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Abstract

This article is concerned with the analysis of Dirac operators 𝐷 twisted by ramified Eu-

clidean line bundles (𝑍, 𝔩)—motivated by their relation with Z/2Z harmonic spinors, which

have appeared in various context in gauge theory and calibrated geometry. The closed

extensions of 𝐷 are described in terms of the Gelfand–Robbin quotient Ȟ. Assuming that

the branching locus 𝑍 is a closed cooriented codimension two submanifold, a geometric

realisation of Ȟ is constructed. This, in turn, leads to an 𝐿2
regularity theory.
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1 Introduction

Let (𝑋,𝑔) be a closed Riemannian manifold of dimension 𝑛.

Definition 1.1 (cf. [LM89, Chapter II Definition 5.2; Bis89, §1(b)]). A Dirac bundle with skew
torsion on (𝑋,𝑔) consists of:

(1) a Euclidean vector bundle 𝑆 over 𝑋 equipped with a skew-adjoint Clifford multiplication

𝛾 : 𝑇𝑋 → 𝔬(𝑆); that is:
𝛾 (𝑣)2 = −|𝑣 |2 1𝑆

for every 𝑣 ∈ 𝑇𝑋 ; and

(2) an orthogonal covariant derivative ∇ on 𝑆 and a 3–form Tor ∈ Ω3(𝑋 ) such that 𝛾 is

parallel with respect to ∇ and the orthogonal affine connection ∇𝑇
on (𝑋,𝑔) defined by

⟨∇𝑇
𝑢 𝑣,𝑤⟩ = ⟨∇LC

𝑢 𝑣,𝑤⟩ + 1

2
Tor(𝑢, 𝑣,𝑤) .

Here ∇LC
denotes the Levi-Civita connection of (𝑋,𝑔). •

Definition 1.2. A ramified Euclidean line bundle over 𝑋 consists of:

(1) a closed subset 𝑍 ⊂ 𝑋 , the branching locus, and

(2) a Euclidean line bundle 𝔩 over 𝑋\𝑍

such that

(3) if𝑊 ⊂ 𝑍 is closed and 𝔩 extends over 𝑋\𝑊 , then𝑊 = 𝑍 . •

This article is concerned with the analysis of the Dirac operator associated with a Dirac

bundle with skew torsion (𝑆,𝛾,∇,Tor) twisted by a ramified Euclidean line bundle 𝔩

𝐷 : 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

and its extensions.

The authors’ motivation for this stems from the following. Taubes has observed that the

failure of compactness for a wide variety of generalised Seiberg–Witten equations—e.g.: stable

flat PSL2(C)–connections in dimension three [Tau13a], anti-self-dual SL2(C)–connections in
dimension four [Tau13b], the Seiberg–Witten equation with multiple spinors [Tau16], the Vafa–

Witten equation [Tau17], and the Kapustin–Witten equation [Tau22]— leaves behind evidence

in the form of a Z/2Z harmonic spinor. The latter is a pair (𝑍, 𝔩;Φ) consisting of a ramified

Euclidean line bundle (𝑍, 𝔩) and a harmonic spinor Φ ∈ ker𝐷 . Z/2Z harmonic spinors also

appear in Donaldson’s work on adiabatic limits of coassociative Kovalev–Lefschetz fibrations
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of 𝐺2–manifolds [Don17] and He’s work on branched double covers of special Lagrangian

submanifolds [He22].

In light of this, it is important to understand the universal moduli space of Z/2Z harmonic

spinors (allowing for 𝑔, 𝛾 , and ∇ to vary). The fundamental issue is that 𝐷 is only left semi-

Fredholm (under mild assumptions; see Hypothesis 2.1), but not Fredholm—except in edge

cases, e.g., if 𝑍 = ∅ or 𝑛 = 2. The naive expectation is that the∞–dimensional cokernel of 𝐷

can be compensated by wiggling the branching locus 𝑍 . In his PhD thesis, Takahashi [Tak15;

Tak17] has made some initial progress in this direction. Donaldson [Don21] and Parker [Par23]

have developed a (partial) deformation theory for Z/2Z harmonic 1–forms and Z/2Z harmonic

spinors on spin 3–manifolds respectively. There is work in progress by He, Parker and Walpuski

to address this problem a bit more systematically. The present article should be considered

infrastructure for this project (and, hopefully, other applications as well).

Here is a summary of the results contained in this article. Section 2 considers 𝐷 as an

unbounded operator 𝐷min on 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), the minimal extension, and systematically

studies its closed extensions. The adjoint 𝐷max
:= 𝐷∗

min
is the maximal extension of 𝐷min. The

closed extensions 𝐷𝐵 of 𝐷min are classified by residue conditions, that is: closed subspaces

𝐵 ⊂ Ȟ of the Gelfand–Robbin quotient

Ȟ :=
dom(𝐷max)
dom(𝐷min)

.

Moreover, Ȟ is equipped with a symplectic form 𝐺 , the Green’s form, which controls the

formation of adjoints. Within this framework it is also possible to describe which extensions

𝐷𝐵 are Fredholm. The entire discussion only relies on 𝐷min being closed, densely defined, and

symmetric as well as left semi-Fredholm. It is confined to the realm of abstract functional

analysis and its purpose is to separate what is true for formal reasons from what is true for

geometric reasons. Most of the observations in Section 2 can be found in [MS98, Exercise 2.17;

BF98, §3; SW08, Appendix B; BS18, Exercises 6.3.3 and 6.5.11] in some shape or form.

Assuming that 𝑍 ⊂ 𝑋 is a closed (cooriented) submanifold of codimension two, Section 3

constructs an isomorphism of symplectic Hilbert spaces

res : (Ȟ,𝐺) � ( ˇ𝐻Γ(𝑍, ˇ𝑆), Ω̌),

the residue map, between the Gelfand–Robbin quotient and a Hilbert space of sections of

a symplectic vector bundle over 𝑍 . The residue map extracts the leading order behavior of

𝜙 ∈ dom(𝐷max) which is shown to be (at worst) comparable to 𝑧−1/2
transversely to 𝑍 . With

the help of the above it is possible to define spectral residue conditions, analogous to the APS

boundary condition [APS75], as well as local residue conditions. As by product this yields

a variant of the bordism theorem, whose significance remains somewhat mysterious to the

authors. Evidently the construction in Section 3 is inspired by Bär and Ballmann’s magnificent

article [BB12] on boundary value problems for Dirac operators.

Finally, Section 4 develops an 𝐿2
regularity theory on the scale of adapated Sobolev spaces

(𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩))𝑘∈N0

. This scale is defined via the ring of differential operators generated by

conormal differential operators and the Dirac operator 𝐷 . It gives rise to a graded Fréchet space
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𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) which is tame in the sense of Hamilton [Ham82, Part II Definition 1.3.2]—a

prerequisite for using Nash–Moser theory. Moreover, spinors 𝜙 ∈ 𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) extend

smoothly across 𝑍 after untwisting by 𝑧1/2
and, therefore, have well-behaved polyhomogeneous

expansions near 𝑍 . Crucially, it is proved that if a residue condition 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆) is∞–regular,
then the extension 𝐷𝐵 satisfies a variant of elliptic regularity together with elliptic estimates.

For local residue conditions 𝐵,∞–regularity can be verified using straight-forward symbolic

criterion. In particular, this criterion applies to the Lagrangian local residue condition which

is secretly at the heart of [Tak15; Par23]. It is quite plausible that these results can be cobbled

together using the powerful machines developed by Mazzeo [Maz91], Mazzeo and Vertman

[MV14], and Albin and Gell-Redman [AG16; AG23]. However, the arguments in Section 4 are

almost elementary and there should be some value in that.

It should be possible, with suitable modifications, to extend the work in the present article

to higher rank ramified Euclidean local systems; in particular: to flat Hermitian line bundles. In

fact, Ammann–Große have on-going work in progress in this direction and some instances of

this appear in Portmann, Sok, and Solovej’s work on magnetic links [PSS18b; PSS18a; PSS20].

Acknowledgements. The authors thank Siqi He and Greg Parker for helpful discussions, Jacek

Rzemieniecki for his careful proofreading an earlier version of this article, and Bernd Ammann

for discussions regarding his joint work with Große and pointing out the work of Portmann, Sok,

and Solovej. TW is indebted to Dietmar Salamon for teaching him about the Gelfand–Robbin

quotient almost two decades ago.

This material is based in part upon work carried while the authors were in residence at the

Simons Laufer Mathematical Sciences Institute (previously known as MSRI) Berkeley, California,

during the Fall 2022 semester.

Conventions. Choose a cut-off function 𝜒 ∈ 𝐶∞( [0,∞), [0, 1])with 𝜒 | [0,1/4] = 1 and supp(𝜒) ⊂
[0, 1/2). The bracket ⟨−⟩ : R → [1,∞) is defined by ⟨𝑥⟩ := (1 + 𝑥2)1/2

.

2 The Gelfand–Robbin quotient, I: abstract theory

This section studies the closed extensions of the Dirac operator 𝐷 : 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) →
𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), considered as an unbounded operator, following [MS98, Exercise 2.17; BF98, §3;

SW08, Appendix B; BS18, Exercises 6.3.3 and 6.5.11]. Throughout, assume the following analytic

condition on the branching locus 𝑍 .

Hypothesis 2.1. There is an 𝑟 ∈ 𝐶∞(𝑋\𝑍, (0,∞)), uniformly comparable to the Riemannian dis-
tance to𝑍 , such that following borderlineHardy inequality holds: for every𝜙 ∈ 𝐻 1Γ(𝑋\𝑍, 𝑆⊗𝔩),
𝑟−1𝜙 ∈ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and

∥𝑟−1𝜙 ∥𝐿2 ≲ ∥𝜙 ∥𝐻 1 .

Remark 2.2. Hypothesis 2.1 holds if 𝑍 is a codimension two submanifold; see Takahashi [Tak15,

Lemma 2.6] or Lemma 3.3. Moreover, it holds in the situation considered by Haydys, Mazzeo,

and Takahashi [HMT23] where 𝑍 ⊂ 𝑋 is a graph embedded in a 3–manifold. ♣
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2.1 The minimal and maximal extension

Proposition 2.3. The bounded operator 𝐷 : 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is left semi-
Fredholm; that is: ker𝐷 is finite-dimensional and im𝐷 is closed.

The proof relies on the following consequences of the borderline Hardy inequality.

Lemma 2.4. The following hold:

(1) 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) = 𝐻 1

0
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩).

(2) The inclusion 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ↩→ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is a compact operator.

Proof. For 𝜀 > 0 set 𝜒𝜀 := 𝜒 (𝑟/𝜀). Let 𝜙 ∈ 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). Since |𝑟d𝜒𝜀 | ≲ 1,

∥∇(𝜒𝜀𝜙)∥𝐿2 ⩽ ∥(𝑟d𝜒𝜀)𝑟−1𝜙 ∥𝐿2 + ∥𝜒𝜀∇𝜙 ∥𝐿2 ≲
(ˆ

supp(d𝜒𝜀 )
|𝑟−1𝜙 |2 + |∇𝜙 |2

)
1/2

.

Therefore, by Hypothesis 2.1 and monotone convergence,

lim

𝜀↓0

∥∇(𝜒𝜀𝜙)∥𝐿2 = 0.

This implies (1).

Let (𝜙𝑛) ∈ 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)N with ∥𝜙𝑛 ∥𝐻 1 = 1 for every 𝑛 ∈ N. For every 𝜀 > 0, a

subsequence of ((1 − 𝜒𝜀)𝜙𝑛) converges in 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). By the borderline Hardy inequality,

∥𝜒𝜀𝜙𝑛 ∥𝐿2 ≲ 𝜀.

Therefore, (2) follows from a diagonal sequence argument. ■

The proof of Proposition 2.3 also uses the following observation.

Proposition 2.5 (cf. Bismut [Bis89, Theorem 1.10]).

(1) 𝐷 is formally self-adjoint; in fact: for every 𝜙,𝜓 ∈ 𝐻 1

loc
Γ(𝑋, 𝑆 ⊗ 𝔩)

⟨𝐷𝜙,𝜓 ⟩ − ⟨𝜙, 𝐷𝜓 ⟩ = div(𝑣) with 𝑣 ≔

𝑛∑︁
𝑖=1

⟨𝛾 (𝑒𝑖)𝜙,𝜓 ⟩ · 𝑒𝑖 .

Here (𝑒1, . . . , 𝑒𝑛) denotes a local orthonormal frame.

(2) 𝐷 satisfies
𝐷2 = ∇∗∇ + 𝜏∇ + 𝛾 (𝐹∇)

with 𝜏 ∈ Γ(𝑋,Hom(𝑇 ∗𝑋 ⊗ 𝑆, 𝑆)) depending linearly on Tor.

Proof. The following argument can be found in [Bis89, Proof of Theorem 1.10] and is repeated

here only for the readers’ convenience.

By direct computation,

div 𝑣 =

𝑛∑︁
𝑖=1

L𝑒𝑖 ⟨𝑣, 𝑒𝑖⟩ = ⟨𝐷𝜙,𝜓 ⟩ − ⟨𝜙, 𝐷𝜓 ⟩ +
𝑛∑︁
𝑖=1

⟨𝛾 (∇𝑇
𝑒𝑖
𝑒𝑖)𝜙,𝜓 ⟩
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and

⟨∇𝑇
𝑒𝑖
𝑒𝑖 ,−⟩ = 1

2
Tor(𝑒𝑖 , 𝑒𝑖 ,−) = 0.

This proves (1).

By direct computation,

𝐷2 =

𝑛∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)∇𝑒𝑖𝛾 (𝑒 𝑗 )∇𝑒 𝑗 =

𝑛∑︁
𝑖, 𝑗=1

𝛾 (𝑒 𝑗 )𝛾 (𝑒 𝑗 )∇𝑒𝑖∇𝑒 𝑗 + 𝛾 (𝑒𝑖)𝛾 (∇𝑇
𝑒𝑖
𝑒 𝑗 )∇𝑒 𝑗

= ∇∗∇ + 𝛾 (𝐹∇) + 𝛾 (𝑒𝑖)𝛾 (∇𝑇
𝑒𝑖
𝑒 𝑗 )∇𝑒 𝑗

and

⟨∇𝑇
𝑒𝑖
𝑒 𝑗 , 𝑒𝑘⟩ = 1

2
Tor(𝑒𝑖 , 𝑒 𝑗 , 𝑒𝑘 ).

This proves (2). ■

Proof of Proposition 2.3. By Lemma 2.4 (1) and Proposition 2.5,

(2.6) ∥𝜙 ∥𝐻 1 ≲ ∥𝐷𝜙 ∥𝐿2 + ∥𝜙 ∥𝐿2

for every 𝜙 ∈ 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). Therefore and by Lemma 2.4 (2), 𝐷 is left semi-Fredholm. ■

With the exception of a few edge cases–e.g.: if 𝑍 = ∅ or 𝑍 ⊂ 𝑋 is a finite subset of a surface

[DW24, §3.4.2; HMT23, §4.1–4.5]—the operator 𝐷 : 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is not
Fredholm: its cokernel is∞–dimensional. Therefore, it is useful to consider 𝐷 as an unbounded

operator and systematically study its closed extensions; cf. [BS18, Chapter 6].

Definition 2.7. The minimal extension

𝐷min : dom(𝐷min) → 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩);

is the operator 𝐷 : 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) considered as unbounded operator on

𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). •
Proposition 2.8. 𝐷min is closed, densely defined, and symmetric.

Proof. Evidently, 𝐷min is densely defined. By Proposition 2.5 (1),

⟨𝐷𝜙,𝜓 ⟩ = ⟨𝜙, 𝐷𝜓 ⟩

for every 𝜙,𝜓 ∈ Γ𝑐 (𝑋\𝑍, 𝑆 ⊗ 𝔩). Therefore, by Lemma 2.4 (1) and since Γ𝑐 (𝑋\𝑍, 𝑆 ⊗ 𝔩) ⊂
𝐻 1

0
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is dense, 𝐷min is symmetric. By (2.6) the Sobolev norm ∥−∥𝐻 1 and the graph

norm ∥−∥𝐷 := (∥−∥2

𝐿2
+ ∥𝐷−∥2

𝐿2
)1/2

are equivalent. Therefore and since 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is
complete, 𝐷min is closed. ■

Definition 2.9. The maximal extension

𝐷max : dom(𝐷max) → 𝐿2(𝑋\𝑍, 𝑆 ⊗ 𝔩)
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is the adjoint of 𝐷min in the sense of unbounded operators; that is:

dom(𝐷max) :=
{
𝜙 ∈ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) : ⟨𝜙, 𝐷min−⟩𝐿2 : dom(𝐷min) → R is ∥−∥𝐿2–bounded

}
and for every 𝜙 ∈ dom(𝐷max) and𝜓 ∈ dom(𝐷min)

⟨𝐷max𝜙,𝜓 ⟩ = ⟨𝜙, 𝐷min𝜓 ⟩.

𝐷max𝜙 exists by the Hahn–Banach Theorem and the Riesz Representation Theorem, and is

unique because dom(𝐷min) is dense. •
Remark 2.10. It is convenient to consider 𝐷 : 𝐻 1

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐿2

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). From this

perspective,

dom(𝐷max) = {𝜙 ∈ 𝐻 1

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) : 𝜙, 𝐷𝜙 ∈ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)};

and it is excusable to drop the subscripts from 𝐷min𝜙 , 𝐷max𝜙 , etc. ♣

2.2 Closed extensions and residue conditions

The closed extensions of 𝐷min can be systematically understood as follows.

Definition 2.11. The Gelfand–Robbin quotient is the Hilbert space

Ȟ :=
dom(𝐷max)
dom(𝐷min)

.

Since𝐷min is closed, dom(𝐷min) ⊂ dom(𝐷max) is a ∥−∥𝐷–closed subspace. Denote the canonical
projection map by

[·] : dom(𝐷max) → Ȟ. •

Remark 2.12. Ȟ is localised on 𝑍 in the following sense: [𝜙] = [𝜒 (𝑟/𝜀)𝜙] for every 𝜀 > 0 and

𝜙 ∈ dom(𝐷max). ♣
Definition 2.13. A residue condition is a closed subspace 𝐵 ⊂ Ȟ. •
Proposition 2.14 (closed extension=residue condition; cf. [BF98, Lemma 3.3(a)]). If 𝐵 ⊂ Ȟ is a
residue condition, then

𝐷𝐵 := 𝐷max |dom(𝐷𝐵 ) with dom(𝐷𝐵) := [·]−1(𝐵)

is a closed extension of 𝐷min. Moreover, every closed extension of 𝐷min is of this form.

Proof. Let 𝐵 ⊂ Ȟ be a residue condition. The canonical projection [·] : dom(𝐷max) → Ȟ is

bounded. Therefore, dom(𝐷𝐵) := [·]−1(𝐵) ⊂ dom(𝐷max) is a ∥−∥𝐷–closed subspace; hence: 𝐷𝐵

is closed.

Let
¯𝐷 be a closed extension of𝐷min. Since dom( ¯𝐷) ⊂ dom(𝐷max) is a ∥−∥𝐷–closed subspace,

𝐵 := [dom( ¯𝐷)] = dom( ¯𝐷 )
dom(𝐷min ) ⊂ Ȟ is a closed subspace. Since dom(𝐷min) ⊂ dom( ¯𝐷), dom( ¯𝐷) =

[·]−1(𝐵); hence: 𝐷̄ = 𝐷𝐵 . ■
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2.3 The Green’s form and adjoint extensions

The Gelfand–Robbin quotient carries a symplectic structure related to the construction of adjoint

extensions.

Definition 2.15. The Green’s form 𝐺 ∈ Hom(Λ2Ȟ,R) is defined by

𝐺 ( [𝜙] ∧ [𝜓 ]) := ⟨𝐷𝜙,𝜓 ⟩𝐿2 − ⟨𝜙, 𝐷𝜓 ⟩𝐿2 . •

Proposition 2.16 (cf. [BF98, Lemma 3.1, Proposition 3.2; SW08, Remark B.1(ii)]). 𝐺 is symplectic;
that is: it induces a Hilbert space isomorphism

𝐽 : Ȟ → Ĥ := L(Ȟ,R)
[𝜙] ↦→ 𝐺 ( [𝜙] ∧ −) .

Moreover: if ♯ : Ĥ → Ȟ denotes the isomorphism induced by the inner product, then ♯ ◦ 𝐽 is an
isometric complex structure.

Proof. The canonical projection induces an isometry [−] : dom(𝐷min)⊥𝐷 � Ȟ. Here ⊥𝐷

indicates the orthogonal complement with respect to the graph inner product ⟨−,−⟩𝐷 :=

⟨−,−⟩𝐿2 + ⟨𝐷−, 𝐷−⟩𝐿2 . By direct inspection,

dom(𝐷min)⊥𝐷 = {𝜙 ∈ dom(𝐷max) : ⟨𝜙,𝜓 ⟩𝐿2 + ⟨𝐷𝜙, 𝐷𝜓 ⟩𝐿2 = 0 for every𝜓 ∈ dom(𝐷min)}
= {𝜙 ∈ dom(𝐷max) : 𝐷𝜙 ∈ dom(𝐷max) and 𝐷2𝜙 = −𝜙}.

Therefore, 𝐷 induces an isometric complex structure 𝐷 : dom(𝐷min)⊥𝐷 → dom(𝐷min)⊥𝐷
.

The diagram

dom(𝐷min)⊥𝐷
dom(𝐷min)⊥𝐷

Ȟ Ȟ

𝐷

[−] [−]

♯◦𝐽

commutes because for every 𝜙,𝜓 ∈ dom(𝐷min)⊥𝐷

𝐺 ( [𝜙] ∧ [𝜓 ]) = ⟨𝐷𝜙,𝜓 ⟩𝐿2 − ⟨𝜙, 𝐷𝜓 ⟩𝐿2 = ⟨𝐷𝜙,𝜓 ⟩𝐿2 + ⟨𝐷2𝜙, 𝐷𝜓 ⟩𝐿2 = ⟨𝐷𝜙,𝜓 ⟩𝐷 .

This proves the assertion. ■

Proposition 2.17 (cf. [BF98, Lemma 3.3(b)]). Let 𝐵 ⊂ Ȟ be a residue condition. The adjoint 𝐷∗
𝐵
of

𝐷𝐵 is the closed extension 𝐷𝐵𝐺 associated with the symplectic complement

𝐵𝐺 := {[𝜙] ∈ Ȟ : 𝐺 ( [𝜙], [𝜓 ]) = 0 for every [𝜓 ] ∈ 𝐵}.

In particular, 𝐷𝐵 is self-adjoint if and only if 𝐵 is Lagrangian.

Proof. A moment’s thought shows that

dom(𝐷∗
𝐵) = {𝜙 ∈ dom(𝐷max) : ⟨𝐷𝜙,𝜓 ⟩𝐿2 = ⟨𝜙, 𝐷𝜓 ⟩𝐿2 for every𝜓 ∈ dom(𝐷𝐵)}

= {𝜙 ∈ dom(𝐷max) : 𝐺 ( [𝜙] ∧ [𝜓 ]) = 0 for every [𝜓 ] ∈ 𝐵}.

This proves the assertion. ■
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Example 2.18. The Calderón subspace

Λ := [ker𝐷max] ⊂ Ȟ

is a Lagrangian residue condition. Indeed, Λ ⊂ Λ𝐺
because 𝐺 ( [𝜙] ∧ [𝜓 ]) = ⟨𝐷𝜙,𝜓 ⟩𝐿2 −

⟨𝜙, 𝐷𝜓 ⟩𝐿2 = 0 for every 𝜙,𝜓 ∈ ker𝐷max. Moreover, if [𝜙] ∈ Λ𝐺
, then 𝐷𝜙 ⊥𝐿2 ker𝐷max =

(im𝐷min)⊥𝐿2
; therefore, there is a𝜓 ∈ dom(𝐷min) with𝐷𝜓 = 𝐷𝜙 ; hence: [𝜙] = [𝜙 −𝜓 ] ∈ Λ. ♠

Example 2.19. As a consequence of Proposition 2.16, the orthogonal complement of the Calderón

subspace

Λ⊥ = ♯ ◦ 𝐽 (Λ) ⊂ Ȟ

is a Lagrangian residue condition. ♠
Example 2.20. Suppose that 𝑆 carries a parallel orthogonal complex structure 𝑖 which commutes

with 𝛾 ; that is: (𝑆,𝛾,∇) is a complex Dirac bundle with skew torsion. Evidently, 𝐷 is com-

plex linear and Ȟ inherits 𝑖 as an isometric complex structure 𝑖 . This induces an orthogonal

decomposition

Ȟ = 𝐵+ ⊕ 𝐵− with 𝐵± :=
{
[𝜙] ∈ Ȟ : ♯ ◦ 𝐽 [𝜙] = ±𝑖 [𝜙]

}
.

Since 𝑖 and ♯ ◦ 𝐽 commute, 𝐵± ⊂ Ȟ are complex subspaces and, therefore, 𝐵± are mutually

adjoint:

𝐵𝐺± = 𝐵∓. ♠

Remark 2.21 (defect indices). If 𝐻 is a complex Hilbert space and 𝐴 : dom(𝐴) → 𝐻 is a closed

and symmetric unbounded complex linear operator, then its closed complex linear extensions
traditionally are studied via von Neumann’s theory of defect subspaces and defect indices
[vNeu30, Kapitel VII; RS75, §X.1]. The defect subspaces of𝐴 are ker(𝐴∗∓ 𝑖) and its defect indices
are 𝑛± := dim ker(𝐴∗ ∓ 𝑖). The maximal domain orthogonally decomposes as

dom(𝐴∗) = dom(𝐴) ⊕ ker(𝐴∗ − 𝑖) ⊕ ker(𝐴∗ + 𝑖)

with respect to the graph inner product. Therefore, Ȟ :=
dom(𝐴∗ )
dom(𝐴) � ker(𝐴∗ − 𝑖) ⊕ ker(𝐴∗ + 𝑖). In

particular, closed self-adjoint complex linear extension of𝐴 correspond to closed complex linear

Lagrangian subspaces 𝐵 ⊂ ker(𝐴∗ − 𝑖) ⊕ ker(𝐴∗ + 𝑖). The latter exist if and only if 𝑛+ = 𝑛− . Of
course, by Zorn’s Lemma, Ȟ always has a (real) Lagrangian subspace. ♣
Proposition 2.22 (Spectral theory). Let 𝐵 ⊂ Ȟ be a residue condition. If 𝐵 ⊂ Ȟ is a Lagrangian
and dom(𝐷𝐵) ↩→ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is compact, then spec(𝐷𝐵) consists only of point spectrum,
is contained in R and discrete, and for every 𝜆 ∈ spec(𝐷𝐵) the eigenspace ker(𝐷𝐵 − 𝜆 · 1) is
finite-dimensional; moreover: 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) decomposes as a (Hilbert space) direct sum

𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) =
⊕

𝜆∈spec(𝐷𝐵 )
ker(𝐷𝐵 − 𝜆 · 1) .

Proof. By assumption, 𝐷𝐵 is self-adjoint and has compact resolvent. The assertion, therefore,

follows from the spectral theory of such operators; see, e.g., [BS18, Theorem 6.3.13]. ■
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2.4 Fredholm extensions

The following characterises residue conditions 𝐵 ⊂ Ȟwhich correspond to Fredholm extensions

𝐷𝐵 in terms of the relation between 𝐵 and the Calderón subspace Λ.

Definition 2.23. Let 𝐵 ⊂ Ȟ be a residue condition. Denote by

𝛿𝐵 : Λ → Ȟ/𝐵 and 𝛿𝐵 : 𝐵 → Ȟ/Λ

the compositions of the canonical inclusions and projections. •
Proposition 2.24 (cf. [SW08, Lemma B.3]). Let 𝐵 ⊂ Ȟ be a residue condition. The closed extension
𝐷𝐵 is Fredholm if and only if 𝛿𝐵 is Fredholm if and only if 𝛿𝐵 is Fredholm; moreover:

index𝐷𝐵 = index𝛿𝐵 = index𝛿𝐵 .

The proof relies on the following observation.

Lemma 2.25. For every residue condition 𝐵 ⊂ Ȟ, there are short exact sequences

ker𝐷min ↩→ ker𝐷𝐵 ↠ ker𝛿𝐵 and coker𝛿𝐵 ↩→ coker𝐷𝐵 ↠ coker𝐷max.

Proof. The Snake Lemma applied to

ker𝐷min ker𝐷min

ker𝐷𝐵 ker𝐷max Ȟ/𝐵𝛿𝐵◦[−]

yields an exact sequence

ker𝐷𝐵

ker𝐷min

↩→ ker𝐷max

ker𝐷min

� Λ
𝛿𝐵−−→ Ȟ/𝐵.

This induces the first short exact sequence.

The Snake Lemma applied to

dom(𝐷𝐵) dom(𝐷max) Ȟ/𝐵

𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

𝐷𝐵 𝐷max

yields an exact sequence

ker𝐷𝐵 ↩→ ker𝐷max

𝛿𝐵◦[−]−−−−−→ Ȟ/𝐵 → coker𝐷𝐵 ↠ coker𝐷max.

Since coker𝛿𝐵 ◦ [−] = coker𝛿𝐵 , this induces the second short exact sequence. ■
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Proof of Proposition 2.24. A moment’s thought shows that

ker𝛿𝐵 = Λ ∩ 𝐵 = ker𝛿𝐵 and coker𝛿𝐵 �
Ȟ

Λ + 𝐵 � coker𝛿𝐵 .

By Proposition 2.3, ker𝐷min � coker𝐷max is finite-dimensional. Therefore, the assertion is an

immediate consequence of Lemma 2.25. ■

Example 2.26. Every complement 𝐵 of the Calderón subspace Λ, in particular: 𝐵 = Λ⊥
, produces

a Fredholm extension of index 0 because 𝛿𝐵 : 𝐵 → Ȟ/Λ � 𝐵 is an isomorphism. ♠
Example 2.27. The residue conditions 𝐵± defined in Example 2.20 satisfy

ker𝐷𝐵± = ker𝐷min

and, therefore, produce Fredholm extension of index 0; indeed: if 𝜙 ∈ ker𝐷𝐵± , then

0 = 2⟨𝐷𝜙, 𝑖𝜙⟩𝐿2 = ⟨𝐷𝜙, 𝑖𝜙⟩𝐿2 − ⟨𝜙, 𝐷𝑖𝜙⟩𝐿2 = 𝐺 ( [𝜙], 𝑖 [𝜙]) = ⟨♯ ◦ 𝐽 [𝜙], 𝑖 [𝜙]⟩𝐿2 = ±∥[𝜙] ∥2

𝐿2
. ♠

The following are occasionally useful to compute or relate indices.

Proposition 2.28 (Nested Fredholm residue conditions). Let 𝐵1 ⊂ 𝐵2 ⊂ Ȟ be residue conditions.
If 𝛿𝐵1

, 𝛿𝐵2
are Fredholm, then

index𝐷𝐵2
= index𝐷𝐵1

+ dim𝐵2/𝐵1.

Corollary 2.29. Let 𝐵 ⊂ Ȟ be a residue condition. If 𝐵 ⊂ 𝐵𝐺 and 𝛿𝐵 is Fredholm then index𝐷𝐵 =

− 1

2
dim𝐵𝐺/𝐵; in particular: if 𝐵 is Lagrangian, then index𝐷𝐵 = 0. ■

Proposition 2.28 is an immediate consequence of the following.

Lemma 2.30 (Nested residue conditions). Let 𝐵1 ⊂ 𝐵2 ⊂ Ȟ be residue conditions. There is an
exact sequence

ker𝛿𝐵1
↩→ ker𝛿𝐵2

→ 𝐵2/𝐵1 → coker𝛿𝐵1
↠ coker𝛿𝐵2

.

Proof. The exact sequence follows from the Snake Lemma applied to

Λ Λ

𝐵2/𝐵1 Ȟ/𝐵1 Ȟ/𝐵2.

𝛿𝐵
1

𝛿𝐵
2

This implies the assertion by the above proposition. ■

Proposition 2.31 (Deformation of residue conditions). Let 𝐵 be a Hilbert space. Let 𝜄− : [0, 1] →
L(𝐵, Ȟ) be a continuous path of embeddings. If 𝐷𝐵𝑡

with 𝐵𝑡 := 𝜄𝑡 (𝐵) is Fredholm for every
𝑡 ∈ [0, 1], then

index𝐷𝐵0
= index𝐷𝐵1

.

Proof. By assumption, 𝑡 ↦→ 𝛿𝐵𝑡 ◦ 𝜄𝑡 is a continuous path of Fredholm operators and 𝜄𝑡 : 𝐵 → 𝐵𝑡
is an isomorphism for every 𝑡 ∈ [0, 1]; therefore: 𝑡 ↦→ index𝐷𝐵𝑡

= index𝛿𝐵𝑡 = index𝛿𝐵𝑡 ◦ 𝜄𝑡 is
constant. ■
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2.5 Chirality operators

In the presence of a chirality operator the theory discussed above refines as follows.

Definition 2.32. A chirality operator on (𝑆,𝛾,∇) is a self-adjoint parallel isometry 𝜀 ∈ Γ(𝑋,O(𝑆))
such that

𝛾𝜀 + 𝜀𝛾 = 0. •

Example 2.33. Assume that 𝑋 is oriented. If dim𝑋 = 0 mod 4, then 𝜀 := 𝛾 (vol𝑔) is a chirality
operator. If dim𝑋 = 0 mod 2 and (𝑆,𝛾,∇) is a complex Dirac bundle as in Example 2.20, then

𝜀 := 𝑖 ⌊ (𝑛+1)/2⌋𝛾 (vol𝑔) is a chirality operator. ♠
Proposition 2.34 (Chirality operators induce a {±1}–grading). If 𝜀 is a chirality operator for
(𝑆,𝛾,∇), then the following hold:

(1) The subbundles 𝑆± := ker(1 ± 𝜀) ⊂ 𝑆 are parallel, 𝑆 orthogonally decomposes as

𝑆 = 𝑆+ ⊕ 𝑆−,

and 𝛾 ∈ Γ(𝑋,Hom(𝑇𝑋,Hom(𝑆+, 𝑆−) ⊕ Hom(𝑆−, 𝑆+))).

(2) The minimal and maximal extensions decompose as

𝐷min =

(
0 𝐷−

min

𝐷+
min

0

)
and 𝐷max =

(
0 𝐷−

max

𝐷+
max

0

)
with

𝐷±
min

: dom(𝐷±
min

) := 𝐻 1Γ(𝑋\𝑍, 𝑆± ⊗ 𝔩) → 𝐿2Γ(𝑋\𝑍, 𝑆∓ ⊗ 𝔩) and

𝐷±
max

: dom(𝐷±
max

) := dom(𝐷max) ∩ 𝐿2Γ(𝑋\𝑍, 𝑆± ⊗ 𝔩) → 𝐿2Γ(𝑋\𝑍, 𝑆∓ ⊗ 𝔩).

(3) Ȟ orthogonally decomposes as

Ȟ = Ȟ+ ⊕ Ȟ− with Ȟ±
:=

dom(𝐷±
max

)
dom(𝐷±

min
) ;

moreover, Ȟ± ⊂ Ȟ are Lagrangian. In particular, every residue condition 𝐵 ⊂ Ȟ decomposes
as 𝐵 = 𝐵+ ⊕ 𝐵− .

(4) If 𝐵+ ⊂ Ȟ+ is a closed subspace, a positive chirality residue condition, then there is
a unique closed subspace 𝐵− ⊂ Ȟ− such that 𝐵 := 𝐵+ ⊕ 𝐵− ⊂ Ȟ is a Lagrangian residue
condition.

(5) Let 𝐵+ ⊂ Ȟ+ be a positive chirality residue condition and 𝐵− as above. The operator 𝛿𝐵

is Fredholm if and only if 𝛿𝐵+
: 𝐵+ → Ȟ+/Λ+ is Fredholm.

Proof. (1), (2), and (3) are an immediate consequence of Definition 2.32.

A moment’s thought shows that (4) holds with 𝐵−
:= (𝐵+)𝐺 ∩ Ȟ−

.
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Evidently, 𝛿𝐵 = 𝛿𝐵+ ⊕ 𝛿𝐵−
is Fredholm if and only if 𝛿𝐵+

and 𝛿𝐵−
are Fredholm. The Green’s

form 𝐺 induces isomorphisms

Λ− � (Ȟ+/Λ+)∗ and 𝐵+ � (Ȟ−/𝐵−)∗.

This identifies the dual of 𝛿𝐵
+
with 𝛿𝐵− : Λ− → Ȟ−/𝐵−

. By the closed image theorem, if 𝛿𝐵
+

is Fredholm, then 𝛿𝐵− is Fredholm. As in the proof of Proposition 2.24, 𝛿𝐵− is Fredholm if and

only if 𝛿𝐵−
is Fredholm. This proves (5). ■

3 The Gelfand–Robbin quotient, II: geometric realisation

The usefulness of the theory laid out in Section 2 hinges upon being able to understand Ȟ, e.g.,
to specify interesting residue conditions. Since Ȟ localises on 𝑍 as explained in Remark 2.12,

it is plausible that it admits a more geometric description. The purpose of this section is to

develop such a description, assuming the following geometric condition on the branching locus

𝑍 throughout.

Hypothesis 3.1. 𝑍 ⊂ 𝑋 is a closed cooriented submanifold of codimension two.

Remark 3.2. The assumption that 𝑍 is cooriented simplifies the upcoming discussion, but is not

essential. Appendix A explains how to remove it. ♣
Lemma 3.3 (borderline Hardy inequality; Takahashi [Tak15, Lemma 2.6]). Hypothesis 3.1 implies
Hypothesis 2.1.

Proof. Let 𝑟 > 0. Denote by 𝔩 the non-trivial Euclidean line bundle over 𝑟𝑆1
:= {𝑧 ∈ C : |𝑧 | = 𝑟 }.

A moment’s thought and a scaling consideration show that

ˆ
𝑟𝑆1

|𝑟−1𝑠 |2 ≲
ˆ
𝑟𝑆1

|∇𝑠 |2

for every 𝑠 ∈ Γ(𝑟𝑆1, 𝔩). This immediately implies the assertion. ■

3.1 The blow-up of 𝑋 along 𝑍

It is convenient to blow-up 𝑋 along 𝑍 ; that is: to replace 𝑍 ⊂ 𝑋 with the following U(1)–
principal bundle.

Definition 3.4. Since 𝑍 is cooriented, its normal bundle 𝑁𝑍 is a Hermitian line bundle over 𝑍 .

Its frame bundle is
𝜋 : 𝐹 := {𝑣 ∈ 𝑁𝑍 : |𝑣 | = 1} → 𝑍

together with 𝐹 ⟲ U(1) defined by 𝑣 · 𝑒𝑖𝛼 := 𝑒𝑖𝛼𝑣 . Denote the Levi-Civita connection on 𝐹 by

𝑖𝜃 ∈ Ω1(𝐹, 𝑖R). •
Remark 3.5. The tautological section 𝜕𝑟 ∈ Γ(𝐹, 𝜋∗𝑁𝑍 ) and 𝜕𝛼 := 𝑖𝜕𝑟 trivialise 𝜋

∗𝑁𝑍 . ♣
In order to replace 𝑍 ⊂ 𝑋 with 𝐹 a choice is required.
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Definition 3.6. Set𝑈 := [0, 1) · 𝐹 ⊂ 𝑁𝑍 . A tubular neighbourhood 𝚥 : 𝑈 ↩→ 𝑋 of 𝑍 ⊂ 𝑋 is an

embedding such that 𝚥 ◦ 0 = id𝑍 and the composition

𝑁𝑍 ↩→ 0
∗𝑇𝑁𝑍

𝑇 𝚥
−−→ 𝑇𝑋 |𝑍 ↠ 𝑁𝑍

is the identity. Here 0 : 𝑍 → 𝑁𝑍 denotes the zero section. •
Choose a tubular neighbourhood 𝚥 : 𝑈 ↩→ 𝑋 .

Definition 3.7. Set ˆ𝑈 := [0, 1) × 𝐹 . The blow-up of 𝑋 along 𝑍 is the manifold with boundary

ˆ𝑋 := ˆ𝑈 ∪𝚥 (𝑋\𝑍 )

obtained by gluing
ˆ𝑈 and 𝑋\𝑍 along 𝚥. The blow-down map 𝛽 :

ˆ𝑋 → 𝑋 is defined by 𝛽 (𝑟, 𝑣) :=

𝚥 (𝑟𝑣) for (𝑟, 𝑣) ∈ 𝑈 and 𝛽 (𝑥) := 𝑥 for 𝑥 ∈ 𝑋\𝑍 . •
Henceforth, identify𝑈 ⊂ 𝑁𝑍 and 𝚥 (𝑈 ) ⊂ 𝑋 ; moreover, identify 𝜕 ˆ𝑋 = 𝐹 .

Definition 3.8. Set
𝑆 := 𝛽∗𝑆 and 𝑆 := ˆ𝑆 |𝐹 = 𝜋∗(𝑆 |𝑍 ) .

Endow 𝑆 |𝑍 with the complex structure 𝐼 := 𝛾 (vol𝑁𝑍 ) and 𝑆 with the quaternionic structure

𝐼 := 𝛾 (vol𝑁𝑍 ), 𝐽 := 𝛾 (𝜕𝑟 ), and 𝐾 = 𝐼 𝐽 := 𝛾 (𝜕𝛼 ) ∈ Γ(𝐹, End(𝑆)) .

Since 𝑋\𝑍 ↩→ ˆ𝑋 is a homotopy-equivalence, 𝔩 extends uniquely to a Euclidean line bundle

ˆ𝔩 → ˆ𝑋 .

Set

𝔩 := ˆ𝔩 |𝐹 . •

3.2 The model operator

The purpose of this subsection is to construct a model
˚𝐷 for 𝐷 near 𝑍 . This construction relies

on the following.

Definition 3.9 (Restriction of Dirac bundles). Denote the second fundamental form of 𝑍 with

respect to ∇𝑇
by II ∈ Γ(𝑍,Hom(𝑇𝑍,Hom(𝑇𝑍, 𝑁𝑍 ))). The restriction of (𝑆,𝛾,∇,Tor) to 𝑍 is

the quadruple (𝑆 |𝑍 , 𝛾 |𝑇𝑍 ,∇|𝑍 + 1

2
𝛾 (II),Tor |𝑍 ) with

𝛾 (II) (𝑣) :=

𝑛−2∑︁
𝑖=1

𝛾 (II(𝑣)𝑒𝑖)𝛾 (𝑒𝑖) .

Here (𝑒1, . . . , 𝑒𝑛−2) denotes a local orthonormal frame of 𝑇𝑍 . •
Proposition 3.10. (𝑆 |𝑍 , 𝛾 |𝑇𝑍 ,∇|𝑍 + 1

2
𝛾 (II),Tor |𝑍 ) is a Dirac bundle with skew torsion over (𝑍,𝑔|𝑍 ).

Proof. Evidently, (𝑆 |𝑍 , 𝛾 |𝑇𝑍 ) forms a Clifford module bundle over (𝑍,𝑔|𝑍 ). Denote by ∇𝑇,∥
the

orthogonal affine connection on (𝑍,𝑔|𝑍 ) induces by ∇𝑇
.
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Since (𝑆,𝛾,∇,Tor) is a Dirac bundle with skew torsion over (𝑋,𝑔), for every 𝑣,𝑤 ∈ Vect(𝑍 )

[∇𝑣, 𝛾 (𝑤)] = 𝛾 (∇𝑇,∥
𝑣 𝑤) + 𝛾 (II(𝑣)𝑤);

moreover, by direct computation,

[𝛾 (II) (𝑣), 𝛾 (𝑤)] =
𝑛−2∑︁
𝑖=1

[𝛾 (II(𝑣)𝑒𝑖)𝛾 (𝑒𝑖), 𝛾 (𝑤)] =
𝑛−2∑︁
𝑖=1

𝛾 (II(𝑣)𝑒𝑖) (𝛾 (𝑒𝑖)𝛾 (𝑤) + 𝛾 (𝑤)𝛾 (𝑒𝑖))

= −2

𝑛−2∑︁
𝑖=1

𝛾 (II(𝑣)𝑒𝑖)⟨𝑒𝑖 ,𝑤⟩ = −2𝛾 (II(𝑣)𝑤) .

A moment’s thought shows that if ∇∥
the Levi-Civita connection of (𝑍,𝑔|𝑍 ), then

⟨∇𝑇,∥
𝑢 𝑣,𝑤⟩ = ⟨∇∥

𝑢𝑣,𝑤⟩ + ( 1

2
Tor |𝑍 ) (𝑢, 𝑣,𝑤) .

This proves the assertion. ■

Proposition 3.11. Denote by 𝑔∥ := 𝑔|𝑍 and 𝑔⊥ the Euclidean metrics on 𝑇𝑍 and 𝑁𝑍 induced by 𝑔.
Denote by Π : 𝑈 → 𝑍 the projection map and identify 𝑇𝑈 = Π∗(𝑇𝑍 ⊕ 𝑁𝑍 ) using the Levi-Civita
connection. Consider𝑈 ⊂ 𝑋 equipped with the Riemannian metric

𝑔 := Π∗(𝑔∥ ⊕ 𝑔⊥).

The quadruple ( ˚𝑆,𝛾, ˚∇, ˚Tor) consisting of

˚𝑆 := Π∗(𝑆 |𝑍 ), 𝛾 := Π∗(𝛾 |𝑍 ), ˚∇ := Π∗(∇|𝑍 + 1

2
𝛾 (II)),

and ˚Tor := Π∗(Tor
3,0

𝑍
+Tor

1,2

𝑍
) + 𝑟pr

∗
𝐹 (d𝜃 ∧ 𝜃 )

is a Dirac bundle with skew torsion over (𝑈 ,𝑔). Here Tor
𝑝,𝑞

𝑍
denotes the (𝑝, 𝑞) component with

respect to Λ•(𝑇 ∗𝑍 ⊕ 𝑁 ∗𝑍 ) = Λ•𝑇 ∗𝑍 ⊗ Λ•𝑁 ∗𝑍 of the restriction of Tor to 𝑍 .

Proof. Denote by ∇𝑇,∥
and ∇𝑇,⊥

the orthogonal covariant derivatives on 𝑇𝑍 and 𝑁𝑍 induced

by ∇𝑇
respectively. If 𝑣 ∈ Vect(𝑍 ) and𝑤 ∈ Γ(𝑍, 𝑁𝑍 ), then

[∇𝑣, 𝛾 (𝑤)] = 𝛾 (∇𝑇,⊥
𝑣 𝑤) − 𝛾 (II(𝑣)∗𝑤))

and, moreover,

[𝛾 (II) (𝑣), 𝛾 (𝑤)] =
𝑛−2∑︁
𝑖=1

[𝛾 (II(𝑣)𝑒𝑖)𝛾 (𝑒𝑖), 𝛾 (𝑤)] = −
𝑛−2∑︁
𝑖=1

(𝛾 (II(𝑣)𝑒𝑖)𝛾 (𝑤) + 𝛾 (𝑤)𝛾 (II(𝑣)𝑒𝑖))𝛾 (𝑒𝑖)

= 2

𝑛−2∑︁
𝑖=1

⟨II(𝑣)𝑒𝑖 ,𝑤⟩𝛾 (𝑒𝑖) = 2𝛾 (II∗(𝑣)𝑤)

This together with the analogous computation in the proof of Proposition 3.10 proves that 𝛾 is

parallel with respect to
˚∇ and Π∗(∇𝑇,∥ ⊕ ∇𝑇,⊥). Therefore, it remains to identify the torsion of

˚∇𝑇
:= Π∗(∇𝑇,∥ ⊕ ∇𝑇,⊥).
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Denote by ·̃ : Vect(𝑍 ) → Vect(𝑈 \𝑍 ) and ·̃ : Γ(𝑍, 𝑁𝑍 ) → Vect(𝑈 \𝑍 ) the lifting maps. For

𝑢, 𝑣 ∈ Vect(𝑍 ) and 𝑛,𝑚 ∈ Γ(𝑍, 𝑁𝑍 ), by direct computation,

˚∇𝑇
𝑢̃ 𝑣 − ˚∇𝑇

𝑣̃ 𝑢̃ − [𝑢̃, 𝑣] = Tor
3,0

𝑍
(𝑢, 𝑣,−)♯ + �[𝑢, 𝑣] − [𝑢̃, 𝑣]

= Tor
3,0

𝑍
(𝑢, 𝑣,−)♯ + (pr

∗
𝐹d𝜃 ) (𝑢̃, 𝑣) ⊗ 𝜕𝛼 ;

moreover,

˚∇𝑇
𝑛̃𝑚̃ − ˚∇𝑇

𝑚̃𝑛̃ − [𝑛̃, 𝑚̃] = 0 and
˚∇𝑇
𝑣̃ 𝑛̃ − ˚∇𝑇

𝑛̃𝑣 − [𝑣, 𝑛̃] = Tor
1,2

𝑍
(𝑣, 𝑛,−)♯ .

This proves the assertion. ■

Definition 3.12. Denote by ˚𝔩 the pullback of 𝔩 along the projection 𝑈 \𝑍 � 𝐹 × (0, 1) → 𝐹 . The

model Dirac operator

𝐷̊ : 𝐻 1

loc
Γ(𝑈 \𝑍, 𝑆 ⊗ ˚𝔩) → 𝐿2

loc
Γ(𝑈 \𝑍, 𝑆 ⊗ ˚𝔩)

is the Dirac operator associated with ( ˚𝑆, ˚∇, 𝛾, ˚Tor) twisted by
˚𝔩. •

Remark 3.13. More explicity, the model Dirac operator
˚𝐷 is of the form

˚𝐷 = 𝐽 (𝜕𝑟 − 𝑟−1𝐼 ˚∇𝜕𝛼 ) + 𝐷𝑍 with 𝐷𝑍 :=

𝑛−2∑︁
𝑖=1

𝛾 (𝑒𝑖) ˚∇𝑒𝑖

with (𝑒𝑖 , . . . , 𝑒𝑛−2) denoting the horizontal lift of a local 𝑔∥–orthonormal frame. ♣
Choose an isometry

˚𝑆 � 𝑆 |𝑈 which agrees with id𝑆 |𝑍 over 𝑍 , and an isometry
˚𝔩 � 𝔩 |𝑈 \𝑍 ;

moreover, henceforth, regard these as identifications.

Proposition 3.14. The error term

Err ≔ 𝐷 − ˚𝐷 : 𝐻 1

loc
Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) → 𝐿2

loc
Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩)

is of the form
Err = 𝑎 ˚∇ + 𝑏 − 1

2
Π∗(𝛾 (𝐻𝑍 )) + 1

2
Π∗(𝛾 (Tor

2,1

𝑍
))

with 𝑎 ∈ Γ(𝑈 ,Hom(𝑇 ∗𝑈 ⊗ ˚𝑆, ˚𝑆)), 𝑏 ∈ Γ(𝑈 , End( ˚𝑆)), and 𝐻𝑍 denoting the mean curvature of 𝑍 .
Moreover, 𝑎 and 𝑏 vanish along 𝑍 .

Proof. If (𝑒1, . . . , 𝑒𝑛−2) is a local orthonormal frame of 𝑇𝑍 , then

−1

2

𝑛−2∑︁
𝑖=1

𝛾 (𝑒𝑖)𝛾 (II) (𝑒𝑖) =
1

2

𝑛−2∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )𝛾 (II(𝑒𝑖)𝑒 𝑗 )

= −1

2

𝛾 (𝐻𝑍 ) +
1

4

𝑛−2∑︁
𝑖, 𝑗=1

𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )
(
𝛾 (II(𝑒𝑖)𝑒 𝑗 ) − 𝛾 (II(𝑒 𝑗 )𝑒𝑖)

)
= −1

2

𝛾 (𝐻𝑍 ) +
1

2

𝛾 (Tor
2,1

𝑍
) .

Therefore, the assertion follows from the fact that

𝑔 − 𝑔, ˚∇ − ∇ − 1

2
Π∗(𝛾 (II)), and 𝛾 − 𝛾

vanish along 𝑍 . ■
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3.3 The model Gelfand–Robbin quotient

By (the proof of) Proposition 2.8, the model minimal extension

˚𝐷min
:= ˚𝐷 : dom( ˚𝐷min) := 𝐻 1

0
Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) → 𝐿2Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩)

is closed, densely defined, and symmetric. A moment’s thought shows that the domain of the

model maximal extension

˚𝐷max
:= ˚𝐷∗

min

is

dom( ˚𝐷max) := {𝜙 ∈ 𝐻 1

loc
Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) : 𝜙, ˚𝐷𝜙 ∈ 𝐿2Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩)}.

The construction from Section 2.2 and Section 2.3 yields the following.

Definition 3.15. The model Gelfand–Robbin quotient is the Hilbert space

˚̌H :=
dom( ˚𝐷max)
dom( ˚𝐷min)

equipped with the model Green’s form ˚𝐺 ∈ Hom(Λ2 ˚̌H,R) defined by

˚𝐺 ( [𝜙] ∧ [𝜓 ]) := ⟨ ˚𝐷𝜙,𝜓 ⟩𝐿2 − ⟨𝜙, ˚𝐷𝜓 ⟩𝐿2 . •

By (the proof of) Proposition 2.16, ( ˚̌H, ˚𝐺) is a symplectic Hilbert space. In the sense of

Remark 2.12,
˚̌H has contributions from {0} × 𝐹 ⊂ 𝑈 and {1} × 𝐹 . Only the former is relevant for

the purposes of this section.

Proposition 3.16. The subspace

˚̌H0
:=
𝜒 (𝑟 ) · dom( ˚𝐷max) + dom( ˚𝐷min)

dom( ˚𝐷min)
⊂ ˚̌H

is closed and symplectic.

Proof. Define the operator 𝜋 ∈ L( ˚̌H) by 𝜋 ( [𝜙]) := [𝜒 (𝑟 )·𝜙]. Since 𝜒 (𝑟 ) (1−𝜒 (𝑟 ))·dom( ˚𝐷max) ⊂
dom( ˚𝐷min), 𝜋2 = 𝜋 ; that is: 𝜋 is a projection. Hence,

˚̌H0 = im𝜋 = ker(1 − 𝜋) is closed.
Since (1 − 𝜒 (𝑟 ) − 𝜒 ◦ (1 − 𝑟 )) · dom( ˚𝐷max) ⊂ dom( ˚𝐷min), (1 − 𝜋) [𝜙] = [𝜒 ◦ (1 − 𝑟 ) · 𝜙].

Therefore,

˚𝐺 ( [𝜙] ∧ [𝜓 ]) = ˚𝐺 (𝜋 [𝜙] ∧ 𝜋 [𝜓 ]) + ˚𝐺 ((1 − 𝜋) [𝜙] ∧ (1 − 𝜋) [𝜓 ]) .

Hence,
˚̌H0 is symplectic. ■

Proposition 3.17. There is a unique isomorphism of symplectic Hilbert spaces

cut-off : (Ȟ,𝐺) � ( ˚̌H0, ˚𝐺)

satisfying cut-off( [𝜙]) = [𝜒 (𝑟 ) · 𝜙] for every 𝜙 ∈ dom(𝐷max).
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The proof requires the following preparation.

Lemma 3.18 (dom(𝐷max) vs. dom( ˚𝐷max)). The following hold:

(1) If 𝜙 ∈ dom( ˚𝐷max), then 𝜒 (𝑟 ) · 𝜙 ∈ dom(𝐷max) and ∥𝜒 (𝑟 ) · 𝜙 ∥𝐷 ≲ ∥𝜙 ∥
𝐷̊
.

(2) If 𝜙 ∈ dom(𝐷max), then 𝜒 (𝑟 ) · 𝜙 ∈ dom( ˚𝐷max) and ∥𝜒 (𝑟 ) · 𝜙 ∥
𝐷̊
≲ ∥𝜙 ∥𝐷 .

Proof. Let 𝜙 ∈ dom(𝐷̊max). Let 𝜂 ∈ 𝐶∞
𝑐 (𝑈 \𝑍, [0, 1]). By Proposition 2.5 (2),

ˆ
𝑈 \𝑍

𝜂2 | ˚∇(𝑟 𝜒 (𝑟 ) · 𝜙) |2 =
ˆ
𝑈 \𝑍

𝜂2 | ˚𝐷 (𝑟 𝜒 (𝑟 ) · 𝜙) |2

−
ˆ
𝑈 \𝑍

𝜂2
(
⟨𝜏 ˚∇(𝑟 𝜒 (𝑟 ) · 𝜙), 𝑟 𝜒 (𝑟 ) · 𝜙⟩ + ⟨𝛾 (𝐹

˚∇)𝑟 𝜒 (𝑟 ) · 𝜙, 𝑟 𝜒 (𝑟 ) · 𝜙⟩
)

+ 2

ˆ
𝑈 \𝑍

𝜂⟨ ˚𝐷 (𝑟 𝜒 (𝑟 ) · 𝜙), 𝛾 (d𝜂)𝑟 𝜒 (𝑟 ) · 𝜙⟩

− 2

ˆ
𝑈 \𝑍

𝜂⟨ ˚∇(𝑟 𝜒 (𝑟 ) · 𝜙), d𝜂 ⊗ 𝑟 𝜒 (𝑟 ) · 𝜙⟩.

Therefore, ˆ
𝑈 \𝑍

𝜂2 | ˚∇(𝑟 𝜒 (𝑟 ) · 𝜙) |2 ≲
ˆ
𝑈 \𝑍

| ˚𝐷𝜙 |2 + 𝑟 2(1 + |d𝜂 |2) |𝜙 |2.

Since 𝜂𝜀 := 1 − 𝜒 (𝑟/𝜀) satisfies 𝑟 |d𝜂𝜀 | ≲ 1,

ˆ
𝑈 \𝑍

| ˚∇(𝑟 𝜒 (𝑟 ) · 𝜙) |2 = lim

𝜀↓0

ˆ
𝑈 \𝑍

𝜂2

𝜀 | ˚∇(𝑟𝜙) |2 ≲
ˆ
𝑈 \𝑍

| ˚𝐷𝜙 |2 + |𝜙 |2.

Therefore, 𝑟 𝜒 (𝑟 ) · 𝜙 ∈ dom( ˚𝐷min) and

∥𝑟 𝜒 (𝑟 ) · 𝜙 ∥𝐻 1 ≲ ∥𝜙 ∥
𝐷̊
.

By Proposition 3.14 and the above,

∥Err 𝜒 (𝑟 ) · 𝜙 ∥𝐿2 ≲ ∥ ˚∇(𝑟𝜙)∥𝐿2 + ∥𝜙 ∥𝐿2 ≲ ∥𝐷̊𝜙 ∥𝐿2 + ∥𝜙 ∥𝐿2 .

This implies (1). The proof of (2) is similar. ■

Proof of Proposition 3.17. By Lemma 3.18, cut-off is an isomorphism of Hilbert spaces. To prove

that cut-off is a symplectomorphism, let 𝜙,𝜓 ∈ dom(𝐷max) and set

𝑣 :=

𝑛∑︁
𝑖=1

⟨𝛾 (𝑒𝑖)𝜙,𝜓 ⟩𝑒𝑖 and 𝑣 :=

𝑛∑︁
𝑖=1

⟨𝛾 (𝑒𝑖)𝜒 (𝑟 ) · 𝜙, 𝜒 (𝑟 ) ·𝜓 ⟩𝑒𝑖

with (𝑒1, . . . , 𝑒𝑛) and (𝑒1, . . . , 𝑒𝑛) denoting local 𝑔– and 𝑔–orthonormal frames respectively.
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Assume, without loss of generality, that supp(𝜙) ∪ supp(𝜓 ) ⊂ (𝜒 ◦ 𝑟 )−1(1) ⊂ 𝑈 \𝑍 . With

𝜂𝜀 as in the proof of Lemma 3.18,

(𝐺 − cut-off
∗ ˚𝐺) ( [𝜙] ∧ [𝜓 ]) =

ˆ
𝑈 \𝑍

div𝑔 (𝑣) · vol𝑔 − div𝑔 (𝑣) · vol𝑔

= lim

𝜀↓0

ˆ
𝑈 \𝑍

𝜂𝜀 ·
(
div𝑔 (𝑣) · vol𝑔 − div𝑔 (𝑣) · vol𝑔

)
= − lim

𝜀↓0

ˆ
𝑈 \𝑍

d𝜂𝜀 ∧
(
𝑖𝑣vol𝑔 − 𝑖𝑣vol𝑔

)
.

Since 𝑟 |d𝜂𝜀 | ≲ 1, ��
d𝜂𝜀 ∧

(
𝑖𝑣vol𝑔 − 𝑖𝑣vol𝑔

) �� ≲ |𝜙 | |𝜓 |.

Therefore,

| (𝐺 − cut-off
∗ ˚𝐺) ( [𝜙] ∧ [𝜓 ]) | ≲ lim

𝜀↓0

ˆ
supp d𝜂𝜀

|𝜙 | |𝜓 | vol𝑔 = 0. ■

3.4 Spectral decomposition

This subsection decomposes ( ˚̌H0, ˚𝐺) into concretely understandable summands.

Definition 3.19 (𝔩 determines 𝑁𝑍𝜆
). The ramified Euclidean line bundle 𝔩 determines the follow-

ing:

(1) The 2𝜋–periodic vector field 𝜕𝛼 generating 𝐹 ⟲ U(1) uniquely lifts along

𝜌 :
˜𝐹 := {ℓ ∈ 𝔩 : |ℓ | = 1} → 𝐹

to a 4𝜋–periodic vector field 1

2
𝜕𝛽 . The 2𝜋–periodic vector field 𝜕𝛽 generates

˜𝐹 ⟲ U(1)
with respect to which 𝜋̃ :

˜𝐹 → 𝑍 is a U(1)–principal bundle.

(2) Let 𝜆 ∈ 1

2
Z. The Hermitian line bundle

𝑁𝑍𝜆
:= ˜𝐹 ×U(1) C

arises from
˜𝐹 via the representation U(1) ⟳ C of weight 2𝜆. The Levi-Civita connection

on 𝐹 induces a connection on
˜𝐹 and, therefore, a unitary covariant derivative ∇𝜆

on

𝑁𝑍𝜆
. •

Remark 3.20. By construction (𝑁𝑍 1,∇1) � (𝑁𝑍,∇LC) and for every 𝜆, 𝜇 ∈ 1

2
Z

(𝑁𝑍𝜆,∇𝜆) ⊗C (𝑁𝑍 𝜇,∇𝜇) � (𝑁𝑍𝜆+𝜇,∇𝜆+𝜇) . ♣

Proposition 3.21. For every 𝜆 ∈ Z − 1/2 there is an isomorphism

𝑃𝜆 : 𝜋∗(𝑁𝑍𝜆,∇𝜆) � (𝔩 ⊗ C,∇𝔩⊗C + 𝑖𝜆𝜃 )

of Hermitian line bundles with unitary connections.
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Proof. Consider the U(1)–principal bundle ˜𝐹 ×{±1} U(1) → 𝐹 obtained by extending the {±1}–
principal bundle

˜𝐹 → 𝐹 along the inclusion 𝜄 : {±1} ↩→ U(1). The U(1)–principal bundles
𝐹 ×{±1} U(1) → 𝐹 and 𝜋∗ ˜𝐹 → 𝐹 are isomorphic via [𝑓 , 𝑧] ↦→ [𝑓 , 𝜌 (𝑓 · 𝑧)].

Let 𝜆 ∈ Z − 1/2. The representation U(1) ⟳ C of weight 2𝜆 restricts to the usual represen-

tation {±1} ⟳ C along 𝜄. Therefore, 𝜋∗𝑁𝑍𝜆
and 𝔩 both arise from the representation of weight

2𝜆. Hence, they are isomorphic as Hermitian line bundles.

The Levi-Civita connection 𝑖𝜃 on 𝐹 → Z induces the connection
𝑖
2
𝜌∗𝜃 on

˜𝐹 → 𝑍 . Therefore,

the induced connection on
˜𝐹×{±1}U(1) � 𝜋∗𝐹 is (the descend of) 𝑖

2
𝜌∗𝜃+𝜇U(1) . Here 𝜇U(1) ∈ U(1)

denotes the Maurer–Cartan form on U(1). The connection on 𝐹 ×{±1} U(1) induced by the flat

connection on
˜𝐹 → 𝐹 is (the descend) of 𝜇U(1) . This implies the assertion about the covariant

derivatives. ■

Proposition 3.22 (Spectral decomposition of 𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩)). For every 𝜆 ∈ Z − 1/2 and 𝜇 ∈ R set

𝐸𝜆,𝜇 := {𝜙 ∈ 𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩) : 𝐼 ˚∇𝜕𝛼𝜙 = 𝜆𝜙, 𝐷𝑍𝜙 = 𝜇𝜙} and
ˇ𝐸𝜆,𝜇 := { ˇ𝜙 ∈ 𝐿2Γ(𝑍, 𝑆 |𝑍 ⊗C 𝑁𝑍

𝜆) : 𝐷𝑆 |𝑍 ⊗C𝑁𝑍𝜆
ˇ𝜙 = 𝜇 ˇ𝜙}.

Here 𝐷𝑍 is as in Remark 3.13 and 𝐷𝑆 |𝑍 ⊗C𝑁𝑍𝜆 arises from Definition 3.9 and twisting by (𝑁𝑍𝜆,∇𝜆);
moreover: the tensor product is with respect to the complex structure 𝐼 on 𝑆 |𝑍 . The following hold:

(1) For every 𝜆 ∈ Z − 1/2 and 𝜇 ∈ R, 𝑃𝜆 induces an isomorphism

𝜋∗ ˇ𝐸𝜆,𝜇 � 𝐸𝜆,𝜇 .

(2) The subset
𝜎 :=

{
(𝜆, 𝜇) ∈ (Z − 1/2) × R : 𝐸𝜆,𝜇 ≠ 0

}
is discrete. Moreover, for every (𝜆, 𝜇) ∈ 𝜎 , 𝐸𝜆,𝜇 is finite-dimensional.

(3) For every (𝜆, 𝜇) ∈ 𝜎
𝐽𝐸𝜆,𝜇 = 𝐸−(𝜆+1),−𝜇 .

(4) The Hilbert space 𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩) decomposes as a (Hilbert space) direct sum

𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩) =
⊕

(𝜆,𝜇 ) ∈𝜎
𝐸𝜆,𝜇 .

Proof. By Fourier analysis, the Hilbert space 𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩) decomposes as a direct sum

𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩) =
⊕

𝜆∈Z−1/2

𝐸𝜆 with 𝐸𝜆 := {𝜙 ∈ 𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩) : 𝐼 ˚∇𝜕𝛼𝜙 = 𝜆𝜙}

By Proposition 3.21, 𝑃𝜆 induces an isomorphism 𝜋∗𝐿2Γ(𝑍, 𝑆 |𝑍 ⊗C 𝑁𝑍
𝜆) � 𝐸𝜆 . By the spectral

theory of Dirac operators, for every 𝜆 ∈ Z − 1/2, spec(𝐷𝑆 |𝑍 ⊗C𝑁𝑍𝜆 ) ⊂ R is discrete and the

Hilbert space 𝐿2Γ(𝑍, 𝑆 |𝑍 ⊗C 𝑁𝑍
𝜆) decomposes as a direct sum finite-dimensional eigenspaces

𝐸𝜆,𝜇 of 𝐷𝑆 |𝑍 ⊗C𝑁𝑍𝜆 . This proves (1), (2), and (4).

(3) holds because 𝐽 and 𝐷𝑍 anti-commute and 𝐼 ˚∇𝜕𝛼 𝐽 = −𝐽 (𝐼 ˚∇𝜕𝛼 + 1) since ˚∇𝜕𝛼 𝜕𝑟 = 𝜕𝛼 . ■
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Since vol𝑔 = d𝑟 ∧ 𝑟𝜃 ∧ vol𝑔 |𝑍 , by Fubini’s theorem and Proposition 3.22,

𝐿2Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) = 𝐿2((0, 1), 𝑟d𝑟 ;𝐿2Γ(𝐹, 𝑆 ⊗ 𝔩)) =
⊕

𝜆∈Z−1/2

⊕
𝜇∈𝜎𝜆

𝐿2((0, 1), 𝑟d𝑟 ;𝐸𝜆,𝜇);

moreover, 𝐷max decomposes as follows.

Definition 3.23. Choose a fundamental domain 𝜎̌ ⊂ 𝜎 for the involution (𝜆, 𝜇) ↦→ (−(𝜆 + 1),−𝜇).
Choose a real subspace 𝐸R−1/2,0

⊂ 𝐸−1/2,0 with respect to 𝐽 . For every (𝜆, 𝜇) ∈ 𝜎̌ set

𝑉𝜆,𝜇 :=

{
𝐸R−1/2,0

⊕ 𝐽𝐸R−1/2,0
if (𝜆, 𝜇) = (−1/2, 0)

𝐸𝜆,𝜇 ⊕ 𝐸−(𝜆+1),−𝜇 otherwise;

moreover, define
˚𝐷𝜆,𝜇

: 𝐻 1

loc
((0, 1);𝑉𝜆,𝜇) → 𝐿2

loc
((0, 1);𝑉𝜆,𝜇) by

˚𝐷𝜆,𝜇
:=

(
𝜇 𝐽 (𝜕𝑟 + 𝜆+1

𝑟
)

𝐽 (𝜕𝑟 − 𝜆
𝑟
) −𝜇

)
and set

dom( ˚𝐷
𝜆,𝜇
max

) :=

{
𝜙 ∈ 𝐻 1

loc
((0, 1);𝑉𝜆,𝜇) : 𝜙, ˚𝐷𝜙 ∈ 𝐿2((0, 1), 𝑟d𝑟 ;𝑉𝜆,𝜇)

}
. •

Remark 3.24. The purpose of the artificial decomposition of 𝐸−1/2,0 is to avoid a case distinction

in the definition of
˚𝐷𝜆,𝜇

. ♣
Proposition 3.25 (Spectral decomposition of dom( ˚𝐷max)). The following hold:

(1) The Hilbert space dom( ˚𝐷max) decomposes as a (Hilbert space) direct sum

dom( ˚𝐷max) =
⊕

(𝜆,𝜇 ) ∈𝜎̌
dom( ˚𝐷

𝜆,𝜇
max

).

(2) The model operator ˚𝐷 decomposes as

˚𝐷 =
⊕

(𝜆,𝜇 ) ∈𝜎̌

˚𝐷𝜆,𝜇 .

Proof. This is an immediate consequence of Remark 3.13 and Proposition 3.22. ■

Remark 3.26. The ordinary differential equation
˚𝐷𝜆,𝜇𝜙 = 𝜓 can be solved explicitly in terms of

modified Bessel functions of the second kind or using the Hankel transform. However, none of

this is necessary for the purpose of this article. ♣

Finally, here is the desired decomposition of ( ˚̌H0, ˚𝐺).

Corollary 3.27 (Spectral decomposition of ( ˚̌H0, ˚𝐺)). The symplectic Hilbert space ( ˚̌H0, ˚𝐺) decom-
poses as a (Hilbert space) direct sum

( ˚̌H0, ˚𝐺) =
⊕

(𝜆,𝜇 ) ∈𝜎̌
( ˚̌H𝜆,𝜇

0
, ˚𝐺𝜆,𝜇)
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with

˚̌H𝜆,𝜇

0
:=

(𝜒 ◦ 𝑟 ) · dom(𝐷̊𝜆,𝜇
max

) + dom(𝐷̊min)
dom( ˚𝐷min)

and

˚𝐺𝜆,𝜇 ( [𝜙] ∧ [𝜓 ]) := ⟨ ˚𝐷𝜆,𝜇𝜙,𝜓 ⟩𝐿2 − ⟨𝜙, ˚𝐷𝜆,𝜇𝜓 ⟩𝐿2 . ■

3.5 Leading order terms

This subsection determines ( ˚̌H𝜆,𝜇

0
,𝐺𝜆,𝜇) based on the following observation.

Lemma 3.28 (Leading order terms; cf. [BS88, Lemma 2.1; DW24, Lemma 3.50]). Let 𝜆 ∈ R. Let
𝜙 ∈ 𝐻 1

loc
((0, 1)) with 𝜙, (𝜕𝑟 − 𝜆/𝑟 )𝜙 ∈ 𝐿2((0, 1), 𝑟d𝑟 ). The following hold:

(1) If 𝜆 ∈ (−1, 0), then there is a unique 𝑎 ∈ R such that lim𝑟↓0 𝜙 (𝑟 ) − 𝑎𝑟𝜆 = 0.

(2) If 𝜆 = 0, then 𝜙 (𝑟 ) ≲𝜙 |log(𝑟 ) |1/2.

(3) If 𝜆 ≠ [−1, 0), then lim𝑟↓0 𝜙 (𝑟 ) = 0.

(4) If lim𝑟↓0 𝜙 (𝑟 ) = lim𝑟↑1 𝜙 (𝑟 ) = 0, then
ˆ

1

0

(
|𝜕𝑟𝜙 |2 +

𝜆2

𝑟 2
|𝜙 |2

)
𝑟d𝑟 =

ˆ
1

0

| (𝜕𝑟 − 𝜆/𝑟 )𝜙 |2𝑟d𝑟 .

Proof. The proof is almost identical to that of [DW24, Lemma 3.50] and is repeated here only

for the readers’ convenience.

Evidently, (𝜕𝑟 −𝜆/𝑟 )𝑟𝜆 = 0 and 𝑟𝜆 ∈ 𝐿2((0, 1), 𝑟d𝑟 ) if and only if 𝜆 > −1. Set𝜓 := (𝜕𝑟 −𝜆/𝑟 )𝜙 .
By variation of parameters, there is a unique 𝑎 ∈ R such that

˜𝜙 (𝑟 ) := 𝜙 (𝑟 ) − 𝑎𝑟𝜆 =

{
𝑟𝜆
´ 𝑟

0
𝑠−(𝜆+1)𝜓 (𝑠) 𝑠d𝑠 if 𝜆 < 0

−𝑟𝜆
´

1

𝑟
𝑠−(𝜆+1)𝜓 (𝑠) 𝑠d𝑠 if 𝜆 ⩾ 0.

Of course, if 𝜆 ⩽ −1, then 𝑎 = 0.

If 𝜆 < 0, then, by Cauchy–Schwarz and monotone convergence,

| ˜𝜙 (𝑟 ) |2 ⩽ 1

2|𝜆 |

ˆ 𝑟

0

|𝜓 (𝑠) |2 𝑠d𝑠 = 𝑜 (1) as 𝑟 ↓ 0.

If 𝜆 = 0, then

| ˜𝜙 (𝑟 ) |2 ⩽ |log(𝑟 ) |
ˆ

1

𝑟

|𝜓 (𝑠) |2 𝑠d𝑠 = 𝑂 ( |log(𝑟 ) |) as 𝑟 ↓ 0.

If 𝜆 > 0, then, by Cauchy–Schwarz, for 𝑟 ⩽ 𝜀 ⩽ 1

| ˜𝜙 (𝑟 ) |2 ⩽ 1

𝜆

ˆ 𝜀

0

|𝜓 (𝑠) |2 𝑠d𝑠 + (𝑟/𝜀)2𝜆

𝜆

ˆ
1

𝜀

|𝜓 (𝑠) |2 𝑠d𝑠 =: I(𝜀) + II(𝑟, 𝜀) .

By monotone convergence, lim𝜀↓0 I(𝜀) = 0. Evidently, lim𝑟↓0 II(𝑟, 𝜀) = 0. Therefore,
˜𝜙 (𝑟 ) = 𝑜 (1)

as 𝑟 ↓ 0. These observations imply (1), (2), and (3).
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(4) is a consequence of

ˆ
1

0

| (𝜕𝑟 − 𝜆/𝑟 )𝜙 |2𝑟d𝑟 =
ˆ

1

0

(
|𝜕𝑟𝜙 |2 +

𝜆2

𝑟 2
|𝜙 |2

)
𝑟d𝑟 − 𝜆

ˆ
1

0

𝜕𝑟 |𝜙 |2d𝑟 . ■

Corollary 3.29 (Identification of
˚̌H𝜆,𝜇

0
for 𝜆 ≠ −1/2). For every (𝜆, 𝜇) ∈ 𝜎̌ with 𝜆 ≠ −1/2

˚̌H𝜆,𝜇

0
= 0. ■

Definition 3.30. For (−1/2, 𝜇) ∈ 𝜎̌ define the residue map res𝜇 : dom( ˚𝐷
−1/2,𝜇
max

) → 𝑉−1/2,𝜇 by

𝜙 − 𝑟−1/2 · res𝜇 (𝜙) ∈ dom(𝐷̊min),

and the symplectic form Ω̌𝜇 ∈ Hom(Λ2𝑉−1/2,𝜇,R) by

Ω̌𝜇 (𝜙 ∧𝜓 ) := −⟨𝐽𝜙,𝜓 ⟩. •

Proposition 3.31 (Identification of
˚̌H−1/2,𝜇

0
: symplectic structure). For every (−1/2, 𝜇) ∈ 𝜎̌ the

residue map induces an isomorphism

res𝜇 : ( ˚̌H−1/2,𝜇

0
, ˚𝐺−1/2,𝜇) � (𝑉−1/2,𝜇, Ω̌𝜇) .

Proof. For 𝜙,𝜓 ∈ dom( ˚𝐷
−1/2,𝜇
max

), by direct computation using 𝜕𝑟 + 1

2𝑟
= 𝑟−1/2𝜕𝑟𝑟

1/2
,

˚𝐺−1/2,𝜇 ( [𝜙] ∧ [𝜓 ]) =
ˆ

1

0

(⟨𝐽 (𝜕𝑟 + 1

2𝑟
)𝜙,𝜓 ⟩ − ⟨𝜙, 𝐽 (𝜕𝑟 + 1

2𝑟
)𝜓 ⟩) 𝑟d𝑟

=

ˆ
1

0

𝜕𝑟 ⟨𝐽𝑟 1/2𝜙, 𝑟 1/2𝜓 ⟩ d𝑟

= −⟨𝐽 res𝜇 ( [𝜙]), res𝜇 ( [𝜓 ])⟩ = res
∗
𝜇 Ω̌𝜇 ( [𝜙] ∧ [𝜓 ]) .

This together with Lemma 3.28 immediately implies the assertion. ■

Although res𝜇 is an isomorphism, the norms on
˚̌H−1/2,𝜇

0
and 𝑉−1/2,𝜇 are not uniformly

equivalent. The following discussion rectifies this.

Definition 3.32. Let (−1/2, 𝜇) ∈ 𝜎̌ .

(1) Define the branching locus operator 𝐴𝜇 : 𝑉−1/2,𝜇 → 𝑉−1/2,𝜇 by

𝐴𝜇 := −𝐽 ˚𝐷−1/2,𝜇 − 𝜕𝑟 − 1

2𝑟
=

(
0 𝐽 𝜇

−𝐽 𝜇 0

)
.

(2) Define the norm ∥−∥𝐻̌ : 𝑉−1/2,𝜇 → [0,∞) by

∥𝑣 ∥2

𝐻̌
:= (1 + |𝜇 |) · ∥1(−∞,0) (𝐴𝜇)𝜙 ∥2 + (1 + |𝜇 |)−1 · ∥1[0,∞) (𝐴𝜇)𝜙 ∥2.

Here 1(−∞,0) (𝐴𝜇) and 1[0,∞) (𝐴𝜇) denote the orthogonal projection to the negative and

non-negative eigenspaces of 𝐴𝜇 respectively.
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(3) Define the norm ∥−∥𝐻 −1/2 : 𝑉−1/2,𝜇 → [0,∞) by

∥𝑣 ∥2

𝐻 −1/2
:= (1 + |𝜇 |)−1 · ∥𝑣 ∥2. •

Proposition 3.33 (Identification of
˚̌H−1/2,𝜇

0
: uniform norms). For every (−1/2, 𝜇) ∈ 𝜎̌

∥res𝜇 ( [𝜙])∥ ˇ𝐻 ≍ ∥[𝜙] ∥
˚̌H
.

The proof uses the following right inverse of res𝜇 ◦[·].
Definition 3.34. For (−1/2, 𝜇) ∈ 𝜎̌ define the extension map ext𝜇 : 𝑉−1/2,𝜇 → dom(𝐷̊−1/2,𝜇

max
) by

ext𝜇 (𝑣) := 𝑟−1/2𝑒−|𝜇 |𝑟 · 𝑣 . •

Evidently, ext𝜇 lifts the inverse of res𝜇 :
˚̌H−1/2,𝜇

0
� 𝑉−1/2,𝜇 . Therefore, Proposition 3.33 is an

immediate consequence of the following.

Lemma 3.35 (Uniform estimates for res𝜇 and ext𝜇). Let (−1/2, 𝜇) ∈ 𝜎̌ . The following hold:

(1) For every 𝜙 ∈ dom( ˚𝐷
−1/2,𝜇
max

)
∥res𝜇 ( [𝜙])∥𝐻̌ ≲ ∥𝜙 ∥

𝐷̊
.

(2) For every 𝑣 ∈ 𝑉−1/2,𝜇

∥ext𝜇 (𝑣)∥𝐿2 ≲ ∥𝑣 ∥𝐻 −1/2 and ∥ext𝜇 (𝑣)∥𝐷̊ ≲ ∥𝑣 ∥𝐻̌ .

Proof. Evidently, 𝑣 := res𝜇 ( [𝜙]) satisfies

𝑣 = −
ˆ

1

0

𝜕𝑟 (𝑟 1/2𝑒−|𝜇 |𝑟𝜙) d𝑟 = −
ˆ

1

0

𝑟 1/2(−𝐽 ˚𝐷−1/2,𝜇 −𝐴𝜇 − |𝜇 |)𝜙 · 𝑒−|𝜇 |𝑟 d𝑟 .

Therefore, by Cauchy–Schwarz,

∥1(−∞,0) (𝐴𝜇)𝑣 ∥2 ≲
ˆ

1

0

∥ ˚𝐷−1/2,𝜇1(−∞,0) (𝐴𝜇)𝜙 ∥2 𝑟d𝑟 ·
ˆ

1

0

𝑒−2 |𝜇 |𝑟
d𝑟

≲
ˆ

1

0

𝑒−2 |𝜇 |𝑟
d𝑟 · ∥1(−∞,0) (𝐴𝜇)𝜙 ∥2

𝐷̊

and

∥1[0,∞) (𝐴𝜇)𝑣 ∥2 ≲
ˆ

1

0

(
∥ ˚𝐷−1/2,𝜇1[0,∞) (𝐴𝜇)𝜙 ∥2 + |𝜇 |2∥1[0,∞) (𝐴𝜇)𝜙 ∥2

)
𝑟d𝑟 ·

ˆ
1

0

𝑒−2 |𝜇 |𝑟
d𝑟

≲ (1 + |𝜇 |)2 ·
ˆ

1

0

𝑒−2 |𝜇 |𝑟
d𝑟 · ∥1[0,∞) (𝐴𝜇)𝜙 ∥2

𝐷̊
.

The estimate in (1) follows because

ˆ
1

0

𝑒−2 |𝜇 |𝑟
d𝑟 ≍ (1 + |𝜇 |)−1

and ∥1(−∞,0) (𝐴𝜇)𝜙 ∥2

˚𝐷
+ ∥1[0,∞) (𝐴𝜇)𝜙 ∥2

˚𝐷
= ∥𝜙 ∥2

˚𝐷
.
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To prove (2), observe that

∥ext𝜇 (𝑣)∥2

𝐿2
≲
ˆ

1

0

𝑟−1𝑒−2 |𝜇 |𝑟 ∥𝑣 ∥2 𝑟d𝑟 ≲ (1 + |𝜇 |)−1 · ∥𝑣 ∥2

and

∥ ˚𝐷−1/2,𝜇
ext𝜇 (𝑣)∥2

𝐿2
=

ˆ
1

0

(
𝑟−1/2𝑒−|𝜇 |𝑟

)
2∥(−|𝜇 | +𝐴𝜇)𝑣 ∥2 𝑟d𝑟

≲
ˆ

1

0

(
𝑟−1/2 |𝜇 |𝑒−|𝜇 |𝑟

)
2∥1(−∞,0] (𝐴𝜇)𝑣 ∥2 𝑟d𝑟

≲ 𝜇2(1 + |𝜇 |)−1 · ∥𝑣 ∥2. ■

3.6 Assembly of the residue map

This subsection (re)assembles the summands of the decomposition Corollary 3.27 identified in

Section 3.5 in a more geometric fashion.

Definition 3.36.

(1) The residue bundle is
ˇ𝑆 := 𝑆 |𝑍 ⊗C 𝑁𝑍

−1/2.

As a consequence of Proposition 3.22 (3) (or by direct inspection),
ˇ𝑆 inherits the quater-

nionic structure 𝐼 , 𝐽 , 𝐾 = 𝐼 𝐽 from 𝑆 . Define the symplectic form Ω̌ ∈ Γ(𝑍,Hom(Λ2𝑆,R))
by

Ω̌ := −2𝜋 ⟨𝐽−,−⟩.

(2) The branching locus operator 𝐴 : Γ(𝑍, ˇ𝑆) → Γ(𝑍, ˇ𝑆) is defined by

𝐴 := −𝐽𝐷𝑆

with 𝐷𝑆
:= 𝐷𝑆 |𝑍 ⊗𝐶𝑁𝑍 −1/2 as in Proposition 3.22. Since 𝐽 and 𝐷𝑆 anti-commute, 𝐴 is

(formally) self-adjoint.

(3) Denote by 1(−∞,0) (𝐴) and 1[0,∞) (𝐴) the orthogonal projection to the negative and non-

negative eigenspaces of 𝐴 respectively. Define the norm ∥−∥𝐻̌ : Γ(𝑍, ˇ𝑆) → [0,∞) by

∥𝜙 ∥𝐻̌ := ∥1(−∞,0) (𝐴)𝜙 ∥𝐻 1/2 + ∥1[0,∞) (𝐴)𝜙 ∥𝐻 −1/2

and denote by
ˇ𝐻Γ(𝑍, ˇ𝑆) the completions of Γ(𝑍, ˇ𝑆) with respect to ∥−∥𝐻̌ . •

Proposition 3.37. Ω̌ extends to a symplectic structure Ω̌ ∈ L(Λ2 ˇ𝐻Γ(𝑍, ˇ𝑆),R); moreover: the
inclusion 𝑉−1/2,𝜇 ↩→ Γ(𝑍, ˇ𝑆) assemble into an isomorphism of symplectic Hilbert spaces⊕

(−1/2,𝜇 ) ∈𝜎̌
(𝑉−1/2,𝜇, ∥−∥𝐻̌ ; Ω̌𝜇) � ( ˇ𝐻Γ(𝑍, ˇ𝑆); Ω̌) .
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Proof. This is an immediate consequence of Proposition 3.22, Proposition 3.31, and Proposi-

tion 3.33. The (possibly mysterious) factor 2𝜋 arises because Ω̌𝜇 is defined using the 𝐿2
inner

product on 𝐹 instead of 𝑍 and vol(𝐹 ) = 2𝜋vol(𝑍 ). ■

Definition 3.38.

(1) The residue map res : Ȟ → ˇ𝐻Γ(𝑍, ˇ𝑆) obtained as the composition of the following maps

Ȟ
cut-off−−−−−→ ˚̌H0 =

⊕
(−1/2,𝜇 ) ∈𝜎̌

˚̌H−1/2,𝜇

0

(res𝜇 )−−−−→
⊕

(−1/2,𝜇 ) ∈𝜎̌
(𝑉−1/2,𝜇, ∥−∥𝐻̌ ) � ˇ𝐻Γ(𝑍, ˇ𝑆) .

(2) The extension map ext : 𝐻̌Γ(𝑍, 𝑆) → dom(𝐷max) is obtained as the composition of the

following maps

ˇ𝐻Γ(𝑍, ˇ𝑆) �
⊕

(−1/2,𝜇 ) ∈𝜎̌
(𝑉−1/2,𝜇, ∥−∥𝐻̌ )

(ext𝜇 )−−−−−→
⊕

(−1/2,𝜇 ) ∈𝜎̌
dom( ˚𝐷

−1/2,𝜇
max

)

↩→ dom( ˚𝐷max)
𝜒◦𝑟
−−−→ dom(𝐷max) . •

Theorem 3.39. The following hold:

(1) (a) The residue map is an isomorphism of symplectic Hilbert spaces

res : (Ȟ,𝐺) � ( ˇ𝐻Γ(𝑍, ˇ𝑆), Ω̌) .

(b) The subspace 𝑟−1/2Γ( ˆ𝑋, ˆ𝑆 ⊗ ˆ𝔩) ∩ dom(𝐷max) is dense in dom(𝐷max); hence: the residue
map is uniquely determined by

𝜋∗
res[𝑟−1/2𝜙] = 𝜙 |𝜕𝑋̂

for every 𝑟−1/2𝜙 ∈ 𝑟−1/2Γ( ˆ𝑋, ˆ𝑆 ⊗ ˆ𝔩) ∩ dom(𝐷max).

(2) (a) The extension map ext :
ˇ𝐻Γ(𝑍, ˇ𝑆) → dom(𝐷max) is a right-inverse of res ◦[−].

(b) The extension map extends to a bounded linear map

ext : 𝐻−1/2Γ(𝑍, ˇ𝑆) → 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩).

Proof. (1.a) is an immediate consequence of Proposition 3.17, Corollary 3.27, Proposition 3.31,

Proposition 3.33, and Proposition 3.37.

(1.b) is a consequence of Lemma 3.18 and Proposition 3.25.

(2.a) holds by construction and (2.b) follows from Lemma 3.35 (2). ■

Remark 3.40. If 𝜀 is a chirality operator, then 𝑆 orthogonally decomposes as
ˇ𝑆 = ˇ𝑆+ ⊕ ˇ𝑆− , ˇ𝑆± ⊂ ˇ𝑆

are Lagrangian subbundles, 𝐴 preserves this splitting, 𝐻̌Γ(𝑍, 𝑆) orthogonally decomposes as

ˇ𝐻Γ(𝑍, ˇ𝑆) = ˇ𝐻Γ(𝑍, ˇ𝑆+) ⊕ ˇ𝐻Γ(𝑍, ˇ𝑆−), and the residue map restricts to isomorphism

res : Ȟ± � 𝐻̌Γ(𝑍, 𝑆±) . ♣
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3.7 Spectral and local residue conditions

Theorem 3.39 makes it possible to define a wider variety of residue conditions than those

considered in Section 2. Here are some examples.

Example 3.41. The APS residue condition is defined by

𝐵APS
:= 1(−∞,0) (𝐴)𝐻 1/2Γ(𝑍, ˇ𝑆) ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆);

cf. Atiyah, Patodi, and Singer [APS75, (2.3)]. ♠
Proposition 3.42 (Criterion for left semi-Fredholmness). Let 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆) be a residue condition.
If 𝐵 ↩→ 𝐻−1/2Γ(𝑍, ˇ𝑆) is compact, then dom(𝐷𝐵) ↩→ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is compact and 𝐷𝐵 is left
semi-Fredholm.

Proof. By Lemma 2.4 (2), and the assumption, the composition

dom(𝐷𝐵) → 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ⊕ 𝐵 ↩→ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ⊕ 𝐻−1/2Γ(𝑍, 𝑆)
𝜙 ↦→ (𝜙 − ext res[𝜙], res[𝜙])

is compact. Therefore, by Theorem 3.39 (2.b), dom(𝐷𝐵) ↩→ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is compact. Since

for every 𝜙 ∈ dom(𝐷𝐵)

∥𝜙 ∥𝐷 ≲ ∥𝐷𝜙 ∥𝐿2 + ∥𝜙 ∥𝐿2,

𝐷𝐵 is left semi-Fredholm. ■

Example 3.43. Since 𝐵𝐺
APS

= 𝐵APS ⊕ ker𝐴, by Proposition 2.28 and Proposition 3.42, 𝐷𝐵APS
is

Fredholm of index − 1

2
dim ker𝐴. In particular, dim ker𝐴 is even and inherits a symplectic

structure from 𝐺 . If 𝐿 ⊂ ker𝐴 is Lagrangian, then 𝐵APS ⊕ 𝐿 ↩→ 𝐻−1/2Γ(𝑍, ˇ𝑆) is compact and

Lagrangian. In particular, Proposition 2.22 applies. ♠
Definition 3.44. Let 𝑉 ⊂ ˇ𝑆 be a subbundle. The local residue condition associated with 𝑉 is

𝐵𝑉 ≔ ˇ𝐻Γ(𝑍,𝑉 ) ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆). •

Proposition 3.45. Let 𝑉 ⊂ ˇ𝑆 be a subbundle. If 𝑉 Ω̌ denotes the symplectic complement of 𝑉 ⊂ ˇ𝑆 ,
then

𝐵𝐺𝑉 = 𝐵
𝑉 Ω̌ .

Proof. This is an immediate consequence of Proposition 2.17 and Theorem 3.39. ■

Example 3.46. Consider the Dirac bundle (𝑆,𝛾,∇) corresponding to the Hodge–de Rham opera-

tor d + d
∗
; that is: 𝑆 := Λ𝑇 ∗𝑋 with 𝛾 (𝜉)𝜙 := 𝜉 ∧ 𝜙 − 𝑖𝜉♯𝜙 . Decompose

ˇ𝑆 = ˇ𝑆𝑁 ⊕ ˇ𝑆𝐷

with
ˇ𝑆𝑁 := 𝑆𝑁 ⊗C 𝑁𝑍

−1/2
and

ˇ𝑆𝐷 := 𝑆𝐷 ⊗C 𝑁𝑍
−1/2

, and

𝑆𝑁 := (R ⊕ Λ2𝑁 ∗𝑍 ) ⊗ Λ𝑇 ∗𝑍 and 𝑆𝐷 := 𝑁 ∗𝑍 ⊗ Λ𝑇 ∗𝑍 .

The corresponding residue conditions are Lagrangian. ♠
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Example 3.47. Assume that (𝑆,𝛾,∇) is a complex Dirac bundle. TheMIT bag residue conditions
are the local residue conditions arising from the decomposition

ˇ𝑆 = ˇ𝑆+ ⊕ ˇ𝑆− with
ˇ𝑆± := ker(1 ∓ 𝑖 𝐽 );

cf. [Joh75]. ♠
Proposition 3.48 (Variation on the bordism theorem). Assume the situation of Example 3.47. The
components 𝐴± of 𝐴 in the decompsition

𝐴 ≕

(
0 𝐴−

𝐴+
0

)
satisfy

index𝐴± = 0.

Proof. The following proof is essentially identical to the one presented in [BB12, §8.5]. Since

(𝐴+)∗ = 𝐴−
,

− index𝐴− = index𝐴+ = dim ker𝐴+ − dim ker𝐴− .

For every 𝑡 ∈ [0, 1], set
𝐵±𝑡 := ker𝐴± ⊕ (1 ∓ 𝑡𝑖 𝐽 )𝐵APS.

Since (𝐵+𝑡 )𝐺 = 𝐵−
𝑡 , by Proposition 3.42, 𝐷𝐵±

𝑡
is Fredholm. Moreover, by Proposition 2.28,

− index𝐷𝐵∓
𝑡
= index𝐷𝐵±

𝑡
= index𝐷 (1∓𝑡𝑖 𝐽 )𝐵APS

+ dim ker𝐴±.

In particular,

index𝐴+ = 2 index𝐷𝐵+
0

.

Therefore, it remains to prove that index𝐷𝐵+
0

= 0. By Proposition 2.31, it suffices to prove that

index𝐷𝐵+
1

= 0. Since

𝐵±
1
= 𝐻 1/2Γ(𝑍, ˇ𝑆±),

analogous to Example 2.27, for every 𝜙 ∈ ker𝐷𝐵±
1

0 = 2⟨𝐷𝜙, 𝑖𝜙⟩𝐿2 = −2𝜋 ⟨𝐽 res𝜙, 𝑖 res𝜙⟩ = ∓2𝜋 ∥res𝜙 ∥2

𝐿2
.

Therefore, ker𝐷𝐵±
1

= ker𝐷min; hence: index𝐷𝐵±
1

= 0. ■

4 Regularity theory

This section continues to assume Hypothesis 3.1 throughout. The geometric realisation
ˇ𝐻 (𝑍, ˇ𝑆)

of Ȟ developed in Section 3 and suitable commutator estimates lead to the 𝐿2
regularity theory

laid out in the following.
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4.1 Adapted Sobolev spaces, I: definition

Here is the scale of Sobolev spaces for which the regularity theory is developed.

Definition 4.1 (Differential operators). Denote by DiffOp
•(𝑆 ⊗ 𝔩) the N0–filtered ring of differ-

ential operators acting on 𝑆 ⊗ 𝔩.

(1) A vector field 𝑣 ∈ Vect( ˆ𝑋 ) is conormal if 𝑣 |𝜕𝑋̂ ∈ Vect(𝜕 ˆ𝑋 ). Denote the subspace of

conormal vector fields by Vect𝑏 (𝑋\𝑍 ).

(2) The filtered subring DiffOp
•
𝑏
(𝑆 ⊗ 𝔩) ⊂ DiffOp

•(𝑆 ⊗ 𝔩) of conormal differential operators is
generated by Γ(𝑋, End(𝑆 ⊗ ˆ𝔩)) and differential operators of the form ∇𝑣 with 𝑣 ∈ Vect𝑏 (𝑋 ).

(3) The filtered subring DiffOp
•
𝑎 (𝑆 ⊗ 𝔩) ⊂ DiffOp

•(𝑆 ⊗ 𝔩) of adapted differential operators is

generated by DiffOp
•
𝑏
(𝑆 ⊗ 𝔩) and 𝐷 . •

Definition 4.2 (Sobolev spaces). Let 𝑘 ∈ N0.

(b) The conormal Sobolev space 𝐻𝑘
𝑏
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is defined by

𝐻𝑘
𝑏
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) :=

{
𝜙 ∈ 𝐻𝑘

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) :

𝑃𝜙 ∈ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) for
every 𝑃 ∈ DiffOp

𝑘
𝑏
(𝑆 ⊗ 𝔩)

}
.

Choose a finite subsetP𝑘
𝑏
⊂ DiffOp

𝑘
𝑏
(𝑆 ⊗ 𝔩) which spans DiffOp

𝑘
𝑏
(𝑆 ⊗ 𝔩) over Γ( ˆ𝑋, End( ˆ𝑆 ⊗

ˆ𝔩)). Define the norm ∥−∥𝐻𝑘
𝑏

: 𝐻𝑘
𝑏
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → [0,∞) by

∥𝜙 ∥2

𝐻𝑘
𝑏

:=
∑︁
𝑃∈P𝑘

𝑏

∥𝑃𝜙 ∥2

𝐿2
.

(a) The adapted Sobolev space 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is defined by

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) :=

{
𝜙 ∈ 𝐻𝑘

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) :

𝑃𝜙 ∈ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) for
every 𝑃 ∈ DiffOp

𝑘
𝑎 (𝑆 ⊗ 𝔩)

}
.

Choose a finite subsetP𝑘
𝑎 ⊂ DiffOp

𝑘
𝑎 (𝑆 ⊗ 𝔩) which spans DiffOp

𝑘
𝑎 (𝑆 ⊗ 𝔩) over Γ( ˆ𝑋, End( ˆ𝑆 ⊗

ˆ𝔩)). Define the norm ∥−∥𝐻𝑘
𝑎

: 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → [0,∞) by

∥𝜙 ∥2

𝐻𝑘
𝑎

:=
∑︁
𝑃∈P𝑘

𝑎

∥𝑃𝜙 ∥2

𝐿2
. •

(𝐻𝑘
𝑏
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), ∥−∥𝐻𝑘

𝑏
) and (𝐻𝑘

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), ∥−∥𝐻𝑘
𝑎
) are Hilbert spaces. Evidently,

different choices of P𝑘
𝑏
, P𝑘

𝑎 lead to equivalent norms. The following discussion leads to

particularly convenient choices ofP𝑘
𝑏
,P𝑘

𝑎 .

Definition 4.3 (Convenient vector fields).

(1) Denote by Vect𝑐 (𝑋\𝑍 ) ⊂ Vect𝑏 ( ˆ𝑋 ) the subspace of vector fields supported in 𝑋\𝑍 ⊂ ˆ𝑋 .
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(2) Denote by Vect𝑏;𝑐 ( ˆ𝑈 ) ⊂ Vect𝑏 ( ˆ𝑋 ) the subspace of vector fields supported in
ˆ𝑈 ⊂ ˆ𝑋 . For

𝑣 ∈ Vect𝑏;𝑐 (𝑈 ), ˚∇𝑣 ∈ DiffOp
1

𝑏
(𝑆 ⊗ 𝔩).

(3) Denote by Vect𝑏;𝑐,0( ˆ𝑈 ) the subspace of those 𝑣 ∈ Vect𝑏;𝑐 ( ˆ𝑈 ) which are U(1)–invariant
on 𝜕𝑋 ; that is: [𝜕𝛼 , 𝑣 |𝜕𝑋̂ ] = 0. •

Remark 4.4. Vect𝑏;𝑐 (𝑈 ) is generated by 𝜒 (𝑟 )𝜕𝛼 , 𝜒 (𝑟 )𝑟 𝜕𝑟 , vector field of the form 𝜒 (𝑟 )𝑣 where 𝑣
is lifted from 𝑍 , and vector fields vanishing near 𝑍 . ♣
Lemma 4.5 (Commutation relations). The following commutation relations hold:

(1) For every 𝑣 ∈ Vect𝑐 (𝑋\𝑍 ), 𝑘 ∈ N, and 𝑃 ∈ DiffOp
𝑘
𝑎 (𝑆 ⊗ 𝔩)

[∇𝑣, 𝑃] ∈ DiffOp
𝑘
𝑏
(𝑆 ⊗ 𝔩) .

(2) For every 𝑣 ∈ Vect𝑏;𝑐 ( ˆ𝑈 ), 𝑘 ∈ N, and 𝑃 ∈ DiffOp
𝑘
𝑏
(𝑆 ⊗ 𝔩)

[ ˚∇𝑣, 𝑃] ∈ DiffOp
𝑘
𝑏
(𝑆 ⊗ 𝔩) .

(3) For every 𝑣 ∈ Vect𝑏;𝑐,0( ˆ𝑈 )

[ ˚∇𝑣, 𝐷] ∈ DiffOp
1

𝑏
(𝑆 ⊗ 𝔩) + DiffOp

0

𝑏
(𝑆 ⊗ 𝔩) · 𝐷.

Proof. If 𝑣,𝑤 ∈ Vect(𝑋\𝑍 ) and 𝑇 ∈ Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), then

[∇𝑣,𝑇 ] = ∇𝑣𝑇 and [∇𝑣,∇𝑤] = ∇[𝑣,𝑤 ] + 𝐹∇ (𝑣,𝑤) .

Therefore, for every 𝑘 ∈ N and 𝑃 ∈ DiffOp
𝑘 (𝑆 ⊗ 𝔩), [∇𝑣, 𝑃] ∈ DiffOp

𝑘 (𝑆 ⊗ 𝔩).
If 𝑣 ∈ Vect𝑐 (𝑋\𝑍 ), 𝑘 ∈ N, and 𝑃 ∈ DiffOp

𝑘
𝑎 (𝑆 ⊗ 𝔩), then supp( [∇𝑣, 𝑃]) ⊂ 𝑋\𝑍 ; therefore

and by the above observation, [∇𝑣, 𝑃] ∈ DiffOp
𝑘
𝑏
(𝑆 ⊗ 𝔩). This proves (1).

(2) is immediate from the above observation.

Let 𝑣 ∈ Vect𝑏;𝑐,0(𝑈 ). By Proposition 3.14, 𝐷 − 𝜒 (𝑟 ) · 𝐷̊ ∈ DiffOp
1

𝑏
(𝑆 ⊗ 𝔩). Therefore, it suffices

to prove that

[ ˚∇𝑣, 𝜒 (𝑟 ) · ˚𝐷] ∈ DiffOp
1

𝑏
(𝑆 ⊗ 𝔩) + DiffOp

0

𝑏
(𝑆 ⊗ 𝔩) · 𝜒 (𝑟 ) · ˚𝐷.

By direct computation,

[ ˚∇𝑟 𝜕𝑟 ,
˚∇𝜕𝑟 − 𝑟−1𝐼 ˚∇𝜕𝛼 ] = −( ˚∇𝜕𝑟 − 𝑟−1𝐼 ˚∇𝜕𝛼 ) and [ ˚∇𝜕𝛼 ,

˚∇𝜕𝑟 − 𝑟−1𝐼 ˚∇𝜕𝛼 ] = 0;

moreover, if 𝑣 is the lift of a vector field along 𝑍 , then

[ ˚∇𝑣, ˚∇𝜕𝑟 − 𝑟−1𝐼 ˚∇𝜕𝛼 ] = 0.

By Remark 3.13, Remark 4.4 and since 𝜒 (𝑟 ) ·𝐷𝑍 ∈ DiffOp
1

𝑏
(𝑆 ⊗ 𝔩) and 𝜒 (𝑟 ) · 𝐽 ∈ DiffOp

0

𝑏
(𝑆 ⊗ 𝔩),

this implies (3). ■

Corollary 4.6 (Convenient choices ofP𝑘
𝑏
, P𝑘

𝑎 ).
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(1) SetP0

𝑏
:= {id𝑆⊗𝔩}. For every 𝑘 ∈ N there is a finite subsetP𝑘

𝑏
⊂ DiffOp

𝑘
𝑏
(𝑆 ⊗ 𝔩) which spans

DiffOp
𝑘
𝑏
(𝑆 ⊗ 𝔩) over Γ( ˆ𝑋, End( ˆ𝑆 ⊗ ˆ𝔩)) such thatP𝑘−1

𝑏
⊂ P𝑘

𝑏
and every 𝑃 ∈ P𝑘

𝑏
\P𝑘−1

𝑏
is of

the form
𝑃 = ∇𝑢1

· · · ∇𝑢ℓ
˚∇𝑣1

· · · ˚∇𝑣𝑘−ℓ

with
𝑢1, . . . , 𝑢ℓ ∈ Vect𝑐 (𝑋\𝑍 ) and 𝑣1, . . . , 𝑣𝑘−ℓ ∈ Vect𝑏;𝑐,0( ˆ𝑈 ) .

(2) Let 𝑘 ∈ N. IfP1

𝑏
, . . . ,P𝑘

𝑏
are as above then

P𝑘
𝑎 :=

𝑘⋃
ℓ=0

{𝑃𝐷ℓ
: 𝑃 ∈ P𝑘−ℓ

𝑏
}

spans DiffOp
𝑘
𝑎 (𝑆 ⊗ 𝔩) over Γ( ˆ𝑋, End( ˆ𝑆 ⊗ ˆ𝔩)). ■

Henceforth, for every 𝑘 ∈ N, P𝑘
𝑎 , P

𝑘
𝑏
are assumed to be chosen as in Corollary 4.6; in

particular,

(4.7) ∥𝜙 ∥2

𝐻𝑘
𝑎

=

𝑘∑︁
ℓ=0

∥𝐷ℓ𝜙 ∥2

𝐻𝑘−ℓ
𝑏

.

Remark 4.8. Let (𝑊,𝑔) be a Riemannian manifold with boundary equipped with a Dirac bundle

(𝑆,𝛾,∇). The conormal Sobolev space 𝐻𝑘
𝑏
Γ(𝑊,𝑆); see, e.g., [Mel93, (5.42)]; is an important tool

in the study of boundary values problems for Dirac operators. A moment’s thought with the

above discussion in mind shows that 𝐻𝑘
𝑎 Γ(𝑊,𝑆), the analogue of the adapted Sobolev space,

agrees with the usual Sobolev space 𝐻𝑘Γ(𝑊,𝑆). Indeed, these are the appropriate Sobolev

spaces for the 𝐿2
regularity theory; see [BB12, §6.2]. ♣

Remark 4.9. Let 𝑘 ∈ N0 and 𝜙 ∈ (𝐿2 ∩ 𝐻𝑘
loc
)Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) with supp(𝜙) ⊂ 𝑈 \𝑍 . Decompose

𝐿2Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) ∋ 𝜙 =
∑︁

(𝜆,𝜇 ) ∈𝜎̌
𝜙𝜆,𝜇 ∈

⊕
(𝜆,𝜇 ) ∈𝜎

𝐿2((0, 1), 𝑟d𝑟 ;𝐸𝜆,𝜇)

as in Section 3.4. By direct inspection, 𝜙 ∈ 𝐻𝑘
𝑏
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) if and only if

𝑘∑︁
ℓ=0

∑︁
(𝜆,𝜇 ) ∈𝜎

ˆ
1

0

(⟨𝜆⟩ + ⟨𝜇⟩)2(𝑘−ℓ ) | (𝑟 𝜕𝑟 )ℓ𝜙𝜆,𝜇 (𝑟 ) |2 𝑟d𝑟 < ∞;

indeed, for uniformly equivalent to ∥𝜙 ∥2

𝐻𝑘
𝑏

. The crucial point is 𝑣 is a vector field lifted from 𝑍

to 𝐹 , then for every 𝜙 ∈ 𝑉𝜆,𝜇
∥∇𝑣𝜙 ∥ ≲𝑣 ⟨𝜇⟩∥𝜙 ∥.

Proposition 3.25 yields an analogous characterisation of 𝜙 ∈ 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and description

of ∥𝜙 ∥𝐻𝑘
𝑎
. ♣
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4.2 Elliptic regularity and estimates

Here is the fundamental regularity result.

Theorem 4.10 (Elliptic regularity and estimates, I). For every 𝑘 ∈ N0

𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) =
{
𝜙 ∈ 𝐻𝑘+1

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) :

𝜙, 𝐷𝜙 ∈ 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

and res[𝜙] ∈ 𝐻𝑘+ 1

2 Γ(𝑍, ˇ𝑆)

}
moreover: for every 𝜙 ∈ 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

∥𝜙 ∥𝐻𝑘+1

𝑎
≍𝑘 ∥𝐷𝜙 ∥𝐻𝑘

𝑎
+ ∥𝜙 ∥𝐻𝑘

𝑎
+ ∥res[𝜙] ∥𝐻𝑘+1/2 .

The proof relies on the following observations.

Lemma 4.11. For every 𝑘 ∈ N0 the extension map ext : 𝐻̌Γ(𝑍, 𝑆) → dom(𝐷max) restricts to a
bounded injective linear map with closed image:

ext : 𝐻𝑘+1/2Γ(𝑍, ˇ𝑆) → 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩).

Proof. By (4.7), Proposition 3.14 and Lemma 4.5, it suffices to prove that for every (−1/2, 𝜇) ∈ 𝜎̌
and 𝜙 ∈ 𝑉−1/2,𝜇 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆)

𝑘+1∑︁
ℓ=0

∥ ˚𝐷ℓ
ext𝜙 ∥2

𝐻𝑘−ℓ+1

𝑏

=

𝑘+1∑︁
ℓ=0

∥ ˚𝐷ℓ (𝜒 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟𝜙)∥2

𝐻𝑘−ℓ+1

𝑏

≍𝑘 ⟨𝜇⟩2𝑘+1∥𝜙 ∥2 ≍𝑘 ∥𝜙 ∥2

𝐻𝑘+1/2
.

Let 𝑓 ∈ 𝐶∞( [0, 1),R). By direct computation,

˚∇𝑟 𝜕𝑟 (𝑓 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟𝜙) =
(
𝑟 𝑓 ′(𝑟 ) − ( 1

2
+ |𝜇 |𝑟 ) 𝑓 (𝑟 )

)
𝑟−1/2𝑒−|𝜇 |𝑟𝜙 and

˚∇𝜕𝛼 (𝑓 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟𝜙) = 1

2
𝑓 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟 𝐼𝜙 .

Therefore and by Definition 3.32,

𝐷̊ (𝑓 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟𝜙) = 𝐽 (𝜕𝑟 + 1

2𝑟
+𝐴𝜇) (𝑓 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟𝜙)

=
(
𝑓 ′(𝑟 ) − (|𝜇 | +𝐴𝜇) 𝑓 (𝑟 )

)
𝑟−1/2𝑒−|𝜇 |𝑟 𝐽𝜙 .

Consequently, for every ℓ,𝑚, 𝑛 ∈ N0

( ˚∇𝜕𝛼 )𝑛 ( ˚∇𝑟 𝜕𝑟 )𝑚 ˚𝐷ℓ
(
𝜒 (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟𝜙

)
= 2

−𝑛 𝑓𝑚,ℓ (𝑟 )𝑟−1/2𝑒−|𝜇 |𝑟 𝐼𝑛 𝐽 ℓ𝜙.

where 𝑓𝑚,ℓ ∈ 𝐶∞( [0,∞),R) are recursively defined by

𝑓𝑚,ℓ (𝑟 ) ≔

𝜒 (𝑟 ) if𝑚 = ℓ = 0

𝑓 ′𝑚,ℓ−1
(𝑟 ) − (|𝜇 | +𝐴𝜇) 𝑓𝑚,ℓ−1 if𝑚 = 0 and ℓ ⩾ 1

𝑟 𝑓 ′𝑚−1,ℓ (𝑟 ) − ( 1

2
+ |𝜇 |𝑟 ) 𝑓𝑚−1,ℓ (𝑟 ) if𝑚 ⩾ 1.
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A brief computation shows that

ˆ
1

0

𝑓 2

𝑚,ℓ (𝑟 )𝑒−2 |𝜇 |𝑟
d𝑟 ≲𝑚,ℓ ⟨𝜇⟩2(𝑚+ℓ )−1.

Therefore, if 𝑣1, . . . , 𝑣𝑜 are lifts of vector fields along 𝑍 , then

∥ ˚∇𝑣1
. . . ˚∇𝑣𝑜 ( ˚∇𝜕𝛼 )𝑛 ( ˚∇𝑟 𝜕𝑟 )𝑚 ˚𝐷ℓ

ext𝜙 ∥2

𝐿2
≲𝑜

ˆ
1

0

𝑓 2

𝑚,ℓ (𝑟 )𝑒−2 |𝜇 |𝑟
d𝑟 · (∥𝜙 ∥2 + ∥𝐴𝑜𝜙 ∥2)

≍𝑜 ⟨𝜇⟩2𝑜

ˆ
1

0

𝑓 2

𝑚,ℓ (𝑟 )𝑒−2 |𝜇 |𝑟
d𝑟 · ∥𝜙 ∥2.

In light of Corollary 4.6 this proves the assertion. ■

Lemma 4.12. For every 𝑘 ∈ N0 the residue map res : dom(𝐷max) → ˇ𝐻Γ(𝑍, ˇ𝑆) restricts to a
bounded surjective linear map

res : 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐻𝑘+1/2Γ(𝑍, 𝑆) .

Proof. Since𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ↩→ 𝐻 1

𝑎Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) with closed image by (2.6), and by Lemma 4.11,

𝐻 1

𝑎Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) = 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ⊕ ext(𝐻 1/2Γ(𝑍, ˇ𝑆)) .

This proves the assertion for 𝑘 = 0, again by Lemma 4.11.

If𝜙 ∈ 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆⊗ 𝔩), then 𝜒 (𝑟 )𝐴𝑘𝜙 ∈ 𝐻 1

𝑎Γ(𝑋\𝑍, 𝑆⊗ 𝔩) because 𝜒 (𝑟 )𝐴𝑘 ∈ DiffOp
𝑘
𝑏
(𝑆⊗ 𝔩).

Evidently,

𝐴𝑘
res[𝜙] = res[𝜒 (𝑟 )𝐴𝑘𝜙];

cf. Remark 4.9. Therefore, the assertion holds for every 𝑘 ∈ N0. ■

Lemma 4.13. Let 𝑘 ∈ N. Let 𝜙 ∈ 𝐻𝑘+1

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). If 𝜙, 𝐷𝜙 ∈ 𝐻𝑘

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and res[𝜙] = 0,
then, for every 𝑃 ∈ P𝑘

𝑏
, 𝑃𝜙 ∈ 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩).

Proof. By Lemma 4.5, 𝑃𝜙 ∈ dom(𝐷max). Therefore, it remains to prove that res[𝑃𝜙] = 0. In fact,

by induction, it suffices to prove this for 𝑘 = 1.

If 𝑃 = 𝜒 (𝑟 ) · ˚∇𝜕𝛼 or 𝑃 = 𝜒 (𝑟 ) · ˚∇𝑣 as in Remark 4.4, then this is evident from Remark 4.9.

It remains to consider 𝑃 = 𝜒 (𝑟 ) · 𝑟 ˚∇𝜕𝑟 or, in fact, 𝑃 = 𝜒 (𝑟 ) · 𝑟𝐷̊ . Since 𝑄 ≔ 𝜒 (𝑟 )𝐷̊ − 𝐷 ∈
DiffOp

1

𝑏
(𝑆 ⊗ 𝔩),

𝐷𝜙 +𝑄𝜙 ∈ dom(𝐷max) .

Therefore, 𝑃𝜙 = 𝑟 (𝐷𝜙 +𝑄𝜙) ∈ 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). ■

Proof of Theorem 4.10. Let 𝑘 ∈ N0. By Lemma 4.12, it suffices to prove that for every 𝜙 ∈
𝐻𝑘+1

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) with 𝜙, 𝐷𝜙 ∈ 𝐻𝑘

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and res[𝜙] ∈ 𝐻𝑘+1/2Γ(𝑍, ˇ𝑆)

∥𝜙 ∥𝐻𝑘+1

𝑎
≲𝑘 ∥𝐷𝜙 ∥𝐻𝑘

𝑎
+ ∥𝜙 ∥𝐻𝑘

𝑎
+ ∥res[𝜙] ∥𝐻𝑘+1/2 .

Since

𝜙 = (𝜙 − ext res[𝜙]) + ext res[𝜙]
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and by Lemma 4.11, it suffices to prove that above assuming res[𝜙] = 0.

Since 𝐻 1Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ↩→ 𝐻 1

𝑎Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and by (2.6), the assertion holds for 𝑘 = 0.

Suppose that 𝑘 ∈ N. By Lemma 4.13 and Lemma 4.5, for every 𝑃 ∈ P𝑘
𝑏

∥𝑃𝜙 ∥𝐻 1

𝑎
≲ ∥𝐷𝑃𝜙 ∥𝐿2 + ∥𝑃𝜙 ∥𝐿2 ≲𝑃 ∥𝐷𝜙 ∥𝐻𝑘

𝑎
+ ∥𝜙 ∥𝐻𝑘

𝑎
.

This implies the assertion. ■

For suitable residue conditions 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆), the term res[𝜙] in Theorem 4.10 can be

absorbed provided res[𝜙] ∈ 𝐵.
Definition 4.14. Let 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆) be a residue condition.

(1) Let 𝑘 ∈ N0. 𝐵 is (𝑘 + 1

2
)–regular if for every 𝜙 ∈ 𝐵

∥𝜙 ∥𝐻𝑘+1/2 ≲𝐵,𝑘 ∥1(−∞,0) (𝐴)𝜙 ∥𝐻𝑘+1/2 + ∥𝜙 ∥𝐻̌ .

(2) 𝐵 is ∞–regular if it is (𝑘 + 1/2)–regular for every 𝑘 ∈ N0. •

Example 4.15. The APS residue condition 𝐵APS is∞–regular. ♠
Theorem 4.16 (Elliptic regularity and estimates, II). Let 𝑘 ∈ N0. Let 𝐵 be a (𝑘 + 1

2
)–regular residue

condition. If 𝜙 ∈ 𝐻𝑘+1

loc
Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) satisfies 𝜙, 𝐷𝜙 ∈ 𝐻𝑘

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and res[𝜙] ∈ 𝐵, then
𝜙 ∈ 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) and

∥𝜙 ∥𝐻𝑘+1

𝑎
≍𝐵,𝑘 ∥𝐷𝜙 ∥𝐻𝑘

𝑎
+ ∥𝜙 ∥𝐿2 .

The proof requires the following preparation.

Lemma 4.17. For every 𝑘 ∈ N0 and 𝜙 ∈ dom(𝐷max)

∥1(−∞,0) (𝐴) res[𝜙] ∥𝐻𝑘+1/2 ≲𝑘 ∥𝐷𝜙 ∥𝐻𝑘
𝑏
+ ∥𝜙 ∥𝐻𝑘

𝑏
.

Proof. Since res ◦[·] : dom(𝐷max) → ˇ𝐻Γ(𝑍, ˇ𝑆) is bounded and 𝜒 (𝑟 )𝐴𝑘 ∈ DiffOp
𝑘
𝑏
(𝑆 ⊗ 𝔩),

∥1(−∞,0) (𝐴) res[𝜙] ∥𝐻𝑘+1/2 ≲𝑘 ∥𝐴𝑘
res[𝜙] ∥𝐻̌ = ∥res[𝜒 (𝑟 ) · 𝐴𝑘𝜙] ∥𝐻̌

≲ ∥𝜒 (𝑟 ) · 𝐴𝑘𝜙 ∥𝐷 ≲𝑘 ∥𝐷𝜙 ∥𝐻𝑘
𝑏
+ ∥𝜙 ∥𝐻𝑘

𝑏

by Corollary 4.6. ■

Proof of Theorem 4.16. By Lemma 4.17 and since 𝐵 is (𝑘 + 1

2
)–regular, for every 𝜙 ∈ dom(𝐷𝐵)

∥res[𝜙] ∥𝐻𝑘+1/2 ≲𝐵,𝑘 ∥1(−∞,0) (𝐴) res[𝜙] ∥𝐻𝑘+1/2 + ∥res[𝜙] ∥ ˇ𝐻 ≲𝑘 ∥𝐷𝜙 ∥𝐻𝑘
𝑏
+ ∥𝜙 ∥𝐻𝑘

𝑏
.

This together with Theorem 4.16 implies the assertion. ■
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4.3 Fredholm extensions in higher regularity

The following is a consequence of Proposition 3.42.

Corollary 4.18 ( 1

2
–regular implies left semi-Fredholm). Let 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆) be a residue condition.

If 𝐵 is 1

2
–regular, then 𝐷𝐵 is left semi-Fredholm. ■

The discussion in Section 4.2 leads to the following observation.

Definition 4.19. Let 𝑘 ∈ N0. Let 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆) be a residue condition. Consider the closed

subspace

𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵) := {𝜙 ∈ 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) : res[𝜙] ∈ 𝐵}
and the restriction of 𝐷 to

𝐷𝐵,𝑘 : 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵) → 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). •

Proposition 4.20. Let 𝑘 ∈ N0. Let 𝐵 ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆) is a (𝑘 + 1

2
)–regular residue condition, then 𝐷𝐵,𝑘

is left semi-Fredholm; in fact:
ker𝐷𝐵,𝑘 = ker𝐷𝐵

and the canonical map
coker𝐷𝐵,𝑘 → coker𝐷𝐵 � (ker𝐷𝐵𝐺 )∗

is an isomorphism; moreover, if ker𝐷𝐵𝐺 ⊂ 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), then the latter 𝐿2 orthogonally

decomposes as
𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) = im𝐷𝐵,𝑘 ⊕ ker𝐷𝐵𝐺 .

Proof. The proof is identical to the one of [DW24, Theorem 3.57], but repeated here for the

readers’ convenience. By Theorem 4.16, ker𝐷𝐵,𝑘 = ker𝐷𝐵 ; moreover: the linear map

dom(𝐷𝐵)
𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵)
→ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

induced by 𝐷𝐵 is injective. Therefore, by the Snake Lemma, the canonical map

coker𝐷𝐵,𝑘 → coker𝐷𝐵

is injective.

Since 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is dense in 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) the map

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → (ker𝐷𝐵𝐺 )∗ � coker𝐷𝐵

is surjective. Since it factors through coker𝐷𝐵,𝑘 → coker𝐷𝐵 , the latter must be surjective. ■

Proposition 4.21. For every 𝑘 ∈ N0 the restriction of 𝐷 to

𝐷𝑘 : 𝐻𝑘+1

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)

is right semi-Fredholm; that is: im𝐷𝑘 is closed and coker𝐷𝑘 is finite-dimensional; moreover:
𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) 𝐿2 orthogonally decomposes as

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) = im𝐷𝑘 ⊕ ker𝐷min.
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Proof. Since ker𝐷𝐵APS
is finite-dimensional, there is a 𝜏 ⩽ 0 such that the projection

res(ker𝐷𝐵APS
) →

⊕
𝜆∈[𝜏,0)

ker(𝐴 − 𝜆1)

is injective. The residue conditions

𝐵𝜏 := 1(−∞,𝜏 ) (𝐴)𝐻 1/2Γ(𝑍, ˇ𝑆) ⊂ ˇ𝐻Γ(𝑍, ˇ𝑆)

and 𝐵𝐺𝜏 are∞–regular. Therefore, by Proposition 4.20,

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) = im𝐷𝐵𝐺

𝜏 ,𝑘 ⊕ ker𝐷𝐵𝜏 ,𝑘 .

By construction, ker𝐷𝐵𝜏 ,𝑘 = ker𝐷min. Moreover, since im𝐷𝑘 ⊥ ker𝐷min, im𝐷𝐵𝐺
𝜏 ,𝑘 = im𝐷𝑘 . ■

4.4 Adapted Sobolev spaces, II: Morrey embedding and polyhomogeneity

The purpose of the upcoming two subsections is to further understand the scale of adapted

Sobolev spaces (𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), ∥−∥𝐻𝑘

𝑎
)𝑘∈N0

. A crucial observation is that the singularities in

the elements of 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) can be removed after untwisting in the following sense.

Definition 4.22. Define the twist 𝑧−1/2 ∈ Γ(𝑈 \𝑍,HomC(Π∗ ˇ𝑆, ˚𝑆 ⊗ ˚𝔩)) by

𝑧−1/2𝜙 ≔ 𝑟−1/2𝑃−1/2𝜙

with 𝑃−1/2 as in Proposition 3.21. •
Lemma 4.23 (Removable singularities after untwisting). For every 𝑘 ∈ N0 the restriction map
𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → 𝐻𝑘

loc
Γ(𝑈 \𝑍, 𝑆 ⊗ ˚𝔩) factors through

𝑧−1/2𝐻𝑘Γ(𝑈 ,Π∗ ˇ𝑆) ⊂ 𝐻𝑘
loc
Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) .

Proof. Let 𝑘 ∈ N0 and 𝜙 ∈ 𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩). Set

𝜓 := 𝑧1/2𝜙 ∈ 𝐻𝑘
loc
Γ(𝑈 \𝑍,Π∗ ˇ𝑆) .

Since |𝑧1/2 | is bounded,𝜓 ∈ 𝑟 1/2𝐿2Γ(𝑈 ,Π∗ ˇ𝑆). This proves the assertion for 𝑘 = 0.

Henceforth, suppose that 𝑘 ∈ N. Consider the differential operators 𝔡𝑧 : 𝐻 1

loc
Γ(𝑈 ,Π∗ ˇ𝑆) →

𝐿2Γ(𝑈 ,Π∗ ˇ𝑆) and ˚𝔡𝑧 : 𝐻 1

loc
Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) → 𝐿2Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) defined by

𝔡𝑧 := 𝐽 (𝜕𝑟 − 𝑟−1𝐼∇𝜕𝛼 ) and
˚𝔡𝑧 := 𝐽 (𝜕𝑟 − 𝑟−1𝐼 ˚∇𝜕𝛼 ) .

The difference 𝐷̊ − ˚𝔡𝑧 is a first order conormal differential operator; see the proof of Lemma 4.5.

If 𝑣 is the lift of a vector field on 𝑍 , then

∇𝑣𝜓 = 𝑧1/2 ˚∇𝑣𝜙 and 𝔡𝑧𝜓 = 𝑧1/2 ˚𝔡𝑧𝜙

on𝑈 \𝑍 .
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A moment’s thought shows that ∇𝑣𝜓 = 𝑧1/2 ˚∇𝑣𝜙 holds on𝑈 in the sense of distributions. In

fact, 𝔡𝑧𝜓 = 𝑧1/2 ˚𝔡𝑧𝜙 also holds on𝑈 in the sense of distributions. To see this let 𝜂𝜀 be a suitable

cut-off function and 𝜏 a test section. By direct computation,

ˆ
𝑈

⟨𝜂𝜀𝜏, 𝔡𝑧𝜓 ⟩ =
ˆ
𝑈

⟨𝜂𝜀𝔡∗𝑧𝜏,𝜓 ⟩ + ⟨𝜎𝔡𝑧 (d𝜂𝜀)𝜏,𝜓 ⟩

and ����ˆ
𝑈

⟨𝜎𝔡𝑧 (d𝜂𝜀)𝜏,𝜓 ⟩
���� ≲𝜏

ˆ
𝑈

𝑟 1/2 |d𝜂𝜀 |𝑟−1/2 |𝜓 | ≲𝜓

ˆ
𝑈

𝑟 |d𝜂𝜀 |2.

Since 𝜂𝜀 can be chosen so that d𝜂𝜀 is supported in 𝐵2𝜀 (𝑍 ) and 𝑟 |d𝜂𝜀 | ≲ 1, it follows that

ˆ
𝑈

⟨𝜏, 𝔡𝑧𝜓 ⟩ − ⟨𝔡∗𝑧𝜏,𝜓 ⟩ = lim

𝜀↓0

ˆ
𝑈

𝜂𝜀 (⟨𝜏, 𝔡𝑧𝜓 ⟩ − ⟨𝔡∗𝑧𝜏,𝜓 ⟩) = 0.

By induction, it follows that if 𝑣1, . . . , 𝑣𝑘−ℓ are lifts of vector fields on 𝑍 , then

∇𝑣1
. . .∇𝑣𝑘−ℓ𝔡

ℓ
𝑧𝜓 = 𝑧1/2 ˚∇𝑣1

. . . ˚∇𝑣𝑘−ℓ
˚𝔡ℓ𝑧𝜙

holds on𝑈 in the sense of distributions; in particular:

∇𝑣1
. . .∇𝑣𝑘−ℓ𝔡

ℓ
𝑧𝜓 ∈ 𝑟 1/2𝐿2Γ(𝑈 ,Π∗ ˇ𝑆) .

This implies that𝜓 ∈ 𝐻𝑘Γ(𝑈 ,Π∗ ˇ𝑆) because
ˆ
𝑈

|𝔡𝑧 (𝜒𝜓 ) |2 =
ˆ
𝑈

|𝜕𝑟 (𝜒𝜓 ) |2 + 𝑟−2 |∇𝜕𝛼 (𝜒𝜓 ) |2 +𝑂 ( |𝜓 |2) . ■

Set

𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) :=

⋂
𝑘∈N0

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) .

Corollary 4.24 (Smooth after untwisting). The restriction map𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) → Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩)

factors through
𝑧−1/2Γ(𝑈 ,Π∗ ˇ𝑆) ⊂ Γ(𝑈 \𝑍, ˚𝑆 ⊗ ˚𝔩) . ■

Remark 4.25 (Polyhomogeneous expansion). Every𝜓 ∈ Γ(𝑈 ,Π∗ ˇ𝑆) has a Taylor expansion

𝜓 ∼
∞∑︁

𝑘,ℓ=0

𝑧𝑘𝑧ℓ ˇ𝜓𝑘,ℓ with
ˇ𝜓𝑘,ℓ ∈ Π∗Γ(𝑍, ˇ𝑆 ⊗C 𝑁𝑍

𝑘−ℓ )

at𝑍 . Here 𝑧 ∈ Γ(𝑈 ,HomC(Π∗𝑁𝑍,C)) and 𝑧 ∈ Γ(𝑈 ,HomC(Π∗𝑁𝑍 −1,C)) denote the tautological
sections. Therefore, by Corollary 4.24, every 𝜙 ∈ 𝐻∞

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) has a polyhomogeneous

expansion

𝜙 ∼
∞∑︁

𝑘,ℓ=0

𝑧𝑘−1/2𝑧ℓ ˇ𝜙𝑘,ℓ with
ˇ𝜙𝑘,ℓ ∈ Π∗Γ(𝑍, ˇ𝑆 ⊗C 𝑁𝑍

𝑘−ℓ )

at 𝑍 with 𝑧𝑘−1/2
:= 𝑧𝑘𝑧−1/2

. Moreover, a moment’s thought shows that if 𝐷𝜙 = 0, then the

leading order term is of the form 𝑧𝑘−1/2 ˇ𝜙𝑘,0 for some 𝑘 ∈ N0. ♣
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Corollary 4.26. For every 𝑘 ∈ N with 𝑘 ⩾ 𝑛/2

𝐻𝑘
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) ⊂ 𝑟−1/2𝐿∞Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) . ■

The above observation leads to the following “poor man’s Weyl law”.

Proposition 4.27 (Growth of eigenvalues). Let 𝑘 ∈ N0 with 𝑘 > 𝑛/2. If 𝐵 ⊂ ˇ𝐻Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is
a (𝑘 + 1

2
)–regular Lagrangian residue condition, then the counting function 𝑁 : [0,∞) → N0

defined by
𝑁 (Λ) := dim𝐸⩽Λ with 𝐸⩽Λ :=

⊕
𝜆∈[−Λ,Λ]

ker(𝐷𝐵 − 𝜆 · 1)

satisfies
𝑁 (Λ) ≲𝐵,𝑘 ⟨Λ⟩2𝑘 .

Proof. The following argument is due to Li [Li80, Lemma 11]. Choose an 𝐿2
orthonormal basis

(𝜙1, . . . , 𝜙𝑁 (Λ) ) of 𝐸⩽Λ. The density 𝑑 ∈ 𝐶∞(𝑋\𝑍, [0,∞) defined by

𝑑 :=

𝑁 (Λ)∑︁
𝑖=1

|𝜙𝑖 |2

does not depend on the choice of 𝐿2
orthonormal basis. By construction

𝑁 (Λ) = 1

vol(𝑋 )

ˆ
𝑋

𝑑 ≲ ∥𝑟𝑑 ∥𝐿∞ .

Choose an 𝑥 ∈ 𝑋 with ∥𝑟𝑑 ∥𝐿∞ ⩽ 2|𝑟𝑑 | (𝑥). Since ev𝑥 : 𝐸⩽Λ → (𝑆 ⊗ 𝔩)𝑥 has rank at most

rk 𝑆 , without loss of generality,

|𝑟𝑑 | (𝑥) =
rk𝑆∑︁
𝑖=1

𝑟 |𝜙𝑖 |2(𝑥) .

By Theorem 4.16 and Corollary 4.26

∥𝑟 1/2𝜙𝑖 ∥𝐿∞ ≲ ∥𝜙𝑖 ∥𝐻𝑘
𝑎
≲𝐵,𝑘 ∥𝐷𝑘𝜙𝑖 ∥𝐿2 + ∥𝜙𝑖 ∥𝐿2 ≲ ⟨Λ⟩𝑘 .

This implies the assertion. ■

Corollary 4.28. Let 𝑘 ∈ N0 with 𝑘 > 𝑛/2. If 𝐵 ⊂ ˇ𝐻Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) is a (𝑘 + 1

2
)–regular Lagrangian

residue condition, then for every 𝑡 ∈ (0,∞) the heat operator ℎ𝑡 := exp(−𝑡𝐷2

𝐵
) is trace class. ■

Remark 4.29. Assume the situation of Corollary 4.28. If 𝜀 is a chirality operator, then for every

𝑡 > 0

index𝐷+
𝐵 = dim ker𝐷+

𝐵 − dim ker𝐷−
𝐵 = str𝜀 ℎ𝑡 .

Here str𝜀 denotes the super trace with respect to 𝜀 of the heat operator ℎ𝑡 ; cf. [BGV92, §1.3]. For

suitable choices of 𝐵 an analysis of the asymptotic behaviour of the kernel attached to ℎ𝑡 as

𝑡 ↓ 0 should result in index formulae analogous to the one established by Atiyah, Patodi, and

Singer [APS75, Theorems 3.10 and 4.2]. It would be interesting to work this out in detail. Also,

it should be mentioned that part of the unpublished PhD thesis [Yan07, Theorems 1.0.3 and

2.3.4] discusses such index formulae. ♣
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4.5 Adapted Sobolev spaces, III: spectral description and tameness

Proposition 4.30. The graded Fréchet space (𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), (∥−∥𝐻𝑘

𝑎
)𝑘∈N0

) is tame.

Proof. Consider the ∞–regular Lagrangian residue condition 𝐵 := 𝐵APS ⊕ 𝐿 with 𝐿 ⊂ ker𝐴 a

Lagrangian subspace as discussed in Example 3.43. The operator𝐷𝐵 is self-adjoint and Fredholm,

and Proposition 2.22 applies. The graded Fréchet space (𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵), (∥−∥𝐻𝑘

𝑎
)𝑘∈N0

) is
tame in the sense of [Ham82, Part II Definition 1.3.2]. This can be seen as follows. Consider the

graded Fréchet space (Σ(𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)), (∥−∥𝑘 )𝑘∈N0
) of exponentially decreasing sequences

defined by

Σ(𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)) ≔
{
(𝜓𝛽 ) ∈ 𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)N0

: ∥𝜓𝛽 ∥𝑘 < ∞ for every 𝑘 ∈ N0

}
with

∥(𝜓𝛽 )∥2

𝑘
≔

∞∑︁
𝛽=0

𝑒2𝑘𝛽 ∥𝜓𝛽 ∥2

𝐿2
;

cf. Hamilton [Ham82, Part II Example 1.1.4(b) with 𝑞 = 2].

Let (𝜙𝛼 )𝛼∈N0
be an 𝐿2

orthonormal basis of 𝐿2Γ(𝑋\𝑍, 𝑆⊗ 𝔩) consisting of eigenspinors for𝐷𝐵

and denote by (𝜆𝛼 )𝛼∈N0
the corresponding sequence of eigenvalues. Define 𝑖 : 𝐻∞

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗
𝔩;𝐵) → Σ(𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)) and 𝑝 : Σ(𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)) → 𝐻∞

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵) by

(𝑖𝜙)𝛽 ≔

∞∑︁
𝛼=0

1[𝑒𝛽 ,𝑒𝛽+1 ) (⟨𝜆𝛼 ⟩)⟨𝜙, 𝜙𝛼 ⟩𝐿2𝜙𝛼 and 𝑝 (𝜓𝛽 ) ≔
∞∑︁

𝛼,𝛽=0

1[𝑒𝛽 ,𝑒𝛽+1 ) (⟨𝜆𝛼 ⟩)⟨𝜓𝛽 , 𝜙𝛼 ⟩𝐿2𝜙𝛼 .

A moment’s thought shows that 𝑝 ◦ 𝑖 = id; moreover, by Theorem 4.16:

∥𝑖 (𝜙)∥2

𝑘
=

∞∑︁
𝛽=0

𝑒2𝑘𝛽 ∥𝑖 (𝜙)𝛽 ∥2

𝐿2
⩽

∞∑︁
𝛼=0

⟨𝜆𝛼 ⟩2𝑘 ⟨𝜙, 𝜙𝛼 ⟩2

𝐿2
≲𝑘 ∥𝜙 ∥𝐻𝑘

𝑎

and

∥𝑝 (𝜓𝛽 )∥2

𝐻𝑘
𝑎

≲𝑘

∞∑︁
𝛼=0

⟨𝜆𝛼 ⟩2𝑘 ⟨𝑝 (𝜓𝛽 ), 𝜙𝛼 ⟩2

=

∞∑︁
𝛼,𝛽=0

⟨𝜆𝛼 ⟩2𝑘1[𝑒𝛽 ,𝑒𝛽+1 ) (⟨𝜆𝛼 ⟩)⟨𝜓𝛽 , 𝜙𝛼 ⟩2 ⩽ 𝑒2𝑘

∞∑︁
𝛽=0

𝑒2𝑘𝛽 ∥𝜓𝛽 ∥2

𝐿2
.

Therefore, (𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵), (∥−∥𝐻𝑘

𝑎
)𝑘∈N0

) is a tame direct summand in the sense of [Ham82,

Part II Definition 1.3.1]) of (Σ(𝐿2Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩)), (∥−∥𝑘 )𝑘∈N0
).

A similar argument, using an 𝐿2
orthonormal basis of 𝐽𝐵 consisting of eigenspinors for 𝐴 in

the definition of 𝑖 and 𝑝 , proves that the graded Fréchet space (𝐽𝐵 ∩ Γ(𝑍, ˇ𝑆), (∥−∥𝐻𝑘 )𝑘∈N0
) is a

tame direct summand of (Σ(𝐿2Γ(𝑍, ˇ𝑆)), (∥−∥𝑘 )𝑘∈N0
).

Finally, by Lemma 4.11 and Theorem 4.10, (𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩), (∥−∥𝐻𝑘

𝑎
)𝑘∈N0

) is tamely iso-

morphic to

𝐻∞
𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩) � 𝐻∞

𝑎 Γ(𝑋\𝑍, 𝑆 ⊗ 𝔩;𝐵) ⊕ (𝐽𝐵 ∩ Γ(𝑍, ˇ𝑆))
and, therefore, by the above it is tame. ■
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4.6 Symbolic criterion for ∞–regularity

Proposition 4.31 (symbolic criterion for∞–regularity). Let 𝑉 ⊂ ˇ𝑆 be a subbundle. If

𝛾 (𝜉)𝑉 ⊂ 𝑉 Ω̌ = 𝐽𝑉⊥

for every 𝜉 ∈ 𝑇 ∗𝑍\{0}, then 𝐵𝑉 is∞–regular.

Proof. The proof relies on the following observation which is already implicit in [FS98, Lemma

2]. Denote by pr𝑉 :
ˇ𝑆 → ˇ𝑆 the orthogonal projection onto 𝑉 . The operator pr𝑉𝐴pr𝑉 is a 0–th

order differential operator, because for every 𝑓 ∈ 𝐶∞(𝑍 )

[pr𝑉𝐴pr𝑉 , 𝑓 ] = −pr𝑉 𝐽𝛾 (d𝑓 )pr𝑉 = 0.

Let 𝑘 ∈ N0. Since pr𝑉𝐴pr𝑉 is a 0–th order differential operator, pr𝑉𝐴
2𝑘+1

pr𝑉 is a 2𝑘–th

order differential operator. Therefore, for every 𝜙 ∈ Γ(𝑍,𝑉 ) and 𝜀 > 0

⟨𝐴2𝑘+1𝜙, 𝜙⟩𝐿2 = ⟨pr𝑉𝐴
2𝑘+1

pr𝑉𝜙, 𝜙⟩𝐿2 ≲𝐵𝑉 ,𝑘 ∥𝜙 ∥2

𝐻𝑘

≲ ∥𝜙 ∥𝐻𝑘−1/2 ∥𝜙 ∥𝐻𝑘+1/2 ≲ 𝜀−1∥𝜙 ∥2

𝐻𝑘−1/2
+ 𝜀∥𝜙 ∥2

𝐻𝑘+1/2
;

moreover, by direct inspection,

⟨𝐴2𝑘+1𝜙, 𝜙⟩𝐿2 = −∥|𝐴|𝑘+1/21(−∞,0) (𝐴)𝜙 ∥2

𝐿2
+ ∥|𝐴|𝑘+1/21[0,∞) (𝐴)𝜙 ∥2

𝐿2
.

As a consequence, for every 𝜙 ∈ 𝐵𝑉 ,

∥𝜙 ∥2

𝐻𝑘+1/2
≲𝐵,𝑘 ∥1(−∞,0) (𝐴)𝜙 ∥2

𝐻𝑘+1/2
+ ∥𝜙 ∥2

𝐻𝑘−1/2
.

By induction, 𝐵𝑉 is (𝑘 + 1/2)–regular for every 𝑘 ∈ N0; hence: ∞–regular. ■

Corollary 4.32. Let 𝑉 ⊂ ˇ𝑆 be a subbundle. If

𝛾 (𝜉)𝑉 = 𝐽𝑉⊥

for every 𝜉 ∈ 𝑇 ∗𝑍\{0}, then 𝐵𝑉 and 𝐵𝐺
𝑉
are∞–regular and Fredholm. ■

Example 4.33. The local residue conditions defined in Example 3.46 satisfy the criterion in

Corollary 4.32. ♠
Example 4.34. If

L ∈ Γ(𝑍,HomC(𝑁𝑍, ˇ𝑆))

is nowhere-vanishing, then

𝑉 := im L ⊂ ˇ𝑆

is a rank one complex subbundle. Therefore and since 𝐽𝛾 (𝜉) and 𝐼 𝐽𝛾 (𝜉) are skew-adjoint,

𝛾 (𝜉)𝑉 ⊆ 𝐽𝑉⊥
for every 𝜉 ∈ 𝑇 ∗𝑍\{0}; that is: 𝑉 satisfies the criterion in Proposition 4.31.

Moreover: if rkC ˇ𝑆 = 2, then 𝐽𝛾 (𝜉)𝑉 = 𝑉⊥
and 𝐵𝑉 is self-adjoint. ♠
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Remark 4.35. Suppose that (𝑍, 𝔩;Φ) is a Z/2Z harmonic spinor whose branching locus𝑍 satisfies

Hypothesis 3.1. Since Φ ∈ ker𝐷min, by Remark 4.25, the polyhomogeneous expansion of Φ at 𝑍

is of the form

Φ ∼ 𝑧1/2Φ̌1,0 +
∞∑︁

𝑘,ℓ=0

𝑘+ℓ⩾2

𝑧𝑘−1/2𝑧ℓ Φ̌𝑘,ℓ .

The leading coefficient Φ̌1,0 determines an LΦ ∈ Γ(𝑍,HomC(𝑁𝑍, ˇ𝑆)). If rk 𝑆 = 4 and Φ̌1,0 is

nowhere vanishing, then this produces an ∞–regular Lagrangian local residue condition. This

is the residue condition behind the scenes in [Tak15; Par23]. ♣
Remark 4.36. In the presence of a chirality operator 𝜀 the above discussion refines as follows:

(1) Let 𝑉 + ⊂ ˇ𝑆+ be subbundle. If

𝛾 (𝜉)𝑉 + = 𝐽 (𝑉 +)⊥ ∩ ˇ𝑆+

for every 𝜉 ∈ 𝑇 ∗𝑍\{0}, then𝑉 ≔ 𝑉 + ⊕𝑉 −
with𝑉 − ≔ 𝐽 (𝑉 +)⊥∩ ˇ𝑆− satisfies the condition

in Corollary 4.32.

(2) If rk 𝑆+ = 4 and

L ∈ Γ(𝑍,HomC(𝑁𝑍, ˇ𝑆+))

is nowhere vanishing, then 𝑉 + ≔ im L satisfies the above condition.

(3) As in Remark 4.35, the leading coefficient of the polyhomogeneous expansion of a positive

Z/2Z harmonic spinor Φ determines a LΦ ∈ Γ(𝑍,HomC(𝑁𝑍, ˇ𝑆+)). ♣

A Non-coorientable branching loci

The following discussion explains what changes need to be made in Section 3 and Section 4 if

𝑍 ⊂ 𝑋 is a closed submanifold of codimension two, but not cooriented or even coorientable.

The coorientation bundle
𝔬 := Λ2𝑁𝑍 → 𝑍

is a Euclidean line bundle and its unique orthogonal connection is flat. The Euclidean metric on

𝑁𝑍 identifies 𝔬 with the bundle of skew-adjoint endomorphisms of 𝑁𝑍 . The evaluation map

defines a isometry

𝐼 : 𝔬 ⊗ 𝑁𝑍 → 𝑁𝑍 .

A moment’s thought shows that the diagram

𝑁𝑍 𝔬⊗2 ⊗ 𝑁𝑍 𝔬 ⊗ 𝑁𝑍 𝑁𝑍
�

−1

1⊗𝐼 𝐼

commutes. A trivialisation 𝔬 � R enhances 𝐼 to an orthogonal almost complex structure on 𝑁𝑍 ;

that is: a coorientation of 𝑍 enhances 𝑁𝑍 to a Hermitian line bundle.

41



The canonical isomorphism 𝔬⊗2 � R produces the flat bundle

A := R ⊕ 𝑖 · 𝔬 → 𝑍

of normed R–algebras whose fibres are isomorphic to C, canonically up to complex conjugation.

The above discussion reveals 𝑁𝑍 to be a bundle of Euclidean A–modules of rank one. System-

atically replacing C by A and tracking the use of 𝔬 in Section 3 and Section 4 removes the need

for a coorientation of 𝑍 :

• The frame bundle 𝜋 : 𝐹 → 𝑍 defined in Definition 3.4 is not U(1)–principal. Its vertical
tangent bundle ker𝑇𝜋 is canonically isomorphic to 𝑖𝜋∗𝔬. Therefore, the Levi-Civita

connection defines 𝑖𝜃 ∈ Ω1(𝐹, 𝑖𝜋∗𝔬); moreover, 𝜕𝛼 ∈ Γ(𝐹, 𝜋∗(𝔬 ⊗ 𝑁𝑍 )).

• Definition 3.8 reveals 𝑆 |𝑍 to be an A–module and defines 𝐽 ∈ Γ(𝐹, End(𝑆)) and 𝐼 , 𝐾 =

𝐼 𝐽 ∈ Γ(𝐹, 𝜋∗𝔬 ⊗ End(𝑆)). The sign ambiguities in the term 𝐼 ˚∇𝜕𝛼 appearing in Remark 3.13,

Proposition 3.22, and the proof of Lemma 4.23 cancel.

• Definition 3.19 constructs 𝑁𝑍𝜆
as an A–module. Remark 3.20, Proposition 3.21, Proposi-

tion 3.22 hold with C replaced by A. This can be seen, e.g., by passing to the double cover

˜𝑍 → 𝑍 defined by 𝔬.

• In the definition of the residue bundle 𝑆 and the branching locus operator 𝐴 in Defini-

tion 3.36 the appearances of C need to be replaced by A. ˇ𝑆 inherits 𝐽 ∈ Γ(𝑍, End( ˇ𝑆)) and
𝐼 , 𝐾 = 𝐼 𝐽 ∈ Γ(𝑍,𝔬 ⊗ End( ˇ𝑆)).

• C needs to be replaced by A in Example 3.46, Definition 4.22, Remark 4.25.
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