

Proof. By hypothesis we know that there are no singular harmonic Z2 spinors. By the de�nition

ofPreg
there are also no harmonic spinors. It thus follows from Theorem 3.1 and Proposition 3.3

that 𝔐𝔴 (p, 𝜂) is compact. �

4 Wall-crossing and the spectral �ow

In the absence of singular harmonic Z2 spinors, we can de�ne 𝑛𝔴 (p, 𝜂) for every (p, 𝜂) ∈
Qreg

. However, Qreg
is not path-connected and 𝑛𝔴 (p, 𝜂) does depend on the path-connected

component of Qreg
in which (p, 𝜂) lies. We study the wall-crossing for 𝑛𝔴 (p, 𝜂) by analyzing

the family of moduli spaces 𝔐𝔴 (p𝑡 , 𝜂𝑡 ) along paths of the following kind.

De�nition 4.1. Given p0, p1 ∈ Preg
, denote byPreg(p0, p1) the space of smooth paths from p0

to p1 inP such that for every spin structure 𝔰:
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(1) the path of Dirac operators

( /𝐷𝔰
p𝑡
)
𝑡 ∈[0,1] has transverse spectral �ow and

(2) whenever the spectrum of /𝐷𝔰
p𝑡 crosses zero, ker /𝐷

𝔰
p𝑡 is spanned by a nowhere vanishing

section Ψ ∈ Γ(Re(𝐸 ⊗ 𝑆𝔰)).

Given (p0, 𝜂0), (p1, 𝜂1) ∈ Qreg
, denote byQreg

(
(p0, 𝜂0), (p1, 𝜂1)

)
the space of smooth paths

(p𝑡 , 𝜂𝑡 )𝑡 ∈[0,1] from (p0, 𝜂0) to (p1, 𝜂1) in Q such that (1) and (2) hold and, moreover:

(3) For every 𝑡0 ∈ [0, 1], every solution (Ψ, 𝐴) of (2.2) is irreducible and either it is unob-

structed (that is, the linearized operator 𝐿Ψ,𝐴 is invertible) or else coker𝐿Ψ,𝐴 has dimension

one and is spanned by

𝜋
©­« d

d𝑡

����
𝑡=𝑡0

©­«
− /𝐷p𝑡 ,𝐴Ψ

∗(𝐹𝐴 + 𝜂𝑡 − 𝜇p𝑡 (Ψ))
0

ª®¬ª®¬
where𝜋 : Γ(Hom(𝐸,𝑊 ))⊕Ω1(𝑀, 𝑖R)⊕Ω0(𝑀, 𝑖R) → coker𝐿Ψ,𝐴 denotes the𝐿2–orthogonal

projection.

(4) For any Ψ and 𝑡0 as in (2) with ‖Ψ‖𝐿2 = 1, denote by{(
Ψ𝜀 = Ψ + 𝜀2𝜓 +𝑂 (𝜀4), 𝐴𝜀 ; 𝑡 (𝜀) = 𝑡0 +𝑂 (𝜀2)

)
: 0 6 𝜀 � 1

}
the family of solutions to

/𝐷𝐴𝜀 ,p𝑡 (𝜀 )Ψ𝜀 = 0,

𝜀2
(
1

2

𝐹𝐴𝜀
+ 𝜂𝑡 (𝜀)

)
= 𝜇p𝑡 (𝜀 ) (Ψ𝜀), and

‖Ψ𝜀 ‖𝐿2 = 1

obtained from [DW20, Theorem 1.38]. De�ne

𝛿 (Ψ, p𝑡0, 𝜂𝑡0) ≔ 〈 /𝐷𝐴0,p𝑡
0

𝜓,𝜓 〉𝐿2 .

We require that 𝛿 (Ψ, p𝑡0, 𝜂𝑡0) ≠ 0. •

Condition (1) is necessary since the wall-crossing formula will involve the spectral �ow of

/𝐷𝔰
p𝑡 . In particular, it guarantees that dim ker /𝐷𝔰

p𝑡 > 0 for only �nitely many 𝑡 ∈ (0, 1). Condition
(2) ensures that the harmonic Z2 spinors produced by Theorem 1.6 are indeed singular. Condition

(3) is used to show that the union of all moduli spaces 𝔐𝔴 (p𝑡 , 𝜂𝑡 ) as 𝑡 varies from 0 to 1 is

an oriented smooth 1–manifold (i.e., a disjoint union of circles and intervals) with oriented

boundary𝔐𝔴 (p1, 𝜂1) ∪ −𝔐𝔴 (p0, 𝜂0).5 Finally, condition (4) ensures that we can use the local

model from [DW20, Theorem 1.38] to study the wall-crossing phenomenon.

The following result shows that a generic path from (p0, 𝜂0) to (p1, 𝜂1) satis�es the conditions
in De�nition 4.1. Its proof is postponed to Section 8.

5Here −𝔐𝔴 (p0, 𝜂0) is the same space as𝔐𝔴 (p0, 𝜂0), but all the orientations are reversed.
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Proposition 4.2. Given (p0, 𝜂0), (p1, 𝜂1) ∈ Qreg, the subspaceQreg
(
(p0, 𝜂0), (p1, 𝜂1)

)
is residual in

the space of all smooth paths from (p0, 𝜂0) to (p1, 𝜂1) in Q.
The next three sections are occupied with studying the wall crossing along paths in

Qreg
(
(p0, 𝜂0), (p1, 𝜂1)

)
. In order to state the wall-crossing formula, we need the following

preparation.

Proposition 4.3. Denote by 𝔰 a spin structure inducing the spin𝑐 structure𝔴 and by 𝐴 the product
connection on det𝑊 . If Ψ is a nowhere vanishing section of Re(𝑆𝔰 ⊗ 𝐸), then the following hold:

(1) Let 𝔞Ψ be the algebraic operator given by (2.4). The map

𝔞̃Ψ ≔ |Ψ|−1𝔞Ψ : (𝑇 ∗𝑀 ⊕ R) ⊗ 𝑖R → Im(𝑆𝔰 ⊗ 𝐸)

is an isometry. Here Im(𝑆𝔰 ⊗ 𝐸) denotes the imaginary part of 𝑆𝔰 ⊗ 𝐸 de�ned using the real
structure on 𝑆𝔰 ⊗ 𝐸.

(2) Denote by /𝐷 Im the restriction of /𝐷𝐴,p to Im(𝑆𝔰 ⊗ 𝐸) ⊂ Hom(𝐸,𝑊 ) and de�ne the operator
𝔡Ψ : Ω1(𝑀, 𝑖R) ⊕ Ω0(𝑀, 𝑖R) → Ω1(𝑀, 𝑖R) ⊕ Ω0(𝑀, 𝑖R) by

𝔡Ψ ≔ 𝔞̃∗Ψ ◦ /𝐷 Im ◦ 𝔞̃Ψ .

For each 𝑡 ∈ [0, 1], the operator

𝔡𝑡Ψ ≔ (1 − 𝑡)𝔡Ψ + 𝑡𝔡

is a self-adjoint and Fredholm.

Proof. The fact that 𝔞̃Ψ is an isometry is a consequence of

(4.4) 𝔞∗Ψ𝔞Ψ = |Ψ|2

which in turn follows from the following calculation for (𝑎, 𝜉) and (𝑏, 𝜂) in Ω1(𝑀, 𝑖R) ⊕
Ω0(𝑀, 𝑖R):

〈𝔞Ψ (𝑎, 𝜉), 𝔞Ψ (𝑏, 𝜂)〉 = 〈𝛾 (𝑎)Ψ + 𝜌 (𝜉)Ψ, 𝛾 (𝑏)Ψ + 𝜌 (𝜂)Ψ〉
= |Ψ|2(〈𝑎, 𝑏〉 + 〈𝜉, 𝜂〉).

Since

/𝐷 Im𝔞Ψ (𝑎, 𝜉) = /𝐷 Im(𝛾 (𝑎)Ψ + 𝜌 (𝜉)Ψ)
= 𝛾 (∗d𝑎)Ψ + 𝜌 (d∗𝑎)Ψ + 𝛾 (d𝜉)Ψ

− 𝛾 (𝑎) /𝐷ReΨ + 𝜌 (𝜉) /𝐷ReΨ − 2

3∑︁
𝑖=1

𝜌 (𝑎(𝑒𝑖))∇𝑒𝑖Ψ

= 𝔞Ψ𝔡(𝑎, 𝜉) − 2

3∑︁
𝑖=1

𝜌 (𝑎(𝑒𝑖))∇𝑒𝑖Ψ,

(4.5)

we have

𝔡Ψ = 𝔡 + 𝔢Ψ
with 𝔢Ψ a zeroth order operator depending on Ψ and its derivative. This implies that 𝔡𝑡Ψ is a

Fredholm operator. By construction 𝔡𝑡Ψ is self-adjoint. �
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De�nition 4.6. In the situation of Proposition 4.3, de�ne

𝜎 (Ψ, p) ≔ (−1)𝑏1 (𝑀) · (−1)SF( (−𝔡𝑡Ψ)𝑡∈[0,1]) .

•
Remark 4.7. The operator 𝔡Ψ only depends on Ψ up to multiplication by a constant in R∗

; hence,

the same holds for 𝜎 (Ψ, p). ♣
De�nition 4.8. For a pair of nowhere vanishing sections Ψ,Φ ∈ Γ(Re(𝑆𝔰 ⊗ 𝐸)) we de�ne their
relative degree deg(Ψ,Φ) ∈ Z as follows. Choose any trivializations of 𝐸 and 𝑆𝔰 compatible

with the SU(2) structures. In the induced trivialization of Re(𝑆𝔰 ⊗ 𝐸) the sections Ψ/|Ψ| and
Φ/|Φ| are represented by maps𝑀 → 𝑆3. Set

deg(Ψ,Φ) ≔ deg(Ψ/|Ψ|) − deg(Φ/|Φ|) .

This number does not depend on the choice of the trivializations. •

Theorem 4.9. Let (p𝑡 , 𝜂𝑡 )𝑡 ∈[0,1] ∈ Qreg
(
(p0, 𝜂0), (p1, 𝜂1)

)
. For each spin structure 𝔰 inducing the

spin𝑐 structure 𝔴, denote

• by {𝑡𝔰
1
, . . . , 𝑡𝔰

𝑁𝔰
} ⊂ [0, 1] the set of times at which the spectrum of /𝐷𝔰

p𝑡 crosses zero6

and, for each 𝑖 = 1, . . . , 𝑁𝔰 , denote

• by 𝜒𝔰
𝑖
∈ {±1} the sign of the spectral crossing of the family ( /𝐷𝔰

p𝑡 ) at 𝑡
𝔰
𝑖
and

• by Ψ𝔰
𝑖
a nowhere vanishing spinor spanning ker /𝐷𝔰

p𝑡 .

If there are no singular harmonic Z2 spinors with respect to p𝑡 for any 𝑡 ∈ [0, 1], then

(4.10) 𝑛𝔴 (p1, 𝜂1) = 𝑛𝔴 (p0, 𝜂0) +
∑︁
𝔰

𝑁𝔰∑︁
𝑖=1

𝜒𝔰𝑖 · 𝜎 (Ψ𝔰
𝑖 , p𝑡𝔰𝑖 )

or, equivalently,

(4.11) 𝑛𝔴 (p1, 𝜂1) = 𝑛𝔴 (p0, 𝜂0) +
∑︁
𝔰

𝜒𝔰
1
· 𝜎 (Ψ𝔰

1
, p𝑡𝔰

1

) ·
𝑁𝔰∑︁
𝑖=1

(−1)𝑖+1 · (−1)deg(Ψ𝔰
1
,Ψ𝔰

𝑖
) .

Here the sums are over all spin structures 𝔰 inducing 𝔴.

Remark 4.12. It follows from Theorem 4.9, that 𝑛𝔴 (p, 𝜂) does not depend on 𝜂. ♣
The proof of the (4.10) proceeds by analyzing the 1–parameter family of moduli spaces

𝔚 ≔
⋃

𝑡 ∈[0,1]
𝔐𝔴 (p𝑡 , 𝜂𝑡 ) .

By De�nition 4.1(3), 𝔚 is an oriented, one-dimensional manifold with oriented boundary

𝜕𝔚 = 𝔐𝔴 (p0, 𝜂0) ∪ −𝔐𝔴 (p1, 𝜂1) .

If 𝔚 were compact, then it would follow that 𝑛𝔴 (p1, 𝜂1) = 𝑛𝔴 (p0, 𝜂0). However, 𝔚 may be

non-compact.

6This set is �nite by De�nition 4.1(1).
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5 Compacti�cation of the cobordism

Set

𝔚 ≔

{
(𝑡, 𝜀, [Ψ, 𝐴]) ∈ [0, 1] × [0,∞) × Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 )

G(det𝑊 ) : (∗)
}

with (∗) meaning that:

• the di�erential equation

/𝐷𝐴,p𝑡Ψ = 0,

𝜀2
(
1

2

𝐹𝐴 + 𝜂𝑡
)
= 𝜇p𝑡 (Ψ), and

‖Ψ‖𝐿2 = 1

(5.1)

holds and

• if 𝜀 = 0, then Ψ is nowhere vanishing.

Equip𝔚 with the𝐶∞
–topology. We have a natural embedding𝔚 ↩→ 𝔚 given by (𝑡, [Ψ, 𝐴]) ↦→

(𝑡, 𝜀, [Ψ̃, 𝐴]) with 𝜀 ≔ 1/‖Ψ‖𝐿2 and Ψ̃ ≔ Ψ/‖Ψ‖𝐿2 .

Proposition 5.2. 𝔚 is dense in 𝔚.

Proof. If (𝑡0, 𝜀, [Ψ, 𝐴]) ∈ 𝔚\𝔚, then 𝜀 = 0. It follows from De�nition 4.1 and [DW20, Theorem

1.38], that there are is a family {(Ψ𝜀, 𝐴𝜀 ; 𝑡 (𝜀)) : 0 6 𝜀 � 1} of solutions to

/𝐷𝐴𝜀 ,p𝑡 (𝜀 )Ψ𝜀 = 0 and

𝜀2
(
1

2

𝐹𝐴𝜀
+ 𝜂𝑡 (𝜀)

)
= 𝜇p𝑡 (𝜀 ) (Ψ𝜀)

with (Ψ𝜀, 𝐴𝜀) converging to (Ψ, 𝐴) in 𝐶∞
and 𝑡 (𝜀) converging to 𝑡0 as 𝜀 tends to zero. Conse-

quently,𝔚 is dense in 𝔚. �

That𝔚 is compact does not follows from Theorem 3.1; it does, however, follow from the

next result, whose proof will occupy the remainder of this section.

Proposition 5.3. Let (p𝑖 , 𝜂𝑖) be a sequence inP×Z which converges to (p, 𝜂) in𝐶∞. Let (𝜀𝑖 ,Ψ𝑖 , 𝐴𝑖)
be a sequence of solutions of

/𝐷𝐴𝑖 ,p𝑖Ψ𝑖 = 0,

𝜀2
(
1

2

𝐹𝐴𝑖
+ 𝜂𝑖

)
= 𝜇p𝑖 (Ψ𝑖), and

‖Ψ𝑖 ‖𝐿2 = 1

(5.4)

with lim𝑖→∞ 𝜀𝑖 = 0. If the set

𝑍 ≔

{
𝑥 ∈ 𝑀 : lim sup

𝑖→∞
|Ψ𝑖 (𝑥) | = 0

}
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is empty, then, after passing to a subsequence and applying gauge transformations, (Ψ𝑖 , 𝐴𝑖)
converges in 𝐶∞ to a solution (Ψ, 𝐴) ∈ Γ(Hom(𝐸,𝑊 )) ×A(det𝑊 ) of

/𝐷𝐴,pΨ = 0, 𝜇p(Ψ) = 0, and ‖Ψ‖𝐿2 = 1.

Proposition 5.5. 𝔚 is compact.

Proof. We need to show that any sequence (𝑡𝑖 , 𝜀𝑖 , [Ψ𝑖 , 𝐴𝑖]) in 𝔚 has a subsequence which

converges in 𝔚. If lim inf 𝜀𝑖 > 0, then this a consequence of standard elliptic estimates and

Arzelà–Ascoli. It only needs to be pointed out that 𝜀𝑖 cannot tend to in�nity, because otherwise

there would be a reducible solution to (2.2) which is ruled out by De�nition 4.1(3).

If lim inf𝑖→∞ 𝜀𝑖 = 0, then Theorem 3.1 asserts that a gauge transformed subsequence of

(Ψ𝑖 , 𝐴𝑖) converges weakly in𝑊
2,2

loc
×𝑊 1,2

loc
outside 𝑍 . If 𝑍 is non-empty, then the limit represents

a singular harmonic Z2 spinors. However, by assumption there are no singular harmonic Z2

spinors; hence, 𝑍 is empty and Proposition 5.3 asserts that a gauge transformed subsequence of

(Ψ𝑖 , 𝐴𝑖) converges in 𝐶∞
. �

The proof of Proposition 5.3 relies on the following a priori estimate.

Proposition 5.6. For each 𝑚0 > 0, there is an 𝜀0 > 0 and, for each, 𝑘 ∈ N, a non-decreasing
function 𝑓𝑘 : [0,∞) → [0,∞) such that the following holds: if (Ψ, 𝐴, 𝜀) ∈ Γ(𝑀,Hom(𝐸,𝑊 )) ×
A(det𝑊 ) × (0, 𝜀0] satis�es (5.4) and

min|Ψ|2 > 𝑚0,

then
‖Ψ‖𝐶𝑘

𝐴
+ ‖𝐹𝐴‖𝐶𝑘 6 𝑓𝑘

(
‖𝐹𝐴‖𝐿2 + ‖𝜂‖𝐶𝑘 + ‖𝐹𝐵 ‖𝐶𝑘 + ‖𝑅𝑔‖𝐶𝑘

)
.

Here ‖Ψ‖𝐶𝑘
𝐴
≔

∑𝑘
𝑖=0‖∇𝑖

𝐴
Ψ‖𝐿∞ and 𝑅𝑔 denotes the Riemann curvature tensor of the metric 𝑔.

The key ingredient for the proof of the above a priori estimate are the identity

(d∗d + dd
∗)𝜇 (Ψ) + |Φ|2𝐹𝐴 =

3∑︁
𝑖, 𝑗=1

1

2

𝜌∗
( (
(𝐹𝐵𝑖 𝑗 + 𝐹𝔴𝑖 𝑗 ) · Φ

)
Φ∗

)
𝑒𝑖 𝑗

+ 𝜌∗
(
(∇𝐴

𝑗 Φ) (∇𝐴
𝑖 Φ)∗

)
𝑒𝑖 𝑗 ,

(5.7)

whose proof can be found in [DW20, Proposition A.7], and the following two propositions.

Proposition 5.8. Let 𝑘 ∈ N0, 𝑝 > 2. There is a monotone function 𝑓𝑘,𝑝 : [0,∞) → [0,∞) such that
for every (Ψ, 𝐴) ∈ Γ(𝑀,Hom(𝐸,𝑊 )) ×A(det𝑊 ) solving

/𝐷𝐴,pΨ = 0

we have
‖Ψ‖

𝑊
𝑘+2,𝑝
𝐴

. 𝑓𝑘,𝑝
(
‖𝐹𝐴‖𝑊 𝑘,𝑝 + ‖Ψ‖𝐿∞ + ‖𝐹𝐵 ‖𝐶𝑘+1 + ‖𝑅𝑔‖𝐶𝑘+1

)
.

Here ‖Ψ‖
𝑊

𝑘,𝑝

𝐴

≔
∑𝑘

𝑖=0‖∇𝑖
𝐴
Ψ‖𝐿𝑝 .
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Proof. Fix a smooth reference connection 𝐴0. By Hodge theory, after applying a gauge transfor-

mation, we can write 𝐴 = 𝐴0 + 𝑎 with d
∗𝑎 = 0 and

‖𝑎‖𝑊 𝑘+1,𝑝 . ‖𝐹𝐴‖𝑊 𝑘,𝑝

with the implicit constant depending on 𝑘 , 𝑝 , and ‖𝑅𝑔‖𝐶𝑘 . It su�ces to estimate ‖Ψ‖
𝑊

𝑘+2,𝑝
𝐴
0

, since

‖(∇𝐴0
+ 𝑎)2Φ‖𝐿𝑝 . ‖∇2

𝐴0

Φ‖𝐿𝑝 + ‖|𝑎 | |∇𝐴0
Φ|‖𝐿𝑝 + ‖|𝑎 |2 |Φ|‖𝐿𝑝 + ‖|∇𝑎 | |Φ|‖𝐿𝑝

. ‖∇2

𝐴0

Φ‖𝐿𝑝 + ‖𝑎‖𝐿2𝑝 ‖∇𝐴0
Φ‖𝐿2𝑝 + ‖𝑎‖2

𝐿2𝑝
‖Φ‖𝐿∞ + ‖∇𝑎‖𝐿𝑝 ‖Φ‖𝐿∞

. (1 + ‖𝑎‖𝑊 1,𝑝 )2 · ‖Ψ‖
𝑊

2,𝑝

𝐴
0

.

by Hölder’s inequality, Sobolev embedding, and Morrey’s inequality; more generally,

‖Ψ‖
𝑊

𝑘+2,𝑝
𝐴

.
(
1 + ‖𝑎‖𝑊 𝑘+1,𝑝

)𝑘+2 · ‖Ψ‖
𝑊

𝑘+2,𝑝
𝐴
0

.

The Dirac equation can be written as

/𝐷𝐴0,pΨ = −𝛾 (𝑎)Ψ.

By standard elliptic estimates

(5.9) ‖Ψ‖
𝑊

ℓ+1,𝑞
𝐴
0

. ‖𝛾 (𝑎)Ψ‖
𝑊

ℓ,𝑞

𝐴
0

+ ‖Ψ‖𝐿∞

for any ℓ ∈ N0 and 𝑞 ∈ (1,∞) with the implicit constant depending on ℓ , 𝑞, ‖𝐹𝐵 ‖𝐶ℓ , and ‖𝑅𝑔‖𝐶ℓ .

By the Sobolev Multiplication Theorem,7 we have

‖𝛾 (𝑎)Ψ‖
𝑊

𝑘+1,𝑝
𝐴
0

. ‖𝑎‖𝑊 𝑘+1,𝑝 ‖Ψ‖
𝑊

𝑘+1,𝑞
𝐴
0

provided (𝑘 + 1)𝑞 > 3. Therefore, to bound ‖Ψ‖
𝑊

𝑘+2,𝑝
𝐴
0

in terms of

♠𝑘 ≔ ‖𝐹𝐴‖𝑊 𝑘,𝑝 + ‖Ψ‖𝐿∞ + ‖𝐹𝐵 ‖𝐶𝑘 + ‖𝑅𝑔‖𝐶𝑘 ,

it su�ces to show that for some 𝑞 satisfying (𝑘 + 1)𝑞 > 3, the norm ‖Ψ‖
𝑊

𝑘+1,𝑞
𝐴
0

can be bounded

in terms of ♠𝑘 . If 𝑘 > 1 or 𝑘 = 0 and 𝑞 > 3, such an estimate can be assumed by induction.

Hence, we only need to prove that ‖Ψ‖
𝑊

1,𝑞

𝐴
0

is bounded in terms of ♠𝑘 for some 𝑞 > 3.

By (5.9), ‖Ψ‖
𝑊

1,2
𝐴
0

can be bounded in terms of ♠𝑘 . Consequently, we have a bound on

‖𝛾 (𝑎)Ψ‖𝐿3 (𝐵𝑟 ) and thus, using (5.9) again, a bound on ‖Ψ‖
𝑊

1,3
𝐴
0

in terms of ♠𝑘 . Since𝑊 1,3 ↩→ 𝐿𝑝

for any 𝑝 ∈ [1,∞), it follows that ‖𝛾 (𝑎)Ψ‖𝐿𝑞 6 ‖𝑎‖𝐿6 ‖Ψ‖𝐿𝑝 is bounded for any 𝑞 with 1/𝑞 =

1/6 + 1/𝑝 . This then implies the desired bound on ‖Ψ‖
𝑊

1,𝑞

𝐴
0

for any 𝑞 ∈ [1, 6). �

7The Sobolev Multiplication Theorem asserts that ‖ 𝑓 𝑔‖𝑊 𝑘,𝑝 . ‖ 𝑓 ‖𝑊 𝑘
1
,𝑝
1
‖𝑔‖𝑊 𝑘

2
,𝑝
2
provided 𝑘 − 3

𝑝 < 𝑘1 − 3

𝑝1
+

𝑘2 − 3

𝑝2
and 𝑘 6 min{𝑘1, 𝑘2}.
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Proposition 5.10. Let 𝑘 ∈ N, 𝑝 ∈ [2,∞). Let 𝑚 ∈ 𝐶∞(𝑀) with 𝑚0 ≔ min𝑚 > 0. There are
constants 𝑐 > 0 and 𝜀0 > 0 depending on 𝑘 , 𝑝 ,𝑚0, ‖𝑚‖𝐶𝑘 , and ‖𝑅𝑔‖𝐶𝑘 such that for all 𝜀 ∈ (0, 𝜀0)

‖𝛼 ‖𝑊 𝑘,𝑝 6 𝑐 ‖(𝜀2Δ +𝑚)𝛼 ‖𝑊 𝑘,𝑝

for all 𝛼 ∈ Ω∗(𝑀). We use here the positive-de�nite Hodge laplacian Δ = dd
∗ + d

∗
d.

Proof. Denote byℜ the curvature operator appearing in the Weitzenböck formula Δ𝛼 = ∇∗∇𝛼 +
ℜ𝛼 . If 𝜀 � 1, then by integration by parts we obtainˆ

𝑀

〈(𝜀2Δ +𝑚)𝛼, 𝛼〉|𝛼 |𝑝−2 =
ˆ
𝑀

𝜀2 |∇𝑎 |2 |𝑎 |𝑝−2 + 𝜀2(𝑝 − 2)
4

��∇|𝑎 |2��2 |𝑎 |𝑝−4
+ 𝜀2〈ℜ𝛼, 𝛼〉|𝛼 |𝑝−2 +𝑚 |𝛼 |𝑝

>

ˆ
𝑀

𝑚0

2

|𝛼 |𝑝 .

By Young’s inequality and with 𝑞 = 𝑝/(𝑝 − 1), we haveˆ
𝑀

〈(𝜀2Δ +𝑚)𝛼, 𝛼〉|𝛼 |𝑝−2 6
ˆ
𝑀

| (𝜀2Δ +𝑚)𝛼 | |𝛼 |𝑝−1

6

ˆ
𝛿−𝑝

𝑝
| (𝜀2Δ +𝑚)𝛼 |𝑝 + 𝛿𝑞

𝑞
|𝛼 |𝑝

for all 𝛿 > 0. Choosing 𝛿 su�cient small, yieldsˆ
𝑀

|𝛼 |𝑝 .
ˆ
𝑀

| (Δ +𝑚)𝛼 |𝑝 ;

that is, the desired estimate for 𝑘 = 0.

Δ = 𝐷2
for 𝐷 = d + d

∗
and [𝜀2Δ +𝑚,𝐷𝑘 ] is a a di�erential operator of order 𝑘 − 1 with

coe�cients depending only on the �rst 𝑘 derivatives of𝑚. Therefore, the estimates for 𝑘 > 0

follow from the one for 𝑘 = 0 using

(𝜀2Δ +𝑚)𝐷𝑘𝛼 = 𝐷𝑘 (𝜀2Δ +𝑚)𝛼 + [𝜀2Δ +𝑚,𝐷𝑘 ]𝛼,

as well as elliptic estimates for 𝐷 , and induction. �

Proof of Proposition 5.6. It follows from [HW15, Proposition 2.1] that ‖Ψ‖𝐿∞ can be bounded in

terms of ♣𝑘 ≔ ‖𝐹𝐴‖𝐿2 + ‖𝜂‖𝐶𝑘 + ‖𝐹𝐵 ‖𝐶𝑘+1 + ‖𝑅𝑔‖𝐶𝑘+1 . From Proposition 5.8 with 𝑘 = 0 and 𝑝 = 2

it follows that ‖Ψ‖
𝑊

2,2
𝐴

bounded in terms of ♣𝑘 as well. Since𝑊
2,2

𝐴
↩→𝑊

1,6

𝐴
, it follows that the

𝐿3–norm of the right-hand side of (5.7) can be bounded in terms of ♣𝑘 . Proposition 5.10 thus

yields a bound on ‖𝐹𝐴‖𝐿3 in terms of ♣𝑘 . Proposition 5.8 with 𝑘 = 0 and 𝑝 = 3 bounds ‖Ψ‖
𝑊

2,3
𝐴

and, hence, ‖Ψ‖
𝑊

1,𝑝

𝐴

for all 𝑝 ∈ (1,∞) in terms of ♣𝑘 . Consequently, Proposition 5.10 bounds

‖𝐹𝐴‖𝐿𝑝 for any 𝑝 in terms of ♣𝑘 . Another application of Proposition 5.8 shows that ‖Ψ‖
𝑊

2,𝑝

𝐴

can

be bounded in terms of ♣𝑘 . This yields bounds on the𝑊 1,𝑝
–norm of right-hand side of (5.7) and

‖|Ψ|‖𝐶1 in terms of ♣𝑘 . It follows from Proposition 5.10 that ‖𝐹𝐴‖𝑊 1,𝑝 is bounded in terms of ♣𝑘 .
Iterating applications of Proposition 5.8 and Proposition 5.10 one shows that ‖𝐹𝐴‖𝑊 𝑘+1,𝑝 and

‖Ψ‖𝑊 𝑘+3,𝑝 can be bounded in terms of ♣𝑘 . Applying Morrey’s inequality, |𝑓 |𝐶0 . ‖ 𝑓 ‖𝑊 1,𝑝 for

𝑝 > 3, completes the proof. �
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Proof of Proposition 5.3. Since 𝑍 is empty, there exists 𝑚0 > 0 such that, after passing to a

subsequence, we have min|Ψ𝑖 |2 > 𝑚0 for all 𝑖 . Moreover, it follows from [HW15, De�nition 3.1

and Proposition 4.1] that ‖𝐹𝐴𝑖
‖𝐿2 is uniformly bounded. Proposition 5.6 now yields uniform

𝐶𝑘
–bounds for 𝐹𝐴𝑖

and and Ψ𝑖 (using the𝐴𝑖–dependent norm). After putting𝐴𝑖 in the Uhlenbeck

gauge as in the proof of Proposition 5.8 we also obtain 𝐶𝑘
bounds for 𝐴𝑖 and the result follows

from the Arzelà–Ascoli theorem. �

6 Orientation at in�nity

Suppose that (𝑡0, 0, [Ψ0, 𝐴0]) ∈ 𝔚\𝔚 is a boundary point in 𝔚. By Proposition 3.3, there exists

a spin structure 𝔰 inducing the spin𝑐 structure𝔴 such that Ψ0 ∈ Γ(Re(𝑆𝔰 ⊗𝐸)) ⊂ Γ(Hom(𝐸,𝑊 )),
/𝐷𝔰
p𝑡

0

Ψ0 = 0, and𝐴0 is trivial. By De�nition 4.1(1), there exists a unique solution {Ψ𝑡 : |𝑡−𝑡0 | � 1}
to

/𝐷𝔰
p𝑡Ψ𝑡 = 𝜆(𝑡)Ψ𝑡 and ‖Ψ𝑡 ‖𝐿2 = 1

with Ψ𝑡0 = Ψ0. Moreover, 𝜆 is a di�erentiable function of 𝑡 near 𝑡0 whose derivative, to be

denoted by
¤𝜆, satis�es ¤𝜆(𝑡0) ≠ 0. In this situation, [DW20, Section 6] shows that for any choice

of 𝑟 ∈ N there exist 𝜏 � 1 and 𝜀0 � 1, a 𝐶𝑟
map

ob : (𝑡0 − 𝜏, 𝑡0 + 𝜏) × [0, 𝜀0) → R,

an open neighborhood 𝑉 of (𝑡0, 0, [Ψ0, 𝐴0]) ∈ 𝔚, and a homeomorphism

𝔵 : ob−1(0) → 𝑉

such that:

(1) 𝔵 commutes with the projection to the 𝑡– and 𝜀–coordinates.

(2) The restriction ob| (𝑡0−𝜏,𝑡0+𝜏)×(0,𝜀0) is smooth and satis�es

ob(𝑡, 𝜀) = ¤𝜆(𝑡0) · (𝑡 − 𝑡0) − 𝛿𝜀4 +𝑂
(
(𝑡 − 𝑡0)2, 𝜀6

)
, and

𝜕𝜀ob(𝑡, 𝜀) = −4𝛿𝜀3 +𝑂
(
(𝑡 − 𝑡0)2, 𝜀5

)
,

(6.1)

with 𝛿 = 𝛿 (Ψ0, p𝑡0, 𝜂𝑡0) as in De�nition 4.1(4). In particular, since by assumption 𝛿 ≠ 0,

the equation ob(𝑡, 𝜀) = 0 can be solved for 𝑡 :

(6.2) 𝑡 (𝜀) = 𝑡0 +
𝛿

¤𝜆(𝑡0)
𝜀4 +𝑂 (𝜀6) .

(3) If (𝑡, 𝜀) ∈ (𝑡0 − 𝜏, 𝑡0 + 𝜏) × (0, 𝜀0] satis�es ob(𝑡, 𝜀) = 0 and

𝔵(𝑡, 𝜀) = (𝑡, 𝜀, [Ψ𝜀, 𝐴𝜀])

then [𝜀−1Ψ𝜀, 𝐴𝜀] is a solution of the Seiberg–Witten equation (2.2). We will prove below

that this solution is unobstructed; that is, the operator

𝐿𝜀−1Ψ𝜀 ,𝐴𝜀 ,p𝑡 (𝜀 )

is invertible.
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It follows from the above that

ob
−1(0) =

{(
𝑡 (𝜀), 𝜀

)
: 𝜀 ∈ [0, 𝜀0)

}
.

Therefore, 𝔚 is a compact, oriented, one–dimensional manifold with boundary, that is: a �nite

collection of circles and closed intervals. Its oriented boundary is

𝜕𝔚 = 𝔐𝔴 (p1, 𝜂1) −𝔐𝔴 (p0, 𝜂0) ∪
(
𝔚\𝔚

)
.

It follows from (6.2) that, if 𝛿/ ¤𝜆(0) > 0, then as 𝑡 passes through 𝑡0 a solution to (2.2) is created.

If 𝛿/ ¤𝜆(0) < 0, then as 𝑡 passes through 𝑡0 a solution to (2.2) is annihilated. The solution

that is created/annihilated at 𝑡0 contributes sign[𝜀−1Ψ𝜀, 𝐴𝜀] to the signed count of solutions.

Consequently, for 𝜏 � 1, we have the local wall-crossing formula

(6.3) 𝑛𝔴 (p𝑡+𝜏 , 𝜂𝑡+𝜏 ) = 𝑛𝔴 (p𝑡0−𝜏 , 𝜂𝑡0−𝜏 ) + sign( ¤𝜆(𝑡0)) sign(𝛿) sign[𝜀−1Ψ𝜀, 𝐴𝜀] .

Proposition 6.4. In the above situation, for 𝜀 � 1, the solution [𝜀−1Ψ𝜀, 𝐴𝜀] is unobstructed and

(6.5) sign(𝛿) sign[𝜀−1Ψ𝜀, 𝐴𝜀] = 𝜎 (Ψ0, p𝑡0)

with 𝜎 (Ψ0, p𝑡0) as in De�nition 4.6. In particular, the local wall-crossing formula (6.3) can be
written in the form

(6.6) 𝑛𝔴 (p𝑡0+𝜏 , 𝜂𝑡0+𝜏 ) = 𝑛𝔴 (p𝑡0−𝜏 , 𝜂𝑡0−𝜏 ) + sign( ¤𝜆(0)) 𝜎 (Ψ0, p𝑡0) .

Proof of Proposition 6.4. The reader might �nd it helpful to review the orientation procedure

described in De�nition 2.13, as well as Proposition 4.3 and De�nition 4.6 before reading further.

A reader who is unfamiliar with the determinant line bundle and its relation to the orientation

procedure should consult Appendix B, where this relation is discussed. The proof proceeds in

�ve steps.

Step 1. For any 𝑠 > 0, we have

sign[𝜀−1Ψ𝜀, 𝐴𝜀]
= OT((0, 𝐴0, p𝑡0), (𝑠Ψ0, 𝐴0, p𝑡0)) · OT((𝑠Ψ0, 𝐴0, p𝑡0), (𝜀−1Ψ𝜀, 𝐴𝜀, p𝑡 (𝜀) )) .

This is an immediate consequence of De�nition 2.13 as well as the multiplicative property

of the orientation transport (2.11).

Step 2. For 𝑠 � 1, we have

OT((0, 𝐴0, p𝑡0), (𝑠Ψ0, 𝐴0, p𝑡0)) = −𝜎 (Ψ0, p𝑡0).

Denote by /𝐷Re and
/𝐷 Im the restriction of /𝐷𝐴0,p𝑡

0

to Re(𝑆𝔰 ⊗ 𝐸) and Im(𝑆𝔰 ⊗ 𝐸) respectively.
We can write 𝐿𝑠Ψ0,𝐴0,p𝑡

0

as

𝐿𝑠Ψ0,𝐴0,p𝑡
0

=

(
− /𝐷Re

𝔇𝑠

)
with 𝔇𝑠 =

(
− /𝐷 Im −𝑠𝔞Ψ0

−𝑠𝔞∗Ψ0

𝔡

)
.
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Consequently, we have

OT((0, 𝐴0, p𝑡0), (𝑠Ψ0, 𝐴0, p𝑡0)) = (−1)SF( (𝔇𝜎 )𝜎∈[0,𝑠 ]) .

Denote by 𝔞̃Ψ0
≔ |Ψ0 |−1𝔞Ψ0

the isometry introduced in Proposition 4.3. De�ne

˜𝔇𝑠 : (Ω1(𝑀, 𝑖R) ⊕ Ω0(𝑀, 𝑖R))⊕2 → (Ω1(𝑀, 𝑖R) ⊕ Ω0(𝑀, 𝑖R))⊕2

by

˜𝔇𝑠 ≔ (𝔞̃∗Ψ0

⊕ id) ◦𝔇𝑠 ◦ (𝔞̃Ψ0
⊕ id).

Since 𝔡Ψ0
= 𝔞̃∗Ψ0

◦ /𝐷 Im ◦ 𝔞̃Ψ0
, by de�nition, and 𝔞∗Ψ0

𝔞Ψ0
= |Ψ|2, we have

˜𝔇𝑠 =

(
−𝔡Ψ0

−𝑠 |Ψ0 |
−𝑠 |Ψ0 | 𝔡

)
.

From this discussion, and the additivity of the spectral �ow under path composition, it follows

that

SF

(
(𝔇𝜎 )𝜎 ∈[0,𝑠 ]

)
= SF

(
( ˜𝔇𝜎 )𝜎 ∈[0,𝑠 ]

)
= SF

((
(𝑡 − 1)𝔡Ψ0

− 𝑡𝔡 0

0 𝔡

)
𝑡 ∈[0,1]

)
+ SF

((
−𝔡 −𝑡𝑠
−𝑡𝑠 𝔡

)
𝑡 ∈[0,1]

)
+ SF

((
(𝑡 − 1)𝔡 − 𝑡𝔡Ψ0

−((1 − 𝑡) + 𝑡 |Ψ0 |)𝑠
−((1 − 𝑡) + 𝑡 |Ψ0 |)𝑠 𝔡

)
𝑡 ∈[0,1]

)
.

The �rst spectral �ow is given by

SF

(
(−𝔡𝑡Ψ0

)𝑡 ∈[0,1]
)

in the notation of Proposition 4.3. The second spectral �ow can be computed to be −1 − 𝑏1(𝑀)
by observing that ifH ≔ H0 ⊕H1

denotes the space of harmonic forms and 𝔡0 : H
⊥ → H⊥

is the restriction of 𝔡, then (
−𝔡 −𝑠
−𝑠 𝔡

)
can be diagonalized to

©­­­­­«
𝑠 · idH

−𝑠 · idH
+
√︃
𝔡2
0
+ 𝑠2

−
√︃
𝔡2
0
+ 𝑠2

ª®®®®®¬
, 8

8The operator 𝔡
2

0
+ 𝑠2 has strictly positive spectrum, so its square root is well-de�ned and invertible.
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and the spectral �ow of this family of operators is −(1 + 𝑏1(𝑀)), using Convention 2.8. To

compute the third spectral �ow, observe that(
−𝔡 − 𝑡𝔢Ψ0

−((1 − 𝑡) + 𝑡 |Ψ0 |)𝑠
−((1 − 𝑡) + 𝑡 |Ψ0 |)𝑠 𝔡

)
2

=

(
(−𝔡 − 𝑡𝔢Ψ0

)2 + ((1 − 𝑡) + 𝑡 |Ψ0 |)2𝑠2
𝔡2 + ((1 − 𝑡) + 𝑡 |Ψ0 |)2𝑠2

)
+ 𝑠𝔢̃Ψ0,𝑡

with 𝔢̃Ψ0,𝑡 a zeroth order operator depending on Ψ0, its derivative, and 𝑡 . If 𝑠 � 1, then the

operator on the left-hand side is invertible for every 𝑡 ∈ [0, 1]. Therefore, the third spectral �ow
is trivial.

This shows that, for 𝑠 � 1,

OT((0, 𝐴0, p𝑡0), (𝑠Ψ0, 𝐴0, p𝑡0)) = (−1)1+𝑏1 (𝑀) · (−1)SF
(
(−𝔡𝑡Ψ

0

)𝑡∈[0,1]
)
= −𝜎 (Ψ0, p𝑡0).

Step 3. If 𝑠 � 1, then
ker𝐿𝑠Ψ0,𝐴0,p𝑡

0

= R〈Ψ0〉.
As above, write

𝐿𝑠Ψ0,𝐴0,p𝑡
0

=

(
− /𝐷Re

𝔇𝑠

)
with 𝔇𝑠 =

(
− /𝐷 Im −𝑠𝔞Ψ0

−𝑠𝔞∗Ψ0

𝔡

)
.

By (4.4) and (4.5), we have

𝔇2

𝑠 =

(
/𝐷∗
Im

/𝐷 Im + 𝑠2 |Ψ0 |2
𝔡∗𝔡 + 𝑠2 |Ψ0 |2

)
+ 𝑠𝔢Ψ0

with 𝔢Ψ0
a zeroth order operator depending on Ψ0 and its derivative. It follows that 𝔇𝑠 is

invertible for 𝑠 � 1. Therefore, ker𝐿𝑠Ψ0,𝐴0,p𝑡
0

= ker /𝐷Re. By hypothesis the latter is spanned by

Ψ0.

Step 4. Comparison of the determinant line bundles of Seiberg–Witten equation with two spinors
and the blown-up Seiberg–Witten equation with two spinors.

In [DW20] we construct a Kuranishi model for the blown-up Seiberg–Witten equation

with two spinors (5.1). This Kuranishi model allows us to compute orientation transports for

the determinant line bundle associated with the blown-up Seiberg–Witten equation with two

spinors. Although the Seiberg–Witten equation with two spinors and its blown-up version

are essentially equivalent, the relation between their linearizations is subtle. The purpose of

this step is to discuss what the precise relation between the determinant line bundles of two

linearizations is.

Consider the space of irreducible con�gurations

C∗ ≔ (Γ(Hom(𝐸,𝑊 ))\{0}) ×A(det𝑊 )

and its quotient

B∗ ≔ C∗/G.
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Let𝑇C∗
be its tangent bundle—a trivial bundle with �ber Γ(Hom(𝐸,𝑊 )) ⊕Ω1(𝑖R). The Seiberg–

Witten equation with two spinors (with respect to the parameter p𝑡 ) de�nes a smooth section

𝔰𝔴𝑡 : C
∗ → 𝑇C:

𝔰𝔴𝑡 (Ψ, 𝐴) ≔
(

− /𝐷𝐴,p𝑡Ψ
∗
(
𝐹𝐴 + 𝜂𝑡 − 𝜇p𝑡 (Ψ)

) ) .
This section isG–equivariant and, hence, induces a Fredholm section9

𝔰𝔴𝑡 : B
∗ → 𝑇B∗.

The moduli space𝔐𝔴 (p𝑡 , 𝜂𝑡 ) of solutions of the Seiberg–Witten equation with two spinors is

the zero set 𝔰𝔴−1
𝑡 (0).

A choice of a connection on C∗ → B∗
induces a connection, denoted by ∇, on 𝑇B∗

.

Any choice of gauge �xing induces such a connection. The family of Fredholm operators

(∇𝔰𝔴)𝔠 : 𝑇𝔠B∗ → 𝑇𝔠B
∗
parametrized by points 𝔠 ∈ B∗

de�ne a determinant line bundle

det(∇𝔰𝔴) → B∗
;

see Appendix B for a general discussion of determinant line bundles, and [Doa17, Section 2.6]

for the construction in the case at hand. This is the determinant line bundle which controls

the relative sign two solutions of the Seiberg–Witten equation with two spinors. The space of

connections on C∗ → B∗
is contractible. Thus any two choices of such connections lead to

determinant line bundles which are canonically isomorphic. Consequently, the choice of gauge

�xing does not matter for the purpose of orienting the moduli space.

Let

S ≔ {Ψ ∈ Γ(Hom(𝐸,𝑊 )) : ‖Ψ‖𝐿2 = 1}

be the unit sphere in the space of spinors. The blown-up con�guration space is de�ned as

ˆC∗ ≔ (0,∞) ×S ×A(det𝑊 ).

We denote its quotient by

ˆB∗ ≔ ˆC∗/G.

The blown-up Seiberg–Witten equation (5.1) gives rise to theG–equivariant section 𝔰𝔴
1

𝑡 :
ˆC∗ →

𝑇 ˆC∗

𝔰𝔴
1

𝑡 (𝜀,Ψ, 𝐴) =
©­«

〈Ψ, /𝐷𝐴,p𝑡Ψ〉
− /𝐷𝐴,p𝑡Ψ + 〈Ψ, /𝐷𝐴,p𝑡Ψ〉Ψ
∗
(
𝜀2𝐹𝐴 + 𝜀2𝜂𝑡 − 𝜇p𝑡 (Ψ)

) ª®¬ .
This induces a section

𝔰𝔴
1

𝑡 :
ˆB∗ → 𝑇 ˆB∗.

TheG–equivariant map Υ : ˆC∗ → C∗
given by

(6.7) Υ(𝜀,Ψ, 𝐴) ≔ (𝜀−1Ψ, 𝐴) .

9Of course, one needs to work with appropriate Sobolev completions of C∗
,B∗

, 𝑇C∗
, and 𝑇B∗

.
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is a di�eomorphism. The induced map Υ : ˆB∗ → B∗
is di�eomorphism as well. It is clear that

Υ induces a bijection between (𝔰𝔴1

𝑡 )−1(0) and 𝔰𝔴−1
𝑡 (0); however,

𝔰𝔴
1

𝑡 ≠ Υ∗𝔰𝔴𝑡 .

To see how 𝔰𝔴
1

𝑡 and Υ∗𝔰𝔴𝑡 are related, we compute the derivative dΥ : 𝑇 ˆC∗ → 𝑇C∗
to be

(6.8) d(𝜀,Ψ,𝐴)Υ(𝜀,𝜓, 𝑎) =
(
− 𝜀
𝜀2
Ψ + 𝜀−1𝜓
𝑎

)
,

where 𝜀 ∈ R is a variation of 𝜀,𝜓 ∈ 𝑇ΨS is a variation of Ψ, and 𝑎 is a variation of𝐴. The inverse

is given by

(6.9) (d(𝜀,Ψ,𝐴)Υ)−1(𝜓, 𝑎) =
©­«

−𝜀2〈Ψ,𝜓 〉
𝜀𝜓 − 𝜀〈Ψ,𝜓 〉Ψ

𝑎

ª®¬ .
Therefore, the pull-back section 𝔰𝔴

0

𝑡 ≔ Υ∗𝔰𝔴 :
ˆC∗ → 𝑇 ˆC∗

is

𝔰𝔴
0

𝑡 (𝜀,Ψ, 𝐴) =
©­«

𝜀〈Ψ, /𝐷𝐴,p𝑡Ψ〉
− /𝐷𝐴,p𝑡Ψ + 〈Ψ, /𝐷𝐴,p𝑡Ψ〉Ψ
∗
(
𝐹𝐴 + 𝜂𝑡 − 𝜀−2𝜇p𝑡 (Ψ)

) ª®¬ .
It follows that

𝔰𝔴
1

𝑡 =
©­«
𝜀−1

1

𝜀2

ª®¬𝔰𝔴0

𝑡 .

We join 𝔰𝔴
0

𝑡 and 𝔰𝔴
1

𝑡 by the following path. For 𝜎 ∈ [0, 1], de�ne𝑈 𝜎
𝜀 by

𝑈 𝜎
𝜀 ≔ (1 − 𝜎) ©­«

1

1

1

ª®¬ + 𝜎
©­«
𝜀−1

1

𝜀2

ª®¬ .
For �xed 𝜀 > 0, as 𝜎 varies in [0, 1], this is a path of invertible matrices. Set

(6.10) 𝔰𝔴
𝜎
𝑡 ≔ 𝑈 𝜎

𝜀 ◦ 𝔰𝔴0

𝑡 .

Observe that if 𝔰𝔴
𝜎
𝑡 (𝜀,Ψ, 𝐴) = 0 for some 𝜎 ∈ [0, 1], then the same holds for every 𝜎 ∈ [0, 1].

Moreover, for such (𝜀,Ψ, 𝐴), we have

d(𝜀,Ψ,𝐴)𝔰𝔴
𝜎
𝑡 ≔ 𝑈 𝜎

𝜀 ◦ d(𝜀,Ψ,𝐴)𝔰𝔴0

𝑡 (𝜀,Ψ, 𝐴) .

(If (𝜀,Ψ, 𝐴) is not a solution, then an extra term involving the derivative of𝑈 𝜎
𝜀 appears.)

The path of sections 𝔰𝔴
𝜎
𝑡 descends to a path of sections of 𝑇 ˆB∗

. In what follows we will

distinguish between elements in
ˆC∗

or 𝑇 ˆC∗
and their G–equivalence classes by writing the

former in round brackets and the latter in square brackets.
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Step 5. For 𝜀 � 1, the operator 𝐿𝜀−1Ψ𝜀 ,𝐴𝜀 ,p𝑡 (𝜀 ) is invertible (thus, the solution [𝜀−1Ψ𝜀, 𝐴𝜀] is unob-
structed) and

(6.11) OT(𝐿𝜀−1Ψ0,𝐴0,p𝑡
0

, 𝐿𝜀−1Ψ𝜀 ,𝐴𝜀 ,p𝑡 (𝜀 ) ) = − sign(𝛿).

We compute the spectral �ow from Υ(𝔠0𝜀 ) = (𝜀−1Ψ0, 𝐴0) and p𝑡0 to Υ(𝔠𝜀) = (𝜀−1Ψ𝜀, 𝐴𝜀)
and p𝑡 (𝜀) as the orientation transport from det d𝔠0𝜀

𝔰𝔴𝑡0 to det d𝔠0𝜀
𝔰𝔴𝑡 (𝜀) ; see Appendix B. This

orientation transport can be computed from the diagram of isomorphisms depicted and explained

below.

(6.12)

R det dΥ (𝔠0𝜀 )𝔰𝔴𝑡0 det d𝔠0𝜀
𝔰𝔴

0

𝑡0
det d𝔠0𝜀

𝔰𝔴
1

𝑡0
R

R det dΥ (𝔠𝜀 )𝔰𝔴𝑡 (𝜀) det d𝔠𝜀𝔰𝔴
0

𝑡 (𝜀) det d𝔠𝜀𝔰𝔴
1

𝑡 (𝜀) R

𝜅 Υ−1∗ 𝐻1 𝑀1

=

𝜅−1 Υ∗ 𝐻2 𝑀2

Here, 𝜅 denotes the Knudsen–Mumford isomorphism introduced in Appendix B; we use here

that d𝔠𝔰𝔴𝑡 is a self-adjoint operator (for any 𝔠 and 𝑡 ). Our goal is to compute the orientation

transport (6.11) which, by de�nition, is the sign of the composition of 𝜅 , the �rst vertical arrow,

and 𝜅−1. This will be done by computing the remaining maps in the diagram which we now

describe.

The second top and bottom horizontal arrows are induced from the derivative of the map Υ
de�ned by (6.7). The �rst square commutes because 𝔰𝔴

0

𝑡 = Υ∗𝔰𝔴𝑡 .

The maps 𝐻1 and 𝐻2 are induced from the homotopy of operators 𝔰𝔴
𝜎
𝑡 , de�ned by (6.10),

as 𝜎 varies in [0, 1]. The second square commutes because orientation transport is homotopy

invariant.

Finally, the right-most maps 𝑀1 and 𝑀2 are the trivializations of the determinant line

bundle det d𝔰𝔴
1

𝑡 obtained from the Kuranishi model. The construction of𝑀1 and𝑀2, and the

commutativity of the third square are addressed in (4) below.

We now compute the maps in the diagram.

(1) By Step 3, the kernel and cokernel of dΥ (𝑐0𝜀 )𝔰𝔴𝑡0 are spanned by Ψ0. Thus,

𝜅 (1) = Ψ0 ⊗ Ψ∗
0
.

(2) By (6.9), under the isomorphism Υ∗ this correponds to

Υ−1∗ (Ψ0 ⊗ Ψ∗
0
) = 𝜀4𝜕𝜀 ⊗ 𝜕∗𝜀 ,

where 𝜕𝜀 is the tangent vector in the 𝜀–direction in
ˆB∗ = (0,∞) ×S ×A(det𝑊 )/G.

(3) The map 𝐻1 is given by the homotopy 𝔰𝔴
𝜎
𝑡 as 𝜎 varies in [0, 1]. We have

d𝔠0𝜀
𝔰𝔴

𝜎
𝑡0
(𝜀,𝜓, 𝑎) = 𝑈 𝜎

𝜀 ◦ d𝔠0𝜀𝔰𝔴
0

𝑡0
(𝜀,𝜓, 𝑎) + 𝜀 (𝜕𝜀𝑈 𝜎

𝜀 ) ◦ 𝔰𝔴
0

𝑡0
(𝔠𝜀0)

= 𝑈 𝜎
𝜀 ◦


0 0 0

0 − /𝐷𝐴0,p𝑡
0

−𝛾 (·)Ψ0

0 −𝜀−2dΨ0
𝜇 ∗d

 + 𝜀


0

0

2𝜎𝜀 ∗ 𝜂𝑡0

 ,
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because

d𝔠0𝜀
𝔰𝔴

0

𝑡0
=


0 0 0

0 − /𝐷𝐴0,p𝑡
0

−𝛾 (·)Ψ0

0 −𝜀−2dΨ0
𝜇 ∗d

 and

𝔰𝔴
0

𝑡0
(𝔠𝜀0) =


0

0

∗𝜂𝑡0

 .
Set

ℓ ≔

[
− /𝐷𝐴0,p𝑡

0

−𝛾 (·)Ψ0

−𝜀−2dΨ0
𝜇 ∗d

]
.

The discussion in Step 3, showed that ℓ is invertible. The fact that the top row of d𝔠0𝜀
𝔰𝔴

𝜎
𝑡0

is zero tells us that its cokernel is spanned by 𝜕𝜀 . The kernel of d𝔠0𝜀𝔰𝔴
𝜎
𝑡0
and it is spanned

by

𝜕𝜀 + 𝑣𝜎𝜀 with 𝑣𝜎𝜀 = −ℓ−1(𝑈 𝜎
𝜀 )−1


0

0

2𝜎𝜀 ∗ 𝜂𝑡0

 .
The exact formula for 𝑣𝜎𝜀 is not important; what matters is that it varies smoothly in 𝜀 and

𝜎 . The kernel and cokernel of d𝔠0𝜀
𝔰𝔴

𝜎
𝑡0
vary smoothly as 𝜎 varies in [0, 1]. This gives a

trivialization of the line bundle over [0, 1] whose �ber over 𝜎 ∈ [0, 1] is the determinant

line det d𝔠0𝜀
𝔰𝔴

𝜎
𝑡0
. This trivialization extends the one of det d𝔠0𝜀

𝔰𝔴
0

𝑡0
obtained by choosing

the basis 𝜕𝜀 and 𝜕∗𝜀 of the kernel and cokernel of d𝔠0𝜀
𝔰𝔴

0

𝑡0
respectively. Since 𝐻1 is de�ned

as the orientation transport along the path (d𝔠0𝜀𝔰𝔴
𝜎
𝑡0
)𝜎 ∈[0,1] , we see that

𝐻1(𝜕𝜀 ⊗ 𝜕∗𝜀 ) = (𝜕𝜀 + 𝑣1𝜀 ) ⊗ 𝜕∗𝜀 .

(4) We now describe the maps𝑀1 and𝑀2. We construct the Kuranishi model for 𝔰𝔴
1

𝑡 using

the Implicit Function Theorem to �nd Ξ𝑡,𝜀 such that

𝔰𝔴
1

𝑡 (𝜀,Ξ𝑡,𝜀 [Ψ0 +𝜓,𝐴0 + 𝑎]) =
[
𝑓𝑡 (𝜀,𝜓, 𝑎)
ℓ (𝜓, 𝑎)

]
+ 𝔰𝔴

1

𝑡 (𝜀, [Ψ0, 𝐴0]) .

Here 𝑓𝑡 is a smooth R–valued function and ℓ is the isomorphism introduced above. This

yields an exact sequence

0 → ker d𝔠0𝜀
𝔰𝔴

1

𝑡0
→ R

𝜕𝜀 𝑓𝑡
0
(𝜀,0,0)

−−−−−−−−→ R → coker d𝔠0𝜀
𝔰𝔴

1

𝑡0
→ 0;

cf. (B.13). It follows from the description of d𝔠0𝜀
𝔰𝔴

1

𝑡0
above, that the �rst map sends 𝜕𝜀 + 𝑣𝜎

to 1 and the third map sends 1 to 𝜕𝜀 . Consequently, the second map is zero.

Similarly, there is an exact sequence

0 → ker d𝑐𝜀𝔰𝔴
1

𝑡 (𝜀) → R
𝜕𝜀 𝑓𝑡 (𝜀 ) (𝜀,𝜓𝜀 ,𝑎𝜀 )−−−−−−−−−−−−→ R → coker d𝔠0𝜀

𝔰𝔴
1

𝑡 (𝜀) → 0.
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Here (𝜀,Ψ0 +𝜓𝜀, 𝐴0 + 𝑎𝜀) is a solution of the blown-up Seiberg–Witten equation with two

spinors and, by the de�nition of the obstruction map ob, see [DW20, Section 5.3], we

have

𝜕𝜀 𝑓𝑡 (𝜀) (𝜀,𝜓𝜀, 𝑎𝜀) = (𝜕𝜀ob) (𝑡 (𝜀), 𝜀) .
Since, by (6.1),

(𝜕𝜀ob) (𝑡 (𝜀), 𝜀) = −4𝛿𝜀3 +𝑂 (𝜀5)
and 0 < 𝜀 � 1, it follows that d𝔠𝜀𝔰𝔴

1

𝑡 (𝜀) is invertible. Since 𝔠𝜀 is a solution, d𝔠𝜀𝔰𝔴
1

𝑡 (𝜀)
agrees with d𝔠𝜀𝔰𝔴 = 𝐿𝜀−1Ψ𝜀 ,𝐴𝜀 ,p𝑡 (𝜀 ) (up to composition with an isomorphism and pulling

back by a di�eomorphism). It follows that the solution [𝜀−1Ψ𝜀, 𝐴𝜀] is unobstructed.
These exact sequences yield the maps

𝑀1 : det(d𝔠0𝜀𝔰𝔴
1

𝑡0
) → R ⊗ R∗ = R and

𝑀2 : det(d𝑐𝜀𝔰𝔴
1

𝑡 (𝜀) ) → R ⊗ R∗ = R

appearing in the diagram (6.12). These maps are computed using (B.8) to be

𝑀1 : (𝜕𝜀 + 𝑣1𝜀 ) ⊗ (𝜕∗𝜀 ) ↦→ −1 ⊗ 1
∗ ↦→ −1

and

𝑀2 : 1 ⊗ 1
∗ ↦→ −1 ⊗ (𝜕𝜀ob)∗ ↦→ −𝜕𝜀ob = 4𝛿𝜀3 +𝑂 (𝜀5) .

(The signs come from the Knudsen–Mumford conventions used in the construction of

the determinant line bundle.)

(5) Since 𝔠𝜀 is a solution, we have

det d𝔠𝜀𝔰𝔴𝑡 (𝜀) = det(0) ⊗ det(0)∗ = R, det d𝔠𝜀𝔰𝔴
0

𝑡 (𝜀) = det(0) ⊗ det(0)∗ = R,

and det d𝔠𝜀𝔰𝔴
1

𝑡 (𝜀) = det(0) ⊗ det(0)∗ = R

and all of the maps on the bottom of (6.12) are the identity R = R.

(6) Finally, putting everything together we see that composition of all maps is

1 ↦→ Ψ0 ⊗ Ψ∗
0
↦→ 𝜀4𝜕𝜀 ⊗ 𝜕∗𝜀 ↦→ 𝜀4(𝜕𝜀 + 𝑣1𝜀 ) ⊗ 𝜕∗𝜀 ↦→ −𝜀4 ↦→ 𝜀4𝜕𝜀ob = −4𝛿𝜀7 +𝑂 (𝜀9).

We conclude that the orientation transport (6.11), which is equal to the sign of the compo-

sition of all of the above maps, is − sign(𝛿) as we wanted to show. �

7 Proof of the wall-crossing formulae

This section will conclude the proof of Theorem 4.9. The local wall-crossing formula (6.3) and

Proposition 6.4 directly imply the wall-crossing formula

4.10 𝑛𝔴 (p1, 𝜂1) = 𝑛𝔴 (p0, 𝜂0) +
∑︁
𝔰

𝑁𝔰∑︁
𝑖=1

𝜒𝔰𝑖 · 𝜎 (Ψ𝔰
𝑖 , p𝑡𝔰𝑖 ).

In order to prove (4.11), we need to relate 𝜎 (Ψ0, p0) to 𝜎 (Ψ1, p1) for two di�erent nowhere

vanishing spinors Ψ0 and Ψ1 and two parameters p0 and p1.
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Proposition 7.1. Let (p𝑡 )𝑡 ∈[0,1] be a path inP. If Ψ0 and Ψ1 are two nowhere vanishing sections
of Re(𝐸 ⊗ 𝑆𝔰), then

(7.2) 𝜎 (Ψ1, p1) = 𝜎 (Ψ0, p0) · (−1)SF(− /𝐷𝔰
p𝑡 ) · (−1)deg(Ψ0,Ψ1) .

Here deg(Ψ0,Ψ1) denotes the relative the degree of Ψ0 and Ψ1 as in De�nition 4.8.

Proof. Suppose �rst that deg(Ψ0,Ψ1) = 0 so that we can �nd a path (Ψ𝑡 )𝑡 ∈[0,1] of nowhere
vanishing sections from Ψ0 to Ψ1. It follows from De�nition 4.6 that

𝜎 (Ψ1, p1) = 𝜎 (Ψ0, p0) · (−1)SF(−𝔡Ψ𝑡 ) .

The spectral �ow along the path of operators −𝔡Ψ𝑡 is identical to that of the path of operators

(7.3) − 𝔞̃Ψ0
◦ 𝔡Ψ𝑡 ◦ 𝔞̃∗Ψ0

.

Consider the homotopy of paths

(𝑡, 𝑠) ↦→ −𝔞̃Ψ𝑠𝑡 ◦ 𝔡Ψ𝑡 ◦ 𝔞̃∗Ψ𝑠𝑡 .

It is well-de�ned since Ψ𝑡 is nowhere vanishing for 𝑡 ∈ [0, 1]. For 𝑠 = 0 it gives us the path (7.3)

whereas for 𝑠 = 1 we obtain

−𝔞̃Ψ𝑡 ◦ 𝔡Ψ𝑡 ◦ 𝔞̃∗Ψ𝑡 = − /𝐷𝔰
p𝑡 .

Since the spectral �ow is a homotopy invariant, we have SF(−𝔡Ψ𝑡 ) = SF(− /𝐷𝔰
p𝑡 ) which proves

(7.2) if deg(Ψ0,Ψ1) = 0.

It remains to deal with the case deg(Ψ0,Ψ1) ≠ 0. By the above, we can assume that p𝑡 = p
for all 𝑡 ∈ [0, 1]. Since 𝜎 (Ψ1, p) and 𝜎 (Ψ2, p) are de�ned using the spectral �ow from 𝔡Ψ0

and

𝔡Ψ1
respectively to a given elliptic operator (see De�nition 4.6), it follows that for any path of

elliptic operators (𝔡𝑡 )𝑡 ∈[0,1] connecting 𝔡Ψ0
and 𝔡Ψ1

we have

𝜎 (Ψ1, p) · 𝜎 (Ψ0, p) = (−1)SF(−𝔡𝑡 ) .

By work of Atiyah–Patodi–Singer [APS76, Section 7], the spectral �ow SF(−𝔡𝑡 ) is equal to the

index of an elliptic operator𝔇 on 𝑆1 ×𝑀 constructed as follows. Set 𝑉 ≔ (𝑇 ∗𝑀 ⊕ R) ⊗ 𝑖R and

de�ne an isometry 𝑓 : 𝑉 → 𝑉 by

𝑓 ≔ 𝔞̃∗Ψ0

𝔞̃Ψ1

By the de�nition of 𝑓 , we have

𝔡Ψ1
= 𝑓 −1 ◦ 𝔡Ψ0

◦ 𝑓 .

Let V → 𝑆1×𝑀 be the vector bundle obtained as the mapping torus of 𝑓 ; that is, V = 𝑉 ×[0, 1]/∼
where ∼ denotes the equivalence relation (𝑣, 0) ∼ (𝑓 (𝑣), 1). If, as before, (𝔡𝑡 )𝑡 ∈[0,1] is a family

of elliptic operators connecting 𝔡Ψ0
and 𝔡Ψ1

, then the operator 𝜕𝑡 − 𝔡𝑡 on the pull-back of 𝑉 to

[0, 1] ×𝑀 , with 𝑡 denoting the coordinate on [0, 1], gives rise to a �rst order elliptic operator

𝔇 on V → 𝑆1 ×𝑀 whose index equals SF(−𝔡𝑡 ). We compute this index as follows. Under the

isomorphism 𝔞̃Ψ0
between 𝑉 and Re(𝑆𝔰 ⊗ 𝐸) the operator 𝔡Ψ0

corresponds to /𝐷𝔰
p. Moreover,

under this isomorphism, the complex-linear extension of 𝑓 corresponds to an isomorphism of
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𝑆𝔰 ⊗ 𝐸 given by a gauge transformation 𝑔 of degree deg(Ψ0,Ψ1) of the SU(2)–bundle 𝐸 (this is

because in a local trivialization 𝑓 is given simply by right-multiplication by a quaternion-valued

function). Thus, the complexi�cation of V is isomorphic to S+𝔰 ⊗Ewhere S+𝔰 is the positive spinor
bundle of 𝑆1 ×𝑀 and E is obtained by gluing 𝐸 → [0, 1] ×𝑀 along {0, 1} ×𝑀 using 𝑔. The

complexi�cation𝔇C
of the operator𝔇 corresponds in this identi�cation to the Dirac operator

on S+𝔰 twisted by a connection on E. By the Atiyah–Singer Index Theorem,

index𝔇C =

ˆ
𝑆1×𝑀

ˆ𝐴(𝑆1 ×𝑀)ch(E) = −
ˆ
𝑆1×𝑀

𝑐2(E) = − deg(Ψ0,Ψ1) .

The real index of𝔇 is equal to the complex index of𝔇C
and we conclude that

𝜎 (Ψ1, p) · 𝜎 (Ψ0, p) = (−1)SF(−𝔡𝑡 ) = (−1)deg(Ψ0,Ψ1) .

This completes the proof of this proposition. �

Recall that 𝑡𝔰
1
, . . . , 𝑡𝔰

𝑁𝔰
∈ (0, 1) are the times at which the spectrum of /𝐷𝔰

p𝑡 crosses zero. The

crossing is transverse with intersection sign 𝜒𝔰
𝑖
∈ {±1}. The next result relates 𝜒𝔰

𝑖
to 𝜒𝔰

1
.

Proposition 7.4. For all 𝑖 ∈ {1, . . . , 𝑁𝔴}, we have

𝜒𝔰𝑖 · (−1)SF(−
/𝐷𝔰
p𝑡 :𝑡 ∈[𝑡𝔰1 ,𝑡𝔰𝑖 ]) = (−1)𝑖+1 · 𝜒𝔰

1
.

Remark 7.5. In the above, the operator − /𝐷𝔰
p𝑡 is not invertible for 𝑡 ∈ {𝑡𝔰

1
, . . . , 𝑡𝔰

𝑁𝔰
}. According

to Convention 2.8, the spectral �ow from 𝑡𝔰
1
to 𝑡𝔰

𝑖
is de�ned as the spectral �ow of the family

(− /𝐷𝔰
p𝑡 + 𝜆id)𝑡 ∈[𝑡𝔰

1
,𝑡𝔰
𝑖
] for any number 0 < 𝜆 � 1. ♣

Proof. By induction it su�ces to consider the case 𝑖 = 2. The case 𝑖 = 2 can be veri�ed directly

case-by-case as follows:

𝜒1 𝜒2 SF 𝜒1 · 𝜒2 · (−1)SF
+1 +1 −1 −1
+1 −1 2 −1
−1 +1 0 −1
−1 −1 1 −1

Here SF = SF

(
− /𝐷𝔰

p𝑡 : 𝑡 ∈
[
𝑡𝔰
1
, 𝑡𝔰
2

] )
. �

Combining the two preceding propositions shows that (4.10) can equivalently be written as

follows:

4.11 𝑛𝔴 (p1, 𝜂1) = 𝑛𝔴 (p0, 𝜂0) +
∑︁
𝔰

𝜒𝔰
1
· 𝜎 (Ψ𝔰

1
, p𝑡𝔰

1

) ·
𝑁𝔰∑︁
𝑖=1

(−1)𝑖+1 · (−1)deg(Ψ𝔰
1
,Ψ𝔰

𝑖
) .

This completes the proof of Theorem 4.9. �

28



8 Transversality for paths

The purpose of this section is to prove Proposition 4.2.

Proposition 8.1. For any p0, p1 ∈ Preg, the subspacePreg(p0, p1) is residual in the space of all
smooth paths from p0 to p1 inP.

Proof. The proof is an application of the Sard–Smale theorem. We will work with Sobolev

spaces of sections and connections of class𝑊 𝑘,𝑝
such that (𝑘 − 1)𝑝 > 3. The statement for 𝐶∞

spaces follows then from a standard argument; see, for example, [Doa17, Proof of Proposition

2.21].

Since there are only �nitely many spin structures on𝑀 , it su�ces to consider the conditions

(1) and (2) in De�nition 4.1 for a �xed spin structure 𝔰. Set

𝑋 ≔ P(p0, p1) × [0, 1] × Γ(Re(𝑆𝔰 ⊗ 𝐸)\{0})
R∗

and 𝑉 ≔ P(p0, p1) × [0, 1] × Γ(Re(𝑆𝔰 ⊗ 𝐸)\{0}) × Γ(Re(𝑆𝔰 ⊗ 𝐸))
R∗ .

𝑉 is a vector bundle over 𝑋 . De�ne a section 𝝈 ∈ Γ(𝑉 ) by

𝝈
(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, [Ψ]

)
≔

(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, [(Ψ, /𝐷p𝑡∗Ψ)]

)
.

We can identify a neighborhood of [Ψ] ∈ Γ(Re(𝑆𝔰 ⊗ 𝐸))\{0})/R∗
with the 𝐿2–orthogonal

complement Ψ⊥ ⊂ Γ(Re(𝑆𝔰 ⊗ 𝐸). This gives us a local trivialization of 𝑉 in which 𝝈 can be

identi�ed with the map

𝝈
(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗,𝜓

)
=

(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, /𝐷p𝑡∗ (Ψ +𝜓 )

)
for all𝜓 ∈ Ψ⊥.

In particular, for a �xed path (p𝑡 )𝑡 ∈[0,1] , the map 𝝈 ((p𝑡 )𝑡 ∈[0,1], ·) de�nes a Fredholm section of

index zero, since𝜓 ↦→ /𝐷p𝑡 (Ψ +𝜓 ) has index −1 and dim[0, 1] = 1.

Let x ≔
(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, [Ψ]

)
∈ 𝑋 and denote by dx𝝈 the linearization of 𝝈 at x (and

computed in the above trivialization). We will prove that dx𝝈 is surjective provided 𝝈 (x) = 0.

If Φ ∈ 𝑉x = Γ(Re(𝑆𝔰 ⊗ 𝐸)) is orthogonal to the image of dx𝝈 , then it follows that

(8.2) 〈𝛾 (𝑏)Ψ,Φ〉𝐿2 = 0 for all 𝑏 ∈ Ω1(𝑀, 𝔰𝔲(𝐸)) .

Since Ψ is harmonic, its zero set must be nowhere dense. Cli�ord multiplication by 𝑇 ∗𝑀 ⊗
𝔰𝔲(𝐸) on Re(𝑆𝔰 ⊗ 𝐸) induces a isomorphism between 𝑇 ∗𝑀 ⊗ 𝔰𝔲(𝐸) and trace-free symmetric

endomorphisms of Re(𝑆𝔰 ⊗ 𝐸). With this in mind it follows from (8.2) that Ψ = 0. This proves

that dx𝝈 is surjective.

It follows that 𝝈−1(0) is a smooth submanifold of 𝑋 and the projection map 𝜋 : 𝝈−1(0) →
P(p0, p1) is a Fredholm map of index zero. The kernel of d𝜋 at x ∈ 𝝈−1(0) can be identi�ed

with the kernel of the linearization of 𝝈 in the directions of [0, 1] and Γ(Re(𝑆𝔰 ⊗ 𝐸)\{0})/R∗
.

Writing down this linearization explicitly, we see that the condition ker d𝜋 (x) = {0} implies

that Ψ spans ker /𝐷p𝑡∗ and 𝑡∗ is a regular crossing of the spectral �ow of ( /𝐷p𝑡 ). On the other

hand, since 𝜋 is a Fredholm map of index zero, ker𝑑𝜋 (x) = {0} is equivalent to x being a regular
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point of 𝜋 . By the Sard–Smale theorem, the subspace of regular values of 𝜋 is residual; hence,

the set of those (p𝑡 )𝑡 ∈[0,1] in P(p0, p1) for which the condition (1) in De�nition 4.1 holds is

residual.

To deal with condition (2) in De�nition 4.1, we consider the vector bundle

𝑊 ≔ P(p0, p1) × [0, 1] × Γ(Re(𝑆𝔰 ⊗ 𝐸)\{0}) × Γ(Re(𝑆𝔰 ⊗ 𝐸)) × Re(𝑆𝔰 ⊗ 𝐸)
R∗

over 𝑋 ×𝑀 and de�ne a section 𝝉 ∈ Γ(𝑊 ) by

𝝉
(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, [Ψ], 𝑦

)
≔

(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, [(Ψ, /𝐷p𝑡∗Ψ,Ψ(𝑦))]

)
.

For a �xed path (p𝑡 )𝑡 ∈[0,1] , the map 𝝉 ((p𝑡 )𝑡 ∈[0,1], ·) de�nes a Fredholm section of index −1.
Note that for x ≔

(
(p𝑡 )𝑡 ∈[0,1], 𝑡∗, [Ψ]

)
∈ 𝑋 and 𝑦 ∈ 𝑀 the condition 𝝉 ((p𝑡 )𝑡 ∈[0,1], x, 𝑦) = 0 is

equivalent to /𝐷p𝑡∗Ψ = 0 and Ψ(𝑦) = 0. We prove that the linearization of 𝝉 is surjective at any

(x, 𝑦) satisfying these equations. If (Φ, 𝜙) ∈𝑊(x,𝑦) = Γ(Re(𝑆𝔰 ⊗ 𝐸)) × Re(𝑆𝔰 ⊗ 𝐸)𝑦 is orthogonal

to the image of (d𝜏) (x,𝑦) , then (8.2) holds and, moreover,

(8.3) 〈 /𝐷p𝑡∗ (Ψ +𝜓 ),Φ〉𝐿2 + 〈𝜓 (𝑥), 𝜙〉 = 0 for all𝜓 ∈ Ψ⊥

Since /𝐷p𝑡∗Ψ = 0 and Ψ(𝑦) = 0, (8.3) holds in fact for all 𝜓 ∈ Γ(Re(𝑆𝔰 ⊗ 𝐸)) and we conclude

that /𝐷p𝑡∗Ψ = 0. Plugging this back into (8.3) yields 〈𝜓 (𝑥), 𝜙〉 = 0 for all𝜓 , which implies that

𝜙 = 0. As before (8.2) implies that Φ = 0.

It follows that 𝝉−1(0) is smooth and the projection 𝜌 : 𝝉−1(0) → P(p0, p1) is a Fredholm
map of index −1; in particular, the preimage of a regular value must be empty. It follows that

the paths (p𝑡 )𝑡 ∈[0,1] ∈ P(p0, p1) for which condition (2) in De�nition 4.1 holds is residual. �

To address condition (4) in De�nition 4.1 we compute 𝛿 (Ψ, p, 𝜂).

Proposition 8.4. Let (p𝑡 )𝑡 ∈[0,1] ∈ P(p0, p1), let (𝜂𝑡 )𝑡 ∈[0,1] be a path in Z, let 𝑡0 ∈ (0, 1), and
let Ψ be a nowhere vanishing section of Re(𝑆𝔰 ⊗ 𝐸) spanning ker /𝐷𝔰

p𝑡
0

and satisfying ‖Ψ‖𝐿2 = 1.
There is a linear algebraic operator

𝔣p𝑡
0
,Ψ : Ω2(𝑀, 𝑖R) → Ω2(𝑀, 𝑖R)

such that

(8.5) 𝛿 (Ψ, p𝑡0, 𝜂𝑡0) =
ˆ
𝑀

|Ψ|−2〈d ∗ 𝜂𝑡0 + 𝔣Ψ,p𝑡
0

𝜂𝑡0, 𝜂𝑡0〉

with 𝛿 (Ψ, p𝑡0, 𝜂𝑡0) is as in De�nition 4.1(4).

Proof. If we denote by{(
Ψ𝜀 = Ψ + 𝜀2𝜓 +𝑂 (𝜀4), 𝐴𝜀 ; 𝑡 (𝜀) = 𝑡0 +𝑂 (𝜀2)

)
: 0 6 𝜀 � 1

}
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the family of solutions to

/𝐷𝐴𝜀 ,p𝑡 (𝜀 )Ψ𝜀 = 0,

𝜀2
(
1

2

𝐹𝐴𝜀
+ 𝜂𝑡 (𝜀)

)
= 𝜇p𝑡 (𝜀 ) (Ψ𝜀), and

‖Ψ𝜀 ‖𝐿2 = 1

obtained from [DW20, Theorem 1.38], then

𝛿 = 𝛿 (Ψ, p𝑡0, 𝜂𝑡0) = 〈 /𝐷𝐴0,p𝑡
0

𝜓,𝜓 〉𝐿2 .

The connection 𝐴 = 𝐴0 corresponding to Ψ is �at; see Proposition 3.3. For the unperturbed

equation we would have 𝑡 (𝜀) = 0. Since we consider the perturbed equation, however, 𝜂 enters

into the computation of 𝛿 . More precisely, by [DW20, Equations 6.1, 6.2] we have

𝜓 = − /𝐷−1
Re
𝛾 II∗𝜈 − 𝜈 with 𝜈 ≔ (𝔞∗Ψ)−1 ∗ 𝜂.

By (4.4), we have

𝜈 = |Ψ|−2𝛾 (∗𝜂)Ψ.
Denote by 𝜋Re the projection onto Re(𝑆𝔰 ⊗ 𝐸). From [DW20, Proposition 3.8] we know that

for any 𝑎 ∈ Ω1(𝑀, 𝑖R)

−𝛾 II∗𝛾 (𝑎)Ψ =

3∑︁
𝑖=1

𝜋Re

(
𝜌 (𝑎(𝑒𝑖))∇𝐴

𝑒𝑖
Ψ
)
= 0.

It follows that

𝜓 = −𝜈 = |Ψ|−2𝛾 (∗𝜂)Ψ.
Set

𝑎 ≔ |Ψ|−2 ∗ 𝜂.
Since

/𝐷𝐴𝛾 (𝑎)Ψ = 𝛾 (∗d𝑎)Ψ + 𝜌 (d∗𝑎)Ψ − 2

3∑︁
𝑖=1

𝜌 (𝑎𝑖)∇𝑖Ψ,

we have

𝛿 =

ˆ
𝑀

〈 /𝐷𝐴𝛾 (𝑎)Ψ, 𝛾 (𝑎)Ψ〉

=

ˆ
𝑀

〈𝛾 (∗d𝑎)Ψ, 𝛾 (𝑎)Ψ〉 + 〈𝜌 (d∗𝑎)Ψ, 𝛾 (𝑎)Ψ〉

− 2

3∑︁
𝑖=1

〈𝜌 (𝑎𝑖)∇𝑖Ψ, 𝛾 (𝑎)Ψ〉.

The �rst term in the integral is

|Ψ|2〈∗d𝑎, 𝑎〉 = 〈d ∗
(
|Ψ|−2𝜂

)
, 𝜂〉.
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The second term vanishes. Therefore,

𝛿 =

ˆ
𝑀

|Ψ|−2〈d ∗ 𝜂, 𝜂〉 + |Ψ|−2〈𝔣1𝜂, 𝔣2𝜂〉

for linear operators 𝔣1, 𝔣2 : Ω2(𝑀, 𝑖R) → Γ(Re(𝑆𝔰 ⊗ 𝐸)) of order zero. Set 𝔣Ψ,p = 𝔣∗
2
𝔣1. �

Proposition 8.6. For (Ψ, p, 𝜂) ∈ Γ(Re(𝑆𝔰 ⊗ 𝐸)) ×P ×Z such that Ψ is nowhere vanishing, de�ne
𝛿 (Ψ, p, 𝜂) by formula (8.5). For each (Ψ, p), the set

Zreg(Ψ, p) = {𝜂 ∈ Z : 𝛿 (Ψ, p, 𝜂) ≠ 0}

is open and dense inZ.

Proof. Replace all the spaces in question by their completions with respect to the𝑊 𝑘,𝑝
norm for

any 𝑘 and 𝑝 satisfying (𝑘 − 1)𝑝 > 3. We will prove the statement with respect to the Sobolev

topology; the corresponding statement for𝐶∞
spaces follows then from the Sobolev embedding

theorem and the fact that 𝛿 is continuous with respect to any of these topologies.

By Proposition 8.4,

(d𝛿)𝜂 [𝜂] =
ˆ
𝑀

|Ψ|−2〈2d ∗ 𝜂 + ¯𝔣Ψ,p𝜂, 𝜂〉,

where

¯𝔣Ψ,p𝜂 = (𝔣Ψ,p + 𝔣∗Ψ,p)𝜂 − 2d(log|Ψ|) ∧ ∗𝜂

is a linear algebraic operator. Thus, the derivative of 𝛿 vanishes along the set Zcrit(Ψ, p) of
solutions 𝜂 to the linear elliptic di�erential equation

d𝜂 = 0,

d ∗ 𝜂 + ∗¯𝔣Ψ,p𝜂 = 0.

Zcrit(Ψ, p) a closed, �nite-dimensional subspace ofZ. By the Implicit Function Theorem, away

from Zcrit(Ψ, p), the zero set of 𝛿 (Ψ, p, ·) is a codimension one Banach submanifold of (the

Sobolev completion of)Z. Hence, the set

Zreg(Ψ, 𝜂) ∩ (Z\Zcrit(Ψ, 𝜂))

is dense. Since 𝛿 is continuous,Zreg(Ψ, 𝜂) is open. �

Proof of Proposition 4.2. By [Doa17, Theorem 2.34],Q3, the subspace of paths from (p0, 𝜂0) to
(p1, 𝜂1) satisfying De�nition 4.1(3), is residual.

Denote byQ1,2 the space of paths from (p0, 𝜂0) to (p1, 𝜂1) satisfying conditions (1) and (2) in
De�nition 4.1. By Proposition 8.1,Q1,2 is residual in the space of paths from (p0, 𝜂0) to (p1, 𝜂1).
LetQ1,2,4 ⊂ Q1,2 be the space of paths from (p0, 𝜂0) to (p1, 𝜂1) also satisfying De�nition 4.1(4).

Elementary arguments show thatQ1,2,4 is open inQ1,2 and we will shortly prove thatQ1,2,4 is

dense inQ1,2. A set which is open and dense in a residual set is itself residual. It follows that

Q1,2,4 is residual; hence, so isQreg
(
(p0, 𝜂0), (p1, 𝜂1)

)
= Q1,2,4 ∩Q3.
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To prove that Q1,2,4 is dense in Q1,2, suppose that (p𝑡 , 𝜂𝑡 )𝑡 ∈[0,1] ∈ Q1,2. There are �nitely

many times 0 < 𝑡1 < . . . < 𝑡𝑛 < 1 for which the kernel of /𝐷p𝑡𝑖 is non-trivial. For 𝑖 = 1, . . . , 𝑛,

denote by Ψ𝑖 a section spanning ker /𝐷p𝑡𝑖 . By Proposition 8.6, for any 𝜎 > 0, there are closed

forms 𝛼1, . . . , 𝛼𝑛 such that

𝛿 (Ψ𝑖 , p𝑡𝑖 , 𝜂𝑡𝑖 + 𝛼𝑖) ≠ 0 and ‖𝛼𝑖 ‖𝐿∞ 6 𝜎

for every 𝑖 = 1, . . . , 𝑛. Let (𝛼𝑡 )𝑡 ∈[0,1] be a path of closed forms such that 𝛼𝑡𝑖 = 𝛼𝑖 for 𝑖 = 1, . . . , 𝑛

and ‖𝛼𝑡 ‖𝐿∞ 6 𝜎 for all 𝑡 ∈ [0, 1]. The path (p𝑡 , 𝜂𝑡 + 𝛼𝑡 )𝑡 ∈[0,1] satis�es conditions (1), and (2) in

De�nition 4.1 because these only depend on (p𝑡 )𝑡 ∈[0,1] . It also satis�es (4) by construction. We

conclude that (p𝑡 , 𝜂𝑡 + 𝛼𝑡 )𝑡 ∈[0,1] ∈ Q1,2,4. Since 𝜎 is arbitrary, it follows thatQ1,2,4 is dense in

Q1,2. �

9 Proof of the existence of singular harmonic Z2 spinors

In this section we prove Theorem 1.6. We begin with de�ning the set W𝑏 appearing in its

statement.

De�nition 9.1. Given a spin structure 𝔰, set

W𝔰 ≔

{
p ∈ P : dim ker /𝐷𝔰

p > 0

}
,

W𝔰
1,∅ ≔

{
p ∈ P : ker /𝐷𝔰

p = R〈Ψ〉 with Ψ nowhere vanishing

}
,

W𝔰
1,★ ≔

{
p ∈ P : ker /𝐷𝔰

p = R〈Ψ〉 and Ψ has a single non-degenerate zero

}
and

W𝔰
𝑏
≔ W𝔰\W𝔰

1,∅.

A zero 𝑥 ∈ Ψ−1(0) is non-degenerate if the linear map (∇Ψ)𝑥 : 𝑇𝑥𝑀 → Re(𝑆 ⊗ 𝐸)𝑥 has maximal

rank (that is, rank three). Set

W ≔
⋃
𝔰

W𝔰, W𝑏 ≔
⋃
𝔰

W𝔰
𝑏
, and W1,∅ ≔

⋃
𝔰

W𝔰
1,∅\W𝑏 .

Here the union is taken over all spin structures 𝔰. •

Proposition 9.2. W𝔰
1,∅ is a closed, codimension one submanifold ofP\W𝔰

𝑏
. It carries a coorientation

such that the following holds. Let (p𝑡 ) be a path inP\W𝔰
𝑏
with p0, p1 ∈ P\W𝔰 which intersects

W𝔰
1,∅ transversely. Denote

• by {𝑡1, . . . , 𝑡𝑁 } ⊂ (0, 1) the �nite set of times at which the spectrum of /𝐷𝔰
p𝑡 crosses zero, i.e.,

p𝑡 ∈ W𝔰
1,∅

and, for each 𝑖 = 1, . . . , 𝑁 , denote

• by 𝜒𝑖 ∈ {±1} the sign of the spectral crossing at 𝑡𝑖 and

• by Ψ𝑖 a nowhere vanishing spinor spanning ker /𝐷p𝑡 .
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The intersection number of (p𝑡 ) withW𝔰
1,∅ is

𝑁∑︁
𝑖=1

𝜒𝑖 · 𝜎 (Ψ𝑖 , p𝑡𝑖 ) .

Proof. Let p0 ∈ W𝔰
1,∅. Let Ψ0 ∈ ker /𝐷𝔰

p0 be such that ‖Ψ0‖𝐿2 = 1. It follows from the Implicit

Function Theorem that, for some open neighborhood 𝑈 of p0 ∈ P, there is a unique smooth

map𝑈 → R × Γ(Re(𝑆 ⊗ 𝐸)),
p ↦→ (𝜆(p),Ψp)

such that

𝜆(p0) = 0 and Ψp0 = Ψ0

as well as

(9.3) /𝐷𝔰
pΨp = 𝜆(p)Ψp and ‖Ψ0‖𝐿2 = 1.

It follows from the Implicit Function Theorem and the openness of the non-vanishing condition

that for𝑈 su�ciently small, we have

𝑈 ∩W𝔰
1,∅ = 𝜆−1(0) .

Since

(9.4) (dp0𝜆) (0, 𝑏) = 〈𝛾 (𝑏)Ψ,Ψ〉𝐿2

and Cli�ord multiplication induces an isomorphism from 𝑇 ∗𝑀 ⊗ 𝔰𝔲(𝐸) to trace-free symmetric

endomorphisms of Re(𝑆 ⊗ 𝐸), 𝜆 is a submersion provided𝑈 is su�ciently small. Hence,W𝔰
1,∅ is

a codimension one submanifold. To see thatW𝔰
1,∅ is closed, observe that (p𝑖) is a sequence on

W𝔰
1,∅ with p𝑖 → p ∈ P, then p ∈ W𝔰

and thus either inW𝔰
1,∅ orW𝔰

𝑏
.

The above argument goes through with

W𝔰
1
= {p ∈ P : dim ker /𝐷𝔰

p = 1}

instead ofW𝔰
1,∅. De�ne a coorientation ofW𝔰

1
by demanding that the isomorphism

dp𝜆 : 𝑇pP/𝑇pW𝔰
1
→ R

is orientation-preserving. This coorientation has the following property. If (p𝑡 )𝑡 ∈[0,1] is a path
in P such that dim ker /𝐷𝔰

p𝑡 6 1, dim ker /𝐷𝔰
p𝑡 = 0 for 𝑡 = 0, 1, then the intersection number of

(p𝑡 )𝑡 ∈[0,1] withW𝔰
1
is precisely the spectral �ow of /𝐷𝔰

p𝑡 . Therefore, we call this coorientation the

spectral coorientation. W𝔰
1,∅ is an open subset ofW𝔰

1
. Thus it inherits the spectral coorientation;

however, this coorientation does not have the desired property.

If p ∈ W𝔰
1,∅ and Ψp spans ker /𝐷𝔰

p, then Ψp is nowhere vanishing and De�nition 4.6 de�nes

𝜎 (Ψp, p) ∈ {±1}. By Proposition 7.1, the 𝜎 (Ψp, p) depends only on p ∈ W𝔰
1,∅; moreover, p ↦→
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𝜎 (Ψp, p) is locally constant on W𝔰
1,∅. The twisted spectral coorientation on W𝔰

1,∅ is de�ned by

demanding that the isomorphism

𝜎 (Ψp, p) · dp𝜆 : 𝑇pP/𝑇pW𝔰
1,∅ → R

is orientation-preserving. By de�nition, for any path (p𝑡 ) as in the statement of the proposition,

the intersection number of (p𝑡 ) with W𝔰
1,∅ with respect to the twisted spectral coorientation is

𝑁∑︁
𝑖=1

𝜒𝑖 · 𝜎 (Ψ𝑖 , p𝑡𝑖 ) . �

Theorem 9.5. In the above situation, the following hold.

(1) The cohomology class 𝜔 ∈ 𝐻 1(P\W𝑏,Z) = Hom(𝜋1(P\W𝑏),Z) de�ned byW1,∅ together
with the coorientation from Proposition 9.2 is non-trivial.

(2) If (p0, 𝜂0) ∈ Qreg and (p𝑡 , 𝜂𝑡 ) is a loop in Qreg
(
(p0, 𝜂0), (p0, 𝜂0)

)
, then (p𝑡 ) is a path in

P\W𝑏 and if 𝜔 ( [p𝑡 ]) ≠ 0, then there is exists a harmonic Z2 spinor with respect to some p𝑡 .

Proof of Theorem 1.6 assuming Theorem 9.5. The union of the projections of the subsetsQreg
(
(p0, 𝜂0), (p0, 𝜂0)

)
toP(p0, p0), as (p0, 𝜂0) ranges overQreg

, is a residual subset of the space of all loops inP. This

shows that the loops inP\W𝑏 which have a lift toQreg
(
(p0, 𝜂0), (p0, 𝜂0)

)
are generic among all

loops in P\W𝑏 . For such loops Theorem 9.5 applies and thus Theorem 1.6 follows. �

The idea of the proof that 𝜔 ≠ 0 is to exhibit a loop (p𝑡 ) in P\W𝑏 on which 𝜔 evaluates

non-trivially. More precisely, we will construct such a loop which intersects W𝔰
1,∅ in two points

as illustrated in Figure 1, which cannot be joined by a path in W𝔰
1,∅; however, they are joined by

a path inW𝔰
1
passing throughW𝔰

1,★
in a unique point.

While the coorientation onW𝔰
1
is preserved along this path, the one onW𝔰

1,∅ is not. Con-

sequently, the intersection number of the loop with W𝔰
1,∅ is ±2. The above situation can be

arranged so that (p𝑡 ) does not intersectW𝔰̃
1,∅ for any other spin structure 𝔰̃. It follows that

𝜔 ( [p𝑡 ]) ± 2 ≠ 0.

If (p0, 𝜂0) ∈ Qreg
and (p𝑡 , 𝜂𝑡 ) is a loop inQreg

(
(p0, 𝜂0), (p0, 𝜂0)

)
and 𝜔 ( [p𝑡 ]) ≠ 0, then there

is exists a singular harmonic Z2 harmonic spinor with respect to some p𝑡 for otherwise

𝜔 ( [p𝑡 ]) = 0

by Theorem 4.9.

Remark 9.6. This and the work of Takahashi [Tak15; Tak17] indicate the presence of a wall

WZ2
⊂ P caused by singular harmonic Z2 spinors as depicted in Figure 1. In light of the above

discussion it is a tantalizing question to ask:

Can the harmonic Z2 spinors, whose abstract existence is guaranteed by Theorem 9.5, be

constructed more directly by a gluing construction?
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W𝔰
1,∅

WZ2
?

W𝔰
1,★

𝜔 = +2

+1

+1

Figure 1: A loop linkingW𝔰
1,★

and pairing non-trivially with 𝜔 .

We plan to investigate this problem in future work. ♣

Proof of Theorem 9.5. To prove (2), note that if (p0, 𝜂0) ∈ Qreg
and (p𝑡 , 𝜂𝑡 ) is a loop inQreg

(
(p0, 𝜂0), (p0, 𝜂0)

)
and 𝜔 ( [p𝑡 ]) ≠ 0, then there is exists a singular harmonic Z2 spinor with respect to some p𝑡 for
otherwise

𝑛(p0, 𝜂0) = 𝑛(p0, 𝜂0) + 𝜔 ( [p𝑡 ])

by Theorem 4.9. Here

𝑛(p, 𝜂) =
∑︁
𝔴

𝑛𝔴 (p, 𝜂)

and we sum over all spin
𝑐
structures 𝔴 with trivial determinant.

In order to prove (1) we will produce a loop pairing non-trivially with 𝜔 . The existence of

such a loop is ensured by the following result provided we can exhibit a point p★ ∈ W𝔰
1,★

.

Proposition 9.7. Given p★ ∈ W𝔰
1,★

and an open neighborhood 𝑈 of p★ ∈ P, there exists a loop
(p𝑡 )𝑡 ∈𝑆1 in𝑈 ∩ (P\W𝔰

𝑏
) such that:

(1) p1/4, p3/4 ∈ W𝔰
1,∅, and p𝑡 ∈ P\W𝔰

1
for all 𝑡 ∉ {1/4, 3/4},

(2) if Ψ1/4 and Ψ3/4 denote spinors spanning /𝐷𝔰
p
1/4 and /𝐷𝔰

p
3/4 , then

deg(Ψ1/4,Ψ3/4) = ±1;

and

(3) the spectral crossings at p1/4 and p3/4 occur with opposite signs.

In particular, the intersection number of (p𝑡 )𝑡 ∈[0,1] with W𝔰
1,∅ with respect to the coorientation

from Proposition 9.2 is ±2.
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Proof. Let Ψ★ ∈ ker /𝐷𝔰
p★ and 𝑥★ ∈ 𝑀 be such that ‖Ψ★‖𝐿2 = 1 and Ψ★(𝑥★) = 0. Let 𝜙 ∈

Γ(Re(𝑆𝔰 ⊗ 𝐸)) be such that

im((∇Ψ★)𝑥★) + R〈𝜙★(𝑥★)〉 = Re(𝑆𝔰 ⊗ 𝐸)𝑥★,
|𝜙★(𝑥★) | = 1, and ∇𝜙 (𝑥★) = 0.

We can assume that𝑈 is su�ciently small for the Implicit Function Theorem to guarantee

that there is a unique smooth map𝑈 → R × Γ(Re(𝑆𝔰 ⊗ 𝐸)) ×𝑀 × R,

p ↦→ (𝜆(p),Ψp, 𝑥p, 𝜈 (p))

such that

𝜆(p★) = 0, Ψp★ = Ψ★, and 𝑥p★ = 𝑥★

as well as

(9.8) /𝐷𝔰
pΨp = 𝜆(p)Ψp Ψp(𝑥p) = 𝜈 (p)𝜙★(𝑥p), and ‖Ψ0‖𝐿2 = 1.

As before

𝑈 ∩W𝔰
1
= 𝜆−1(0).

Set

N ≔ 𝜈−1(0).

This is the set of those p ∈ 𝑈 for which the eigenspinor with smallest eigenvalue has a unique

zero which is also non-degenerate.

From the proof of Proposition 9.2 we know that𝑈 ∩W𝔰
1
is a codimension one submanifold.

We will now show that N is a codimension one submanifold as well and that it intersects

𝑈 ∩W𝔰
1
transversely in 𝑈 ∩W𝔰

1,★
, see Figure 2. Knowing this, the existence of a loop (p)𝑡 ∈𝑆1

with the desired properties follows easily because crossingN changes the relative degree by

±1. Indeed, let 𝑡0 be a time at which the path crossesN and let 𝜀 be a small positive number.

Consider the path of eigenspinors (Ψp𝑡 ) for 𝑡 ∈ [𝑡0 − 𝜀, 𝑡0 + 𝜀] as introduced in (9.8). For 𝑡 ≠ 𝑡0,

each of the spinors is nowhere vanishing and Ψp𝑡
0

has a single non-degenerate zero. Thus,

deg(Ψp𝑡
0
−𝜀 ,Ψp𝑡

0
+𝜀 ) = ±1.

We will show that dp★𝜈 |𝑇p★W𝔰
1

is non-vanishing. This implies both that N is a codimension

one manifold and that it intersects𝑈 ∩W𝔰1
transversely. For p̂ = (0, 𝑏) ∈ 𝑇p★P to be determined,

set

𝜆𝑡 ≔ 𝜆(p★ + 𝑡 p̂), Ψ𝑡 ≔ Ψp★+𝑡 p̂, 𝑥𝑡 ≔ 𝑥p★+𝑡 p̂, and 𝜈𝑡 ≔ 𝜈p★+𝑡 p̂

as well as

¤𝜆 ≔
d

d𝑡

����
𝑡=0

𝜆𝑡 , ¤Ψ ≔
d

d𝑡

����
𝑡=0

Ψ𝑡 , ¤𝑥 ≔
d

d𝑡

����
𝑡=0

𝑥𝑡 , and ¤𝜈 ≔
d

d𝑡

����
𝑡=0

𝜈𝑡 .

Di�erentiating (9.8) we obtain

𝛾 (𝑏)Ψ★ + /𝐷𝔰
p★

¤Ψ = ¤𝜆Ψ★, ¤Ψ(𝑥★) + (∇Ψ★)𝑥★ ¤𝑥 = ¤𝜈𝜙 (𝑥★), and 〈Ψ★, ¤Ψ〉𝐿2 = 0.
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W𝔰
1

N
W𝔰

1,★

p𝑡

Figure 2: W𝔰
1
andN intersecting inW𝔰

1,★
.

From this it follows that

¤𝜆 = 〈𝛾 (𝑏)Ψ★,Ψ★〉𝐿2,
/𝐷𝔰
p★

¤Ψ = 𝛾 (𝑏)Ψ★ − 〈𝛾 (𝑏)Ψ★,Ψ★〉𝐿2Ψ★, and

¤𝜈 = 〈 ¤Ψ(𝑥★), 𝜙 (𝑥★)〉.
(9.9)

Suppose we can arrange a choice of 𝑏 such that

(1) 〈𝛾 (𝑏)Ψ★,Ψ★〉𝐿2 = 0,

(2) /𝐷𝔰
p★

¤Ψ vanishes in a neighborhood of 𝑥★.

(3) 〈 ¤Ψ(𝑥★), 𝜙 (𝑥★)〉 ≠ 0, and

(4) 〈Ψ★, ¤Ψ〉𝐿2 = 0.

In this situation it would follow that

¤𝜆 = 0 but ¤𝜈 ≠ 0;

that is

p̂ = (0, 𝑏) ∈ 𝑇p★W
𝔰
1

and dp★𝜈 (𝑏) ≠ 0.

It remains to �nd such a 𝑏. To begin with, observe that we can certainly �nd ¤Ψ with the

above properties by solving the Dirac equation in a neighborhood of 𝑥★ subject to the constraint

(3) and then extending to all of𝑀 so that (4) holds. Fix such a choice of ¤Ψ. Cli�ord multiplication

by 𝑇 ∗𝑀 ⊗ 𝔰𝔲(𝐸) on Re(𝑆𝔰 ⊗ 𝐸) induces a isomorphism between 𝑇 ∗𝑀 ⊗ 𝔰𝔲(𝐸) and trace-free

symmetric endomorphisms of Re(𝑆𝔰 ⊗ 𝐸). Since /𝐷𝔰
p★

¤Ψ vanishes in a neighborhood of 𝑥★ and

Ψ★ vanishes only at 𝑥★, one can �nd 𝑏 ∈ Ω1(𝑀, 𝔰𝔲(𝐸)) such that

〈𝛾 (𝑏)Ψ★,Ψ★〉𝐿2 = 0 and 𝛾 (𝑏)Ψ★ = /𝐷𝔰
p★

¤Ψ.

This completes the proof. �
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It remains to exhibit a point p★ ∈ W𝔰
1,★

for some spin structure 𝔰 but such that p★ ∉ W𝔰̃
for

every other spin structure 𝔰̃. This requires the following two propositions as preparation.

Proposition 9.10. Let 𝑘 ∈ {2, 3, . . .}. The subset

W𝔰
𝑘
≔ {p ∈ P : dim ker /𝐷𝔰

p = 𝑘} ⊂ P

is contained in a submanifold of codimension three. Moreover,W𝔰
𝑘
∩W𝔰

1
= W𝔰

𝑘
.

Proof. Let p0 ∈ P such that dim ker /𝐷𝔰
p0 = 𝑘 . Choose an 𝐿2–orthonormal basis {Ψ𝑖} of ker /𝐷𝔰

p0 .

For a su�ciently small neighborhood 𝑈 of p0, by the Implicit Function Theorem, there exists a

unique smooth map𝑈 → Γ(Re(𝑆𝔰 ⊗ 𝐸))⊕𝑘 × 𝑆2R𝑘

p ↦→
(
Ψ1,p, . . . ,Ψ𝑘,p,Λ(p) = (𝜆𝑖 𝑗 (p))

)
such that

Ψ𝑖,p0 = Ψ𝑖 and Λ(p0) = 0

as well as

/𝐷𝔰
pΨ𝑖,p =

𝑘∑︁
𝑗=1

𝜆𝑖 𝑗Ψ𝑗,p and 〈Ψ𝑖,p,Ψ𝑗,p〉𝐿2 = 𝛿𝑖 𝑗 .

(It follows from the fact that /𝐷𝔰
p is symmetric, that 𝜆𝑖 𝑗 = 𝜆 𝑗𝑖 .) We have

𝑈 ∩W𝔰
𝑘
= Λ−1(0)

We will show that dΛ : 𝑇p0𝑈 → 𝑆2R𝑘
has rank at least three. This will imply that W𝔰

𝑘
has

codimension at least three.

Suppose Ψ2 = 𝑓 Ψ1 for some function 𝑓 ∈ 𝐶∞(𝑀). It follows that

0 = /𝐷𝔰
p0Ψ2 = 𝛾 (∇𝑓 )Ψ1

This in turn implies that 𝑓 is constant because Ψ1 is non-vanishing on an dense open subset of

𝑀 . However, this is non-sense because 〈Ψ𝑖 ,Ψ𝑗 〉𝐿2 = 𝛿𝑖 𝑗 . It follows that there is an 𝑥 ∈ 𝑀 such

that Ψ1(𝑥) and Ψ2(𝑥) are linearly independent. Cli�ord multiplication induces an isomorphism

from𝑇 ∗𝑀 ⊗ 𝔰𝔲(𝐸) to trace-free symmetric endomorphisms of Re(𝑆𝔰 ⊗ 𝐸). Therefore, given any

(𝜇𝑖 𝑗 ) ∈ 𝑆2R2
, we can �nd p̂ = (0, 𝑏) ∈ 𝑇p0𝑈 such that

〈𝛾 (𝑏)Ψ𝑖 ,Ψ𝑗 〉𝐿2 = 𝜇𝑖 𝑗 for 𝑖, 𝑗 ∈ {1, 2}.

Since

dp0Λ(p̂) =
(
〈𝛾 (𝑏)Ψ𝑖 ,Ψ𝑗 〉𝐿2

)
∈ 𝑆2R𝑘 ,

it follows that dp0Λ has rank at least three.

It follows from the above that, for any p0 ∈ W𝔰
𝑘
, there exists an arbitarily close p ∈ P with

0 < dim ker /𝐷𝔰
p < 𝑘 . From this it follows by induction thatW𝔰

𝑘
∩W𝔰

1
= W𝔰

𝑘
. �

Proposition 9.11. If 𝔰1, 𝔰2 are two distinct spin structures, thenW
𝔰1
1

andW𝔰2
1

intersect transversely.
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Proof. Let p ∈ W
𝔰1
1

∩W
𝔰2
1
. Denote by Ψ1 and Ψ2 spinors spanning ker /𝐷𝔰1

p and ker /𝐷𝔰2
p respec-

tively. The spin structures 𝔰1 and 𝔰2 di�er by twisting by a Z2–bundle 𝔩. This bundle corresponds

to a double cover 𝜋 : 𝑀̃ → 𝑀 and upon pulling back to the cover the spin structures 𝔰1 and 𝔰2

both correspond to the same spin structure 𝔰̃. Let Ψ̃𝑖 = 𝜋∗Ψ𝑖 for 𝑖 = 1, 2 be the lifts of Ψ1, Ψ2 to

˜𝑀 . The natural involution 𝜎 on 𝑆𝔰̃ → ˜𝑀 acts as −1 on Ψ̃1 and as +1 on Ψ̃2. In particular, we have

〈Ψ̃1, Ψ̃2〉𝐿2 = 〈𝜎 (Ψ̃1), 𝜎 (Ψ̃2)〉𝐿2 = 〈−Ψ̃1, Ψ̃2〉𝐿2 = −〈Ψ̃1, Ψ̃2〉𝐿2 ;

hence, 〈Ψ̃1, Ψ̃2〉𝐿2 = 0. After renormalization, we can assume that 〈Ψ̃𝑖 , Ψ̃𝑗 〉𝐿2 = 𝛿𝑖 𝑗 . It follows

from the argument used in the proof of Proposition 9.10 that there is an 𝑥 ∈ 𝑀 such that, for

𝑥 ∈ 𝜋−1(𝑥), Ψ̃1(𝑥) and Ψ̃2(𝑥) are linearly independent.

Let 𝜆𝔰1 and 𝜆𝔰2 be the local de�ning functions for the wallsW
𝔰1
1

andW
𝔰2
1

respectively, de�ned

via (9.3) in the proof of Proposition 9.2. The derivative of 𝜆𝔰𝑖 in the direction of𝑏 ∈ Ω1(𝑀, 𝔰𝔲(𝐸))
is given by (9.4):

dp𝜆
𝔰𝑖 (0, 𝑏) = 〈𝛾 (𝑏)Ψ𝑖 ,Ψ𝑖〉𝐿2 =

1

2

〈𝛾 (𝜋∗𝑏)Ψ̃𝑖 , Ψ̃𝑖〉𝐿2 .

Since Ψ̃1(𝑥) and Ψ̃2(𝑥) are linearly independent, there exists 𝑏 (𝑥) ∈ 𝑇𝑥𝑀 ⊗ 𝔰𝔲(𝐸𝑥 ) such that

𝛾 (𝜋∗𝑏 (𝑥))Ψ̃1(𝑥) = 0 and 𝛾 (𝜋∗𝑏 (𝑥))Ψ̃2(𝑥) = Ψ̃2(𝑥)

We extend 𝑏 (𝑥) to a section 𝑏 ∈ Ω1(𝑀, 𝔰𝔲(𝐸)) such that

dp𝜆
𝔰1 (0, 𝑏) = 0 but dp𝜆

𝔰2 (0, 𝑏) ≠ 0.

This shows that derivatives of the local de�ning functions ofW
𝔰1
1

andW
𝔰2
1

are linearly inde-

pendent; hence, the walls intersect transversely. �

Finally, we are in a position to construct p★ ∈ W𝔰
1,★
. Fix a spin structure 𝔰 as well as

p0 = (𝑔0, 𝐵0) and 𝑥★ ∈ 𝑀 such that 𝑔0 and 𝐵0 are �at on a small ball around a point 𝑥★ ∈ 𝑀 .

Choose local coordinates (𝑦1, 𝑦2, 𝑦3) around 𝑥★ and a local trivialization of Re(𝑆𝔰 ⊗ 𝐸) in which

𝑔0 is given by the identity matrix and 𝐵0 is the trivial connection. Let Ψ ∈ Γ(Re ⊗𝑆𝔰) be any
section which is nowhere vanishing away from 𝑥★ and around 𝑥★ agrees with the map R3 → H
given by

(𝑦1, 𝑦2, 𝑦3) ↦→ 2𝑖𝑦1 − 𝑗𝑦2 − 𝑘𝑦3.

In particular, Ψ has a single non-degenerate zero at 𝑥★ and satis�es /𝐷𝔰
pΨ = 0 in a neighborhood

of 𝑥★. Using the same argument as in the proof of Proposition 9.7, we �nd 𝑏 ∈ Ω1(𝔰𝔲(𝐸))
vanishing in a neighborhood of 𝑥★ and such that for p★ = (𝑔0, 𝐵0 + 𝑏) we have

0 = /𝐷𝔰
p★Ψ = /𝐷𝔰

p0Ψ + 𝛾 (𝑏)Ψ.

This shows that Ψ is harmonic with respect to p★. If dim ker /𝐷p★ > 1, then Proposition 9.10

and the argument from Proposition 9.7 can be used to slightly perturb p★ to arrange that

dim ker /𝐷p★ = 1 and any spinor spanning /𝐷p★ has a non-degenerate zero (close to 𝑥★). Similarly,

Proposition 9.10 and Proposition 9.11 can be used to ensure that there are no non-trivial harmonic

spinors with respect to p★ for any other spin structure 𝔰̃. �
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A Computation of the hyperkähler quotient

Set

𝑆 ≔ HomC(C2,H)

with H considered as a complex vector space whose complex structure is given by right-

multiplication with 𝑖 . 𝑆 is a quaternionic Hermitian vector space: its H–module structure arises

by left-multiplication. The action of U(1) on 𝑆 given by 𝜌 (𝑒𝑖𝜃 )Ψ = 𝑒𝑖𝜃Ψ is a quaternionic

representation with associated moment map

𝜇 (Ψ) = ΨΨ∗ − 1

2

|Ψ|2 idH.

The standard complex volume form Ω = 𝑒1 ∧ 𝑒2 ∈ Λ2(C2)∗ and the standard Hermitian

metric on C2
, de�ne a complex anti-linear map 𝐽 : C2 → C2

by

−〈𝑣, 𝐽𝑤〉 = Ω(𝑣,𝑤) .

This makes C2
into a H–module.

Proposition A.1. We have

𝑆reg///U(1) =
(
Re(H ⊗C C2)\{0}

)
/Z2.

Here the real structure on H ⊗C C2 is given by 𝑞 ⊗ 𝑣 ≔ 𝑞 𝑗 ⊗ 𝐽𝑣 .

Proof. The complex volume form Ω de�nes a complex linear isomorphism (C2)∗ � C2
; hence,

we can identify 𝑆 � H ⊗C C2
. We will further identify C2

with H via (𝑧,𝑤) ↦→ 𝑧 +𝑤 𝑗 . With

respect to this identi�cation the complex structure is given by left-multiplication with 𝑖 and 𝐽

becomes left-multiplication by 𝑗 . If we denote by 𝐻+ (𝐻−) the quaternions equipped with their

right (left) H–module structure, then we can identify 𝑆 with

H+ ⊗C H−.

In this identi�cation the action of U(1) is given by

𝜌 (𝑒𝑖𝜃 )𝑞+ ⊗ 𝑞− = 𝑞+𝑒
𝑖𝜃 ⊗ 𝑞− = 𝑞+ ⊗ 𝑒𝑖𝜃𝑞−,

and the moment map becomes

𝜇 (𝑞1 ⊗ 1 + 𝑞2 ⊗ 𝑗) = −𝑖 ⊗ 1

2

(𝑞1𝑖𝑞1 + 𝑞2𝑖𝑞2) ∈ 𝑖R ⊗ ImH.

If 𝜇 (𝑞1 ⊗ 1 + 𝑞2 ⊗ 𝑗) = 0, then

(A.2) 𝑞1𝑖𝑞1 = −𝑞2𝑖𝑞2.

This implies that |𝑞1 | = |𝑞2 |. Unless 𝑞1 and 𝑞2 both vanish, there is a unique 𝑝 ∈ H satisfying

|𝑝 | = 1 and 𝑞1 = 𝑞2𝑝.

41



From (A.2), it follows that

𝑝𝑖 = −𝑖𝑝 ;

hence, 𝑝 = 𝑗𝑒𝑖𝜙 for some 𝜙 ∈ R. It follows that, for any 𝜃 ∈ R,

𝑞1𝑒
𝑖𝜃 = 𝑞2𝑒

𝑖𝜃 · 𝑗𝑒𝑖 (𝜙+2𝜃 ) .

Since

𝑞1 ⊗ 1 + 𝑞2 ⊗ 𝑗 = −𝑞2 𝑗 ⊗ 1 + 𝑞1 𝑗 ⊗ 𝑗,

the real part of H+ ⊗C H− consists of those 𝑞1 ⊗ 1 + 𝑞2 ⊗ 𝑗 with

𝑞1 = −𝑞2 𝑗 .

Consequently, the U(1)–orbit of each non-zero q = 𝑞1 ⊗ 1 + 𝑞2 ⊗ 𝑗 intersects Re(H+ ⊗C H−)
twice: in ±𝜌 (𝑒𝑖 (−𝜙/2+𝜋/2) )q. �

B Determinant line bundles

One of the standard tools to orient moduli spaces are determinant line bundles of families of

Fredholm operators; see, e.g., Donaldson and Kronheimer [DK90, Section 5.2.1]. The basic ideas

are quite simple, but to pin down a precise orientation procedure certain conventions have to

be chosen and one has to verify that those conventions are consistent. In fact, di�erent choices

will lead to di�erent outcomes [Zin16] and even seemingly natural conventions may not be

consistent Salamon [Sal17]. A very careful discussion of the construction of determinant line

bundles can be found in the diploma thesis of Bohn [Boh07]. In this appendix we summarize

this construction. For proofs and more a detailed discussion we refer to [Boh07, Appendices B

and C].

B.1 The Knudsen–Mumford conventions

Bohn’s construction uses the sign conventions introduced by Knudsen and Mumford [KM76].

We brie�y recall their de�nitions.

De�nition B.1. A graded line is a 1–dimensional vector space 𝐿 together with an integer

𝛼 ∈ Z. •

De�nition B.2. The tensor product of two graded lines (𝐿, 𝛼), (𝑀, 𝛽) is de�ned to be

(𝐿, 𝛼) ⊗ (𝑀, 𝛽) ≔ (𝐿 ⊗ 𝑀,𝛼 + 𝛽)

The dual of a graded line (𝐿, 𝛼) is de�ned to be

(𝐿, 𝛼)∗ = (𝐿∗,−𝛼). •
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De�nition B.3. Let (𝐿, 𝛼) and (𝑀, 𝛽) be two graded lines. De�ne the isomorphism𝜎𝐿,𝑀 : (𝐿, 𝛼)⊗
(𝑀, 𝛽) � (𝑀, 𝛽) ⊗ (𝐿, 𝛼) by

(ℓ ⊗𝑚) ↦→ (−1)𝛼𝛽𝑚 ⊗ ℓ .

De�ne the isomorphism 𝜀𝐿 : (𝐿, 𝛼)∗ ⊗ (𝐿, 𝛼) → (R, 0) by

𝜆 ⊗ ℓ ↦→ (−1) (
𝛼
2
)𝜆(ℓ). •

If omitted in the notation, it shall always be assumed that we use the isomorphism 𝜎 and 𝜅 .

These isomorphism pin down the Knudsen–Mumford conventions. For example, an unlabeled

isomorphism (𝐿, 𝛼) ⊗ (𝐿, 𝛼)∗ � (R, 0) will given by

ℓ ⊗ 𝜆 ↦→ (−1)−(
𝛼+1
2
)𝜆(ℓ),

the composition of 𝜀 with 𝜎 .

De�nition B.4. Let 𝑉 be a �nite dimensional vector space. The determinant line of 𝑉 is the

graded line

det𝑉 ≔ (Λdim𝑉𝑉 , dim𝑉 ) . •

Proposition B.5 ([Boh07, Lemma B.1.14]). Let

0 → 𝑉0
𝑓0−→ 𝑉1

𝑓1−→ · · ·
𝑓𝑛−1−−−→ 𝑉𝑛 → 0

be an exact sequence. For 𝑖 ∈ {0, . . . , 𝑛}, set 𝑐𝑖 ≔ dim(𝑉𝑖/ker 𝑓𝑖).

(1) Given
𝜈 = 𝜈0 ⊗ 𝜈2 ⊗ · · · ∈ det𝑉0 ⊗ det𝑉2 ⊗ · · · ,

for every 𝑖 ∈ {0, . . . , 𝑛}, there exist 𝜇𝑖 ∈ Λ𝑐𝑖𝑉𝑖 such that

(B.6) 𝜈 = 𝜇0 ⊗ (𝑓 (𝜇1) ∧ 𝜇2) ⊗ (𝑓 (𝜇3) ∧ 𝜇4) ⊗ · · ·

(2) If 𝜈 ∈ det𝑉0 ⊗ det𝑉2 ⊗ · · · ⊗ det𝑉2 b𝑛/2c , then for any choice of 𝜇𝑖 ∈ Λ𝑐𝑖𝑉𝑖 such that the
relation (B.6) holds, the element

(𝑓 (𝜇0) ∧ 𝜇1) ⊗ (𝑓 (𝜇2) ∧ 𝜇3) ⊗ · · ·

depends only on 𝜈 .

(3) The map
det𝑉0 ⊗ det𝑉2 ⊗ · · · → det𝑉1 ⊗ det𝑉3 ⊗ · · ·

de�ned by
𝜈 ↦→ 𝜇0 ⊗ (𝑓 (𝜇1) ∧ 𝜇2) ⊗ (𝑓 (𝜇3) ∧ 𝜇4) ⊗ · · · ,

for any choice of 𝜇𝑖 ∈ Λ𝑐𝑖𝑉𝑖 satisfying (B.6), is an isomorphism.
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Corollary B.7. If

0 → 𝑉0
𝑓0−→ 𝑉1

𝑓1−→ 𝑉2
𝑓2−→ 𝑉3 → 0

is an exact sequence, then the map

𝜅 : det𝑉0 ⊗ (det𝑉3)∗ → det𝑉1 ⊗ (det𝑉2)∗

de�ned by

(B.8) 𝜔0 ⊗ [𝑓2(𝜔2)]∗ ↦→ (−1) (
dim𝑉

2
+dim𝑉

3
+1

2
) (𝑓0(𝜔0) ∧ 𝜔1) ⊗ [𝑓1(𝜔1) ∧ 𝜔2]∗

is an isomorphism. �

The sign in this isomorphism comes from

det𝑉0 ⊗ (det𝑉3)∗ � det𝑉0 ⊗ det𝑉2 ⊗ (det𝑉2)∗ ⊗ (det𝑉3)∗

� det𝑉1 ⊗ det𝑉3 ⊗ (det𝑉2)∗ ⊗ (det𝑉3)∗

� det𝑉1 ⊗ (det𝑉2)∗,

see [Boh07, pp. 129-130].

B.2 Knudsen–Mumford’s determinant line bundle

De�nition B.9. Let 𝑋 , 𝑌 be Banach spaces and 𝐷 : 𝑋 → 𝑌 a Fredholm operator. The determi-
nant line of 𝐷 is the graded line

det(𝐷) ≔ det(ker𝐷) ⊗ det(coker𝐷)∗.

Here det(ker𝐷) and det(coker𝐷) are the graded lines associated with the �nite-dimensional

vector spaces ker𝐷 and coker𝐷 as in De�nition B.9, and we use De�nition B.2 to take the

graded tensor product and the dual graded line. •

Henceforth, we will suppress the grading from the notation, but it will always be used in

the natural isomorphisms 𝜀, 𝜎 , and 𝜅 introduced above.

Let (𝐷𝑝)𝑝∈P be a family of Fredholm operator parametrized by the space P. In general,

dim ker𝐷𝑝 and dim coker𝐷𝑝 vary in 𝑝 . Therefore, ker𝐷𝑝 and coker𝐷𝑝 do not form vector

bundles.

De�nition B.10. Let U be an open subset of P. A stabilizer of (𝐷𝑝)𝑝∈P over U is a �nite-

dimensional vector space 𝑉 together with a linear map 𝜄 : 𝑉 → 𝑌 such that, for all 𝑝 ∈ U, the

induced map 𝑉 → coker𝐷𝑝 is surjective. •

Every 𝑝 ∈ P has a neighborhood U which admits a stabilizer. Given such a choice of

stabilizer 𝜄, for every 𝑝 ∈ P, the operator (𝐷𝑝 𝜄) : 𝑋 ⊕ 𝑉 → 𝑌 satis�es coker(𝐷𝑝 𝜄) = {0}.
Consequently, ker(𝐷𝑝 𝜄) forms a vector bundle overU. For every 𝑝 ∈ P,

(B.11) 0 → ker𝐷𝑝

𝑥 ↦→(𝑥,0)
−−−−−−→ ker(𝐷𝑝 𝜄)

pr𝑉−−−→ 𝑉
𝑣 ↦→𝜄𝑣 mod im𝐷𝑝−−−−−−−−−−−−→ coker𝐷𝑝 → 0.
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is an exact sequence. Therefore, Corollary B.7 provides us with an isomorphism

𝜅𝜄𝐷 : det(𝐷𝑝) � det(𝐷𝑝 𝜄) ⊗ (det𝑉 )∗.

This indicates that det(𝐷𝑝 𝜄) ⊗ (det𝑉 )∗ may play the role of the determinant bundle of (𝐷𝑝)𝑝∈P
over U. The following asserts that the system of isomorphism induces by Corollary B.7 for

various choices of stabilizers are coherent.

Proposition B.12 ([Boh07, Prop B.1.18]). If 𝜄, 𝜄 ′ are two choices of a stabilizer, then (𝜄 𝜄 ′) is a
stabilizer as well and the diagram

det(𝐷𝑝) det(𝐷𝑝 𝜄) ⊗ det(𝑉 )∗

det(𝐷𝑝 𝜄
′) ⊗ det(𝑉 ′)∗ det(𝐷𝑝 𝜄 𝜄

′) ⊗ det(𝑉 ⊕ 𝑉 ′)∗

𝜅𝜄
𝐷𝑝

𝜅𝜄
′
𝐷𝑝

𝜅
(𝜄 𝜄′)
𝐷𝑝

𝜅𝜄
′
(𝐷𝑝 𝜄)

𝜅𝜄(𝐷𝑝 𝜄′)

commutes.

The (Knudsen–Mumford) determinant line bundle

det𝐷 → P.

is obtained by patching together the various local line bundles det(𝐷𝑝 𝜄) ⊗ (det𝑉 )∗ using the
isomorphisms 𝜅𝜄

′
𝐷
◦ (𝜅𝜄

𝐷
)−1. It is important to note that det𝐷 comes with preferred isomorphisms

det𝐷𝑝 � (det𝐷)𝑝 .

B.3 Orientation transport

Suppose that C is a Banach manifold. Suppose 𝑠 is a Fredholm section of a Banach vector

bundle over C whose linearization 𝐿𝔠 is surjective for any 𝔠 in the zero set M = 𝑠−1(0). In this

situation M is a �nite-dimensional manifold and an orientation on M is simply a trivialization

of the real line bundle det(𝑇M) = det(ker𝐿). Since 𝐿𝔠 was assumed to be surjective for 𝔠 ∈ M,

we have det(ker𝐿𝔠) � det(𝐿𝔠). If one can prove that det𝐿 → C is trivial and �nd a way

to pin down a choice of a trivialization, then this yields a procedure to orient M. In the

situation considered in this article, the linearization 𝐿𝔠 is self-adjoint. Even though in this

situation for every 𝔠 we have a natural isomorphism ker𝐿𝔠 � coker𝐿𝔠 , and thus an isomorphism

det(ker𝐿𝔠) ⊗ det(coker𝐿𝔠)∗ � R, these isomorphisms do not yield a continuous trivialization

of det𝐿 over C because the construction of det𝐿 involves choosing local stabilizers. The

orientation transport described below (introduced also in De�nition 2.9 in the speci�c setting

required in this paper) is a way of comparing the isomorphisms det(ker𝐿𝔠) ⊗det(coker𝐿𝔠)∗ � R
for di�erent choices of 𝔠 ∈ C.

In general, given a path (𝐷𝑡 )𝑡 ∈[0,1] of self-adjoint Fredholm operators, the line bundle det𝐷

is trivial (because [0, 1] is a contractible). Picking any trivialization de�nes an isomorphism

(det𝐷)0 � (det𝐷)1.
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This isomorphism depends on the trivialization only up to multiplication by positive real number.

Since 𝐷𝑡 is self-adjoint, there is a canonical isomorphism

ker𝐷𝑡 � coker𝐷𝑡 .

This induces an isomorphism

det𝐷𝑡 � R.

The composition of the isomorphisms

R � det𝐷0 � (det𝐷)0 � (det𝐷)0 � det𝐷1 � R

is given my multiplication with a non-zero real number. The sign of this number is

OT

(
(𝐷𝑡 )𝑡 ∈[0,1]

)
= (−1)SF(𝐷𝑡 )𝑡∈[0,1] ,

see [Boh07, Theorem C.2.5]. Recall, that we use Convention 2.8 to de�ne the spectral �ow for

degenerate end points.

In light of this discussion, Proposition 2.12 shows that the determinant line bundle asso-

ciated to the Seiberg–Witten equation with two spinors is trival. The convention adopted in

De�nition 2.13 amounts to pinning down a trivialization. With respect to this convention the

orientation procedure using the determinant line bundle and the spectral �ow agree.

B.4 A toy example

The following example illustrates how to work with the determinant bundle. It also explains

why Convention 2.8 is compatible with the Knudsen–Mumford conventions.

Consider the family of linear maps𝑀𝑡 : R → R de�ned by𝑀𝑡 (𝑥) = 𝑡𝑥 . Since the operator

𝑀𝑡 is not surjective at 𝑡 = 0, in order to de�ne the determinant line bundle det𝑀 over R we

need to choose a stabilizer for the family (𝑀𝑡 )𝑡 ∈R. A natural choice is 𝑉 = R and 𝜄 = idR. The

stabilized maps
˜𝑀𝑡 : R ⊕ R → R are given by

˜𝑀𝑡 =
(
𝑡 1

)
.

The kernel of
˜𝑀𝑡 is spanned by (1,−𝑡). This gives a trivialization of the vector bundle on R

whose �ber at 𝑡 is ker ˜𝑀𝑡 . The determinant line bundle of (𝑀𝑡 ) is thus given by

(det𝑀)𝑡 = ker
˜𝑀𝑡 ⊗ 𝑉 ∗ = R〈(1,−𝑡)〉 ⊗ R∗.

This isomorphism trivializes the bundle det𝑀 and for any 𝑡0, 𝑡1 ∈ R gives an isomorphism

(det𝑀)𝑡0 3 (1,−𝑡0) ⊗ 1
∗ ↦→ (1,−𝑡1) ⊗ 1

∗ ∈ (det𝑀)𝑡1 .

If 𝑡 ≠ 0, then𝑀𝑡 is invertible and, by de�nition,

det𝑀𝑡 = det(0) ⊗ det(0)∗ = R ⊗ R∗.
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The exact sequence (B.11) in this case is

0 → 0 → ker(𝑀𝑡 𝜄)
(1,−𝑡 ) ↦→−𝑡
−−−−−−−−→ R → 0 → 0.

The induced isomorphism 𝜅 : det𝑀𝑡 � (det𝑀)𝑡 = ker 𝑀̃𝑡 ⊗ R∗
de�ned in (B.8) is

1 ⊗ 1
∗ ↦→ (−1) · [(1,−𝑡) ⊗ −𝑡] = (1,−𝑡) ⊗ 𝑡∗.

This allows us to compute the orientation transport from 𝑡 = −1 to 𝑡 = 1. The sequence of

isomorphisms

R � R ⊗ R∗ = det𝑀−1 � ker 𝑀̃−1 ⊗ R∗ � ker 𝑀̃1 ⊗ R∗ � det𝑀1 = R ⊗ R∗ � R

maps 1 ∈ R as follows

1 ↦→ 1 ⊗ 1
∗ ↦→ (1, 1) ⊗ (−1)∗ ↦→ (1,−1) ⊗ (−1)∗ ↦→ −1 ⊗ 1

∗ = −1.

Thus the orientation transport is OT((𝑀𝑡 )𝑡 ∈[0,1]) = −1. This agrees with

SF((𝑀𝑡 )𝑡 ∈[−1,1]) = 1 and OT((𝑀𝑡 )𝑡 ∈[0,1]) = (−1)SF( (𝑀𝑡 )𝑡∈[−1,1] ) .

The spectral �ow SF((𝑀𝑡 )𝑡 ∈[−1,1]) is independent of Convention 2.8 since the operators 𝑀−1
and𝑀1 at the endpoints of the path are invertible.

However, for 𝑡 = 0, the operator 𝑀0 is not invertible. Let us investigate the orientation

transport from 𝑡 = 0 to 𝑡 = 1. By de�nition,

det𝑀0 = det(R) ⊗ det(R)∗ = R ⊗ R∗.

This is di�erent from the situation considered before because R now has degree 1 and therefore

the isomorphism R → det𝑀0 is given by 1 ↦→ −1 ⊗ 1
∗
according to the Knudsen–Mumford

conventions. The isomorphism 𝜅 : det𝑀0 � (det𝑀)0 = ker
˜𝑀0 ⊗ R∗

de�ned in (B.8) is

1 ⊗ 1
∗ ↦→ (−1) · [(1, 0) ⊗ 1

∗] .

Therefore, the orientation transport from 𝑡 = 0 to 𝑡 = 1 is given by +1 because the isomorphisms

R � R ⊗ R∗ = det𝑀0 � ker
˜𝑀0 ⊗ R∗ � ker

˜𝑀1 ⊗ R∗ � det𝑀1 = R ⊗ R∗ � R

map 1 ∈ R as follows

1 ↦→ −1 ⊗ 1
∗ ↦→ (1, 0) ⊗ 1

∗ ↦→ (1,−1) ⊗ 1
∗ = 1 ⊗ 1

∗ = 1.

Similarly, the orientation transport from 𝑡 = 0 to 𝑡 = −1 is given by−1 because the isomorphisms

R � R ⊗ R∗ = det𝑀0 � ker
˜𝑀0 ⊗ R∗ � ker

˜𝑀−1 ⊗ R∗ � det𝑀−1 = R ⊗ R∗ � R

map 1 ∈ R as follows

1 ↦→ −1 ⊗ 1 ↦→ (1, 0) ⊗ 1
∗ ↦→ (1, 1) ⊗ 1

∗ = −1 ⊗ 1
∗ = −1.

Both of these agree with the spectral �ow de�ned using Convention 2.8.
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B.5 Kuranishi models and determinant line bundles

Finally, we brie�y discuss the interaction of Kuranishi models with determinant line bundles.

Let 𝑋 , 𝑌 , andP be Banach spaces, and let 𝐹𝑝 : 𝑋 → 𝑌 be a Fredholm map depending smoothly

on a parameter 𝑝 ∈ P. Denote by

𝐿𝑝,𝑥 ≔ d𝑥𝐹𝑝 : 𝑋 → 𝑌

the linearization of 𝐹𝑝 at 𝑥 . This is a family of Fredholm operators 𝑋 → 𝑌 depending smoothly

on (𝑝, 𝑥) and so it de�nes the determinant line bundle det𝐿 over P × 𝑋 .

Suppose that 𝐹0(0) = 0 and construct a Kuranishi model for 𝐹 near 𝑝 = 0 and 𝑥 = 0 as

follows. Choose splittings

𝑋 = 𝑋0 ⊕ 𝑋1 and 𝑌 = 𝑌0 ⊕ 𝑌1

with 𝑋1 and 𝑌1 closed, 𝑋0 and 𝑌0 �nite dimensional, and such that the operator 𝐿0,0 : 𝑋1 → 𝑌1
induced by 𝐿0,0 is invertible. It is a consequence of the Implicit Function Theorem that there

exist an open neighborhoodU of 0 ∈ P, an open neighborhood𝑉 = 𝑉0 ×𝑉1 of (0, 0) ∈ 𝑋0 ⊕ 𝑋1,

and smooth maps Ξ : U ×𝑉 → 𝑋1 and 𝑓 : U ×𝑉 → 𝑌0 such that

˜𝐹𝑝 (𝑥0, 𝑥1) ≔ 𝐹𝑝 (𝑥0,Ξ(𝑝, 𝑥0;𝑥1)) =
(
𝑓 (𝑝, 𝑥0, 𝑥1)

𝐿0,0𝑥1

)
.

Moreover, the maps (𝑥0, 𝑥1) ↦→ (𝑥0,Ξ(𝑝, 𝑥0, 𝑥1)) are di�eomorphisms onto their images. Conse-

quently, we have an exact sequence

(B.13) 0 → ker𝐿𝑝,(𝑥0,𝑥1) → 𝑋0

𝜕𝑥
0
𝑓 (𝑝,𝑥0,𝑥1)

−−−−−−−−−−→ 𝑌0 → coker𝐿𝑝,(𝑥0,𝑥1) → 0.

It follows that

ker𝐿𝑝,(𝑥0,𝑥1) � ker 𝜕𝑥0 𝑓 (𝑝, 𝑥0, 𝑥1) and coker𝐿𝑝,(𝑥0,𝑥1) � coker 𝜕𝑥0 𝑓 (𝑝, 𝑥0, 𝑥1) .

By construction, 𝜄 : 𝑌0 ↩→ 𝑌 is a stabilizer for 𝐿 over U × 𝑉 , that is: the map (𝐿𝑝,𝑥 𝜄) is
surjective for all (𝑝, 𝑥) ∈ U ×𝑉 . For this choice of a stabilizer, the kernel bundle ker(𝐿 𝜄) over
U ×𝑉 is isomorphic to the trivial bundle with �ber 𝑋0. Therefore, overU ×𝑉 ,

det𝐿 � det(𝑋0) ⊗ det(𝑌0)∗

On the other hand, using id : 𝑌0 → 𝑌0 as a stabilizer for the family of �nite-dimensional

operators 𝜕𝑥0 𝑓 (𝑝, 𝑥0, 𝑥1) : 𝑋0 → 𝑌0 as (𝑝, 𝑥0, 𝑥1) varies inU ×𝑉 , we obtain

det(𝜕𝑥0 𝑓 ) � det(𝑋0) ⊗ det(𝑌0)∗.

The induced square of isomorphisms

det𝐿𝑝,(𝑥0,𝑥1) det 𝜕𝑥0 𝑓 (𝑝, 𝑥0, 𝑥1)

det(𝑋0) ⊗ det(𝑌0)∗ det(𝑋0) ⊗ det(𝑌0)∗

𝜅

𝜅 𝜅

=

commutes. This allows one to work carry out computations involving det𝐿 using det 𝜕𝑥0 𝑓 .
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C Relation to gauge theory on 𝐺2–manifolds

Donaldson and Thomas [DT98, Section 3] suggested that one might be able to construct 𝐺2

analogues of the Casson invariant/instanton Floer homology associated to a natural func-

tional whose critical point are 𝐺2–instantons. One key di�culty with this proposal is that

𝐺2–instantons can degenerate by bubbling along associative submanifolds. Donaldson and

Segal [DS11, Section 6] explain that this bubbling could be caused by the appearance of (nowhere

vanishing) harmonic spinors of Re(𝐸⊗𝑆) over associative submanifolds. In particular, the signed

count of 𝐺2–instantons can jump along a one-parameter family. Donaldson and Segal propose

to compensate this jump with a counter-term consisting of a weighted count of associative

submanifolds.

Joyce [Joy17, Example 8.5] poses the following scenario. Consider a one–parameter family

of 𝐺2–manifolds {(𝑌, 𝜙𝑡 ) : 𝑡 ∈ [0, 1]} together with an SU(2)–bundle 𝐸 where:

• there is a smooth family of irreducible connections (𝐴𝑡 )𝑡 ∈[0,1] ∈ A(𝐸) [0,1] such that 𝐴𝑡 is

an unobstructed 𝐺2–instanton with respect to 𝜙𝑡 for each 𝑡 ∈ [0, 1],

• there are no relevant associatives in (𝑌, 𝜙𝑡 ) for 𝑡 ∈ [0, 1/3) ∪ (2/3, 1], and

• there is an obstructed associative 𝑃1/3 in (𝑌, 𝜙1/3), which splits into two unobstructed

associatives 𝑃±
𝑡 in (𝑌, 𝜙𝑡 ) for 𝑡 ∈ (1/3, 2/3), and which then annihilate each other in an

obstructed associative 𝑃2/3 in (𝑌, 𝜙2/3).

According to [Wal17, Theorem 1.2] a regular crossing of the spectral �ow of family of Dirac

operators /𝐷±
𝑡 : Γ(Re(𝐸 |𝑃±

𝑡
⊗ /𝑆𝑃±

𝑡
)) → Γ(Re(𝐸 |𝑃±

𝑡
⊗ /𝑆𝑃±

𝑡
)) causes a jump in the signed count of

𝐺2–instantons; however, the sign of this jump has not been analyzed.10 Donaldson and Segal

[DS11, Section 6] and Joyce [Joy17, Section 8.4] suggest that this is the only source of jumping

phenomena. The di�erence in the spectral �ows of the Dirac operators /𝐷±
𝑡 is a topological

invariant, say 𝑘 ∈ Z, which may be non-zero. [Joy17, Section 8.4] thus concludes that passing

from 𝑡 < 1/3 to 𝑡 > 2/3 the signed number of𝐺2–instantons should change by 𝑘 · |𝐻1(𝑃1/3,Z2) |;
and, since there are no associatives for 𝑡 ∈ [0, 1/3) ∪ (2/3, 1], no counter-term involving a

weighted count of associatives could compensate this jump.

It is proposed in [HW15] that the weight associated with each associative 3-manifold should

be the signed count of solutions to the Seiberg–Witten equation with two spinors. The loop of

associatives can equivalently be seen as a path of parameters (p𝑡 )𝑡 ∈[0,1] on a �xed 3–manifold

𝑃 , with p1 gauge equivalent to p0. Therefore, one can ask how 𝑛(p𝑡 ) varies in this scenario.

Suppose that 𝑏1(𝑃1/3) > 1. Assuming there are no harmonic Z2 spinors along the path (p𝑡 )𝑡 ∈[0,1] ,
a jump in 𝑛(p𝑡 ) would occur precisely when the spectrum of one of the Dirac operators /𝐷𝔰

p𝑡
crosses zero. If the wall-crossing formula for 𝑛(p𝑡 ) were given by the sum of the spectral �ows

of ( /𝐷𝔰
p𝑡 )𝑡 ∈[0,1] , then we would have arrive a contradiction just like in Joyce’s argument:

0 ≠ 𝑘 · |𝐻1(𝑃,Z2) | = 𝑛(p1) − 𝑛(p0) = 0

since p1 and p0 are gauge equivalent. However, the conclusion of our work is that:

10To be more precise, the jump occurs in the signed count of 𝐺2–instantons on a bundle 𝐸 ′, which is related to 𝐸

by 𝑐2 (𝐸 ′) = 𝑐2 (𝐸) + PD[𝑃] with [𝑃] = [𝑃
1/3] = [𝑃±𝑡 ] = [𝑃

2/3].
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(1) The wall-crossing for 𝑛(p𝑡 ) caused by harmonic spinors is not given by the spectral �ow.

(2) There exist singular harmonic Z2 spinors which cause additional wall-crossing.

It is possible that the same happens for the signed count of 𝐺2–instantons. To evaluate the

viability of the proposal in [HW15] it is important to answer the following questions.

Question C.1. What is the sign of the jump in the number of 𝐺2–instantons caused by a

harmonic spinor?

Question C.2. Do singular harmonic Z2 spinors cause a jump in the number of (possibly

singular) 𝐺2–instantons?
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