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Abstract

Based on computations of Pandharipande [Pangg], Zinger [Zin11] proved that the Gopakumar-
Vafa BPS invariants BPS 4 4 (X, w) for primitive Calabi-Yau classes and arbitrary Fano classes
A on a symplectic 6-manifold (X, @) agree with the signed count n 4(X, ») of embedded
J-holomorphic curves representing A and of genus g for a generic almost complex structure

J compatible with w. Zinger’s proof of the invariance of n4 4(X, w) is indirect, as it relies on
Gromov-Witten theory. In this article we give a direct proof of the invariance of ns 4(X, ).
Furthermore, we prove that ns 4(X, @) = 0 for g > 1, thus proving the Gopakumar-Vafa
finiteness conjecture for primitive Calabi-Yau classes and arbitrary Fano classes.
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1 Introduction

Are there invariants of symplectic manifolds which count embedded pseudo-holomorphic curves?
Such counts can fail to be invariants for two reasons: (a) pseudo-holomorphic embeddings
can degenerate to multiple covers, and (b) they can undergo bubbling and their domains can
degenerate. In the following we consider two situations in which both of these can be ruled out.

Let (X, w) be a closed symplectic 6-manifold equipped with an almost complex structure
J compatible with w. Denote by ./} (X J) the moduli space of simple J-holomorphic maps
representlng ahomology class A € Hz (X Z) and of genus g. For a generic choice of J the moduli
space M A, g (X, J) is an oriented smooth manifold of dimension

dim ﬂz,g(X,]) = 2(c1(X, w), A).



If A is a Calabi-Yau class, that is: (¢;(X, ), A) = 0, then 4 (X J) is a finite set of signed
points and can be counted. If A is primitive in Hy(X, Z), then multlple cover phenomena can be
ruled out, and it will be proved that this count defines an invariant na 4 (X, w). If Ais a Fano class,
that is: {(c¢1(X, w),A) > 0, then ﬂ;{’g (X, J) can be cut-down to a finite set of signed points by
imposing incidence conditions governed by suitable cohomology classes y, ..., ya € HV"(X, Z).
In this case, multiple cover phenomena can be ruled out regardless of whether A is primitive
or not, and it will be proved that counting the cut-down moduli space defines an invariant
nag(X,w;y1, ..., ¥A)-

These invariants are not new. They were considered by Zinger [Zini1, Theorem 1.5 and
footnote 11] who proved that they agree with Gopakumar and Vafa’s BPS invariants. The
proof of the invariance of n44(X, w) and na4(X, w;y1,...,ya) in [Zini1] is indirect: it relies on
these numbers satisfying the Gopakumar—Vafa formula and the invariance of Gromov-Witten
invariants. The novelty in the present work is that we give a much simpler direct proof of
invariance. Furthermore, we prove that the invariants vanish for g sufficiently large; thus
establishing the Gopakumar—Vafa finiteness conjecture for primitive Calabi-Yau classes and
arbitrary Fano classes.

1.1 Ghost components

The main technical result of this paper allows us to rule out, in certain situations, degenera-
tions in which the limiting nodal pseudo-holomorphic map has a ghost component, that is: a
component on which it is constant. The precise definitions used in the following statement are
given in Section 2 and Section 3.

Theorem 1.1. Let (X, goo, Joo) be an almost Hermitian manifold and let (Ji)xen be a sequence of
almost complex structure on X converging to J in the C! topology. If (ux: (Zg, jk) — (X, Ji))ken
is a sequence of pseudo-holomorphic maps from smooth, closed Riemann surfaces which Gromov
converges to the nodal Jo—holomorphic map e : (Zcos joo» Vo) — (X, Jo), then one of the following
holds:

(1) (Zeos Joo» Vo) has no ghost components.

(2) (Zcos joos Vo) has a ghost component C with at least two non-ghost components attached to
C.

(3) (Zcos Jjoos Vo) has a ghost component C with a non-ghost component attached to C at at least
two nodes.

(4) (Zcos joos Veo) has a ghost component C with precisely one non-ghost component attached to
C at a single node n € C; in that case, d,,_ (n)teo = 0, that is: the corresponding node v, (n)
in the non-ghost component is a critical point of .

Remark 1.2. Zinger [Zinog, Theorem 1.2] has analyzed in detail when a nodal pseudo-holomorphic
map whose domain has arithmetic genus one appears as a Gromov limit of pseudo-holomorphic
maps with smooth domain. Jingchen Niu’s PhD thesis [Niu16] extends Zinger’s analysis to
genus two. Their results are based on analyzing the obstruction map of a Kuranishi model of a



neighborhood of the limiting pseudo-holomorphic map. The proof of Theorem 1.1 in Section 5
uses similar methods. This idea goes back to Ionel [long8, Proposition 1.20] and Pandharipande
[Pangs, Lemma 1]. Recently, a different proof of a result similar to Theorem 1.1 has appeared in
the work of Ekholm and Shende [ES19, Lemma 4.9]. *

Given a symplectic manifold (X, w) of dimension at least 6, denote by # (X, w) the set of
almost complex structures J compatible with w and denote by Zm, (X, @) the subset of those J
for which the following hold:

(a) there are no simple J-holomorphic maps of negative index,
(b) every simple J-holomorphic map is an embedding, and

(c) every two simple J-holomorphic maps of index zero either have disjoint images or are
related by a reparametrization;

see Definition 2.36. The complement of Ze, (X, w) in £ (X, w) has codimension two; in par-
ticular: femp (X, ) is open and dense, and every path (J;);e[0,1] in .7 (X, ) with end points in
Jemb (X, @) is homotopic relative to the end points to a path in Zmp (X, ).

Theorem 1.3. Let (X, w) be a compact symplectic 6-manifold, let (Jx)ren be a sequence of almost
complex structures compatible with o converging to Jo, and let (ux: (g, jk) = (X, Jk))ken be
a sequence of pseudo-holomorphic maps which Gromov converges to the nodal J..—holomorphic
map e : (Zoos Joos Vo) = (X, Jo). Set A i= (Ueo)s+[Zeo] € Ho(X,Z). If A is primitive, satisfies
(c1(X, 0),A) =0, and Jo € Femb(X, @), then (Zco, joos Veo) is smooth and ue, is an embedding.

There is a variant of the definition of # (X, w) adapted to pseudo-holomorphic maps with
A marked points constrained by pseudo-cycles fi, ..., fa. (See Appendix B for a review of the
theory of pseudo-cycles.) The precise definition of this subspace 7 (X, w; fi, ..., fa) is rather
lengthy and deferred to Definition 2.44.

Theorem 1.4. Let (X, w) be a compact symplectic 6—-manifold, let (Ji)ren be a sequence of almost
complex structures compatible with w converging to Jo, and let (ux: (Zk, ji) = (X, Jk))ren be a
sequence of pseudo-holomorphic maps which Gromov converges to the nodal Jo—holomorphic map
Uoso: (Zoos Joos Voo) = (X, Joo). Set A = (Uoo)«[Zoo] € H2(X,Z). Let fi, . .., fa be even-dimensional
pseudo-cycles of positive codimension in general position. If

(1) imug Nim f) # @ foreveryA=1,..., A,
(2) 2{c1(X,w),A) = Zﬁ\zl(codimfg -2) >0, and
(3) Jo € jemb(X’w;ﬁ, .. -,fA),

then (Zco, joos Veo) is smooth and ue is an embedding withim u,, Nim fy # @ foreveryA=1,...,A.



1.2 Embedded curve counts

Denote by 7 :nb (X, w) the subset of those | € Fmp (X, @) for which every simple J-holomorphic
map is unobstructed; see Definition 2.36.

Theorem 1.5. Let (X, w) be a symplectic 6-manifold. Let A € Hy(X,Z) be a primitive class such
that {c1(X, w),A) = 0.

(1) Foreveryg € Ngand] € 7x (X, w) the moduli space /%Z,g(X, J) of simple J—holomorphic

maps representing the class A and of genus g is a compact oriented zero-dimensional manifold,
and the signed count

(1.6) nag(X, @) = #M} (X, ])
is independent on the choice of J.

(2) Thereisagy € Ny, depending on (X, w) and A, such that

nag(X,w) =0 forevery g > go.

Remark 1.7. In fact, ny 4(X, 0) depends on w only up to deformation. *
Again, there is a variant Z* (X, w; fi, ..., fa) of | (X, ) adapted to pseudo-holomorphic
maps with A marked points constrained by pseudo-cycles fi,. .., fa; see Definition 2.45.

Theorem 1.8. Let (X, w) be a symplectic 6—manifold, let A € Hy(X,Z), letyy,...,ya € HV*(X,Z)
be such that deg(y,) > 0 and

A
2(e1(X, ), 4) = ) (deg(ya) ~2) > 0.
A=1

(1) Let fi,..., fa be pseudo-cycles in X which are Poincaré dualtoyy, ..., ya and in general posi-
tion. Foreveryg € Ngand J € 7* (X, @; fi, ..., fa) the moduli space ﬂ:{g(X,];fl, s fa)

emb

of simple J—holomorphic maps representing the class A, of genus g, and intersecting fi, ..., fa
is a compact oriented zero-dimensional manifold, and the signed count

(1.9) nag(X,w;y1,...,ya) = #ﬂ:{’g(X,];ﬁ, N
is independent on the choice of fi, ..., fa and J.

(2) There exists a gy € Ny, depending on (X, w), A, and y1, . .., ya, such that
nag(X,w;y1,...,ya) =0 forallg > go.

Remark 1.10. Remark 1.7 applies mutatis mutandis. *



1.3 Gopakumar and Vafa’s BPS invariants

Using ideas from M-theory, Gopakumar and Vafa [GV98a; GV98b] predicted that there are
integer invariants BPS 4 4(X, w) associated with every closed symplectic 6-manifold (X, w), a
class A € Hy(X, Z) with (¢, (X, w),A) = 0, and g € Ny, which count BPS states supported on
embedded J-holomorphic curves representing A and of genus g. Gopakumar and Vafa did
not give a direct mathematical definition of BPS4 4(X, w); however, they conjectured that their
invariants are related to the Gromov-Witten invariants GW 4 4(X, ) by the marvelous formula

@) >N GWag(X,0) - 972 = 3" 3 BPS44(X,0) - )| %(2 sin(kt/2))% 2k
A g=0 A g=0 k=1

with the sum taken over all non-zero Calabi-Yau classes A and, moreover, that BPS4 4(X, w) =0
forg > 1.

In algebraic geometry, there are approaches to defining the BPS invariants for projective
Calabi-Yau three-folds [HSTo1; PTog; PTio; KL12; MT18]. These satisfy the Gopakumar—-Vafa
formula (1.11) in some cases, but it is not currently known whether the formula holds in general.

An alternative approach is to take (1.11) as the definition of BPS4 4(X, @); see [BPo1, Section
2]. This approach leads to the following conjecture.

Conjecture 1.12 (Gopakumar and Vafa [GV98a; GV¢8b]; see also [BPo1, Conjecture 1.2]). The
numbers BPS 4(X, w) defined by (1.11) satisfy

(integrality) BPSs4(X,w) € Z, and
(finiteness) BPS,4(X,w) =0 forg > 1. ]

The Gopakumar—-Vafa integrality conjecture has been proved by Ionel and Parker [IP18].
Zinger [Zin11, footnote 11] has proved that for primitive Calabi—Yau classes

BPSA,g(X, C‘)) = nA,g(Xs w);
see also Appendix C. Therefore, Theorem 1.5 implies the following.

Corollary 1.13. The Gopakumar-Vafa finiteness conjecture holds for primitive Calabi—Yau classes;
that is: for every closed symplectic 6-manifold (X, w) and every primitive Calabi—-Yau class
A € Hy(X,Z) there is a go(w, A) such that for every g > go(w, A)

BPS4,4(X, ) = 0. n

Remark 1.14. The finiteness conjecture for general Calabi—Yau classes has been resolved recently
[DIW21]. .s

The genus bound in Corollary 1.13 is not effective; therefore, it is natural to ask the following.

Definition 1.15. Let (X, w) be a closed symplectic 6-manifold and A € H,(X, Z) a Calabi-Yau
class. Define the BPS Castelnuovo number y4 (X, w) by

ya(X, ) = inf{g € N : BPS4 (X, @) = 0} € N, .



Question 1.16. Is there an bound on y4 (X, ) analogous to Castelnuovo’s bound for the genus
of an irreducible degree d curve in P* [Cas89; ACGHS85, Chapter III Section 2]; that is: a bound
of y4(X, ) by a formula involving A and the geometry of X? (See Huang, Katz, and Klemm
[HKK15] and Knapp, Scheidegger, and Schimannek [KSS21] for some work in this direction.)

There is an analogue of the Gopakumar—Vafa formula for Fano classes. Given A € Hy(X, Z),
g € Ng,and yy, ..., ya € H¥V"(X, Z) satisfying deg(y;) > 0 and

A
(117) 2(c1(X, ), A) = ) (deg(y1) - 2) > 0,
A=1

denote by GW 44(X, @; y1,...,ya) be the corresponding Gromov-Witten invariant. The ana-
logue of (1.11) is

Z Z GWA,g(X, WY1 }/A) . tzg—qu
A

(1.18) =0

= > D BPSAg(X, @3y, ya) - (2sin(t/2))% 21Xk g
A g=0

with the sum taken over all A € H,(X, Z) satisfying (1.17). Zinger [Zin11, Theorem 1.5] has
proved that

BPSp4(X, 05 ¥1,.-.,7A) = nag(X, @ y1, ..., ¥A);

thus establishing the analogue of the Gopakumar—Vafa integrality conjecture. Furthermore,
Theorem 1.8 implies the following.

Corollary 1.19. The analogue of the Gopakumar—Vafa finiteness conjecture holds for all Fano
classes. ]

Of course, there is an analogue of Question 1.16 in the Fano case.
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Special Holonomy in Geometry, Analysis, and Physics, and the Simons Society of Fellows.

2 Nodal pseudo-holomorphic maps

This section reviews a few definitions and results regarding nodal pseudo-holomorphic maps.
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2.1 Nodal manifolds

Definition 2.1. Let X be a manifold, possibly disconnected. A nodal structure on X is an
involution v: X — X whose fixed-point set has a discrete complement. (This involution is
discontinuous unless v = id.) The set of points not fixed by v is called the nodal set. A nodal
manifold is a manifold together with a nodal structure. °

The quotient X/v should be considered as the topological space underlying the nodal
manifold (X, v). The atlas of X induces a “nodal atlas” for X /v consisting of “charts” mapping
either to R” or R” x {0} U {0} x R” C R?". The nodes of X /v are precisely the points mapping
to (0,0) € R?" in some chart or, equivalently, the images of the points in the nodal set.

Definition 2.2. Let (X3, v1) and (X3, v2) be nodal manifolds. A nodal map f: (Xi,v1) — (X3, v2)
is a smooth map f: X; — X such that

fovi=wo0f. )
Definition 2.3. Let (X, v) be a nodal manifold. A diffeomorphism of (X, v) is an element of
Diff (X, v) = {¢ € DIff (X) : pov=v o ¢} °

Every manifold X canonically is a nodal manifold with v = idx and a smooth map between
manifolds, trivially, is a nodal map. In other words, the category of manifolds is a full subcategory
of the category of nodal manifolds.

Definition 2.4. Let (X, v) be a nodal manifold, let Y be a manifold, and let f: (X,v) — Y bea
nodal map. For a vector bundle E — Y, set

T(X,v:fE) = {£ e T(X, f'E) : £ov =&} .

Remark 2.5. In the situation of the preceding definition, set n := dim X and let p > n. Given
a Riemannian metric on X, a Fuclidean metric on E, and a metric covariant derivative on E,
denote by WPT' (X, f*E) the completion of ' (X, f*E) with respect to the corresponding W
norm. By Morrey’s embedding theorem, W' «s C%'="/P_ Therefore, the evaluations maps
evy: I'(X, f*E) — Ef(x) extend to WT (X, f*E) and

WYPT(X,v; f*E) = {& € WT(X; fE) : €(v(x)) = £(x) for every x € X}.
For p < n it can be shown that the W!* completion of I'(X,v; f*E) agrees with the W'?
completion of T'(X; f*E). *
2.2 Nodal Riemann surfaces

Definition 2.6. A nodal Riemann surface is a Riemann surface (2, j) together with a nodal
structure v. )



Definition 2.7. Let C be a complex analytic curve. A point of C is a node if it has a neighborhood
which is isomorphic to a neighborhood of the point (0,0) in the curve

{(z, w) e C?:zw = 0}.
A nodal curve is a complex analytic curve all of whose points are either smooth or a node. e

Let C be a nodal curve and denote by 7: C — C its normalization. The complex analytic
curve C is smooth and, hence, equivalent to a closed Riemann surface (3, j). Since C is obtained
from C by replacing every node with a pair of points, ¥ inherits a canonical nodal structure
v. This sets up an equivalence between complete, nodal curves C and closed, nodal Riemann
surfaces (2, j, v).

Definition 2.8. The automorphism group of a nodal Riemann surface (2, j, v) is
Aut(3, j,v) = {¢ € DIff(5,v) : buj = j}.
A nodal Riemann surface (2, j, v) is stable if Aut(2, j, v) is finite. °

Definition 2.9. Let (2, v) be a nodal surface with nodal set S. The arithmetic genus of (Z, v) is

(2.10) pa(Z,v) =1- %(){(Z) — #5). .

Remark 2.11. If (£, 7) denotes a nodal surface obtained from (X, v) by attaching a 1-handle at
some pairs of nodes {n, v(n)}, then

Pa(Z.v) = pa(Z. 7). &

2.3 Nodal j-holomorphic maps

Throughout the next four subsections, let (X, J) be an almost complex manifold of dimension
2n.

Definition 2.12. A nodal J-holomorphic map u: (3, j,v) — (X, J) is a nodal Riemann surface

(2, j, v) together with a nodal map u: (Z,v) — X which is J-holomorphic; that is:

(2.13) dr(u, j) = %(du +J(u) oduo j)=0. o

Definition 2.14. Ifu: (2, j,v) — (X, J) is a nodal J-holomorphic map and ¢ € Diff (3, v), then
the reparametrization ¢.u == uo ¢~ ': (3, ¢.j,v) — (X,J) is a nodal J-holomorphic map as
well. The automorphism group of a nodal /-holomorphic map u: (%, j,v) — (X,]) is

Aut(u) == {p € Aut(Z, j,v) : uo ¢ = u}.
The map u is said to be stable if Aut(u) is finite. °

Definition 2.15. Let (2, j) and (2, j) be smooth Riemann surfaces. Let u: (2, j) — (X, J) be a
J-holomorphic map and let 7: (3, j) — (3, j) be a holomorphic map of degree deg(r) > 2.
The composition u o : (2, j) — (X, J) is said to be a multiple cover of u. A J-holomorphic
map is simple if it is not constant and not a multiple cover. °



2.4 Ghost components

Letu: (2, j,v) — (X,J) be anodal J-holomorphic map. Let S be the nodal set of (=, v).

Definition 2.16. Suppose C C X is a union of connected components of X. Set
Sicnt ={neS:neCandv(n) €C} and S':={neS:neCandv(n) ¢C}

and denote by v¢ the nodal structure on C which agrees with vy on Sicnt and the identity on the
complement of Sicnt. Denote by C the nodal curve associated with (C, j, v). .

Definition 2.17. A ghost component of u is a union C of connected components of ¥ such that
u|c is constant, C is connected, and which is a maximal subset satisfying these properties. e

Proposition 2.19 below, which will be used in the proof of Theorem 1.1 (specifically in
Section 5.7), concerns the dualizing sheaf of a nodal curve C. The dualizing sheaf is a general-
ization of the canonical sheaf of a smooth curve; for the reader’s convenience, we describe its
construction in the proof of Proposition 2.19.

Definition 2.18. Let C be a nodal curve. The dual graph of C is the weighted graph whose
set of vertices is the set of irreducible components of C with the genus as the weight function,
and edges between two vertices if and only if the corresponding irreducible components of C
intersect. .

Proposition 2.19. Let C be a nodal curve. Denote the dual graph of C by T. Denote by wc the
dualizing sheaf of C and by B its base-locus:

B:={xe€C:{(x) =0 forevery! € H(C,wc)}.
The base-locus has the following description:
(1) B is a union of irreducible rational components of C.
(2) The dual graph of B is the subgraph A C T obtained by

(a) removing every vertex of non-zero weight, and

(b) removing every simple cycle inT.

In particular, A is a forest with weight zero. Moreover, if e1, e, are distinct vertices of a tree
T C A, then they cannot be connected by a path in (I'\T) U {ey, e}

The proof relies on the following.

Proposition 2.20. Let X be a connected smooth curve. For every three p, q, r distinct points on X
there isa { € H*(Ks(p + q)) with

Res, { = —Res, { #0 and {(r) #0.

Here Res), { denotes the residue at p of the meromorphic 1-form {.

10



Proof. For % = P! without loss of generality p = 0 and g = oo; hence, the meromorphic 1-form
can be taken to be z7'dz.
Suppose 3 # P!. Consider the exact sequence

H'(Ky) — H(Ks(p+q)) > H(0,®6,) =C®C —> H'(Ks) = C

with p({) = (Res, {,Resy {) and 6(a, b) := a — b. This implies that there isa { € H*(Kx(p+q))
with non-vanishing residues at p and g. Since Ky is base-point-free, { can be arranged not to
vanish at r. ]

Proof of Proposition z.19. The dualizing sheaf of C is constructed as follows; see [ACGH11, p. 91].
Denote by 7: ¥ — C the normalization map. Denote by S the set of nodal points of C. Denote
by @&c¢ the subsheaf of Kx(S) whose sections { satisfy

(2.21) Res, { +Res,n) { =0

for every n € S. Here v denotes the obvious involution on 7~!(S). The dualizing sheaf wc then
is
we = 7'[*67)@.

The base-locus of Ky are precisely the rational connected components of 3. This implies
(1). It follows from the above Proposition 2.20 that the dual graph of B is contained in A. By
the Residue Theorem any meromorphic 1-form with simple poles must have at least two poles.
This implies that the dual graph of B agrees with A. ]

2.5 Moduli spaces of nodal pseudo-holomorphic maps

Definition 2.22. Given A € H,(X,Z) and g € Ny, the moduli space of stable nodal J-
holomorphic maps representing A and of genus g is the set

M ag(X,])

of equivalence classes of stable nodal J-holomorphic mapsu: (2, j, v) — (X, J) up to reparametriza-
tion with
u[2]=A and p,(Z,v)=g.

The subset of %A,g (X, J) parametrizing simple J-holomorphic maps is denoted by
‘%X!g (X: .]) * hd
At this stage, %A,g(X, J) is just a set. In Section 3.2, it will be equipped with the Gromov
topology. This topology induces the C* topology on ./%Xg(X ).

Definition 2.23. Let (X, w) be a symplectic manifold. Denote by # (X, w) the space of almost
complex structures on X which are compatible with w; that is:

g(" ) = w(’])

defines a Riemannian metric on X. Equip 7 (X, w) with the C* topology. °

11



Definition 2.24. Given A € Hy(X,Z) and g € N, set

MagX,0)= || Hagx,) and sy, (Xw)= || ;X))
JeF X.w) JeF X.w)

Denote by 7 : %A,g (X, w) = £ (X, w) the canonical projection. °

2.6 Linearization of the /-holomorphic map equation

Letu: (2, j,v) — (X,]) be anodal J-holomorphic map. Let h be a Hermitian metric on (X, J)
and let V be a torsion-free connection on TX. Throughout the remainder of this article, let
p>2

Definition 2.25. Given & € WHT (3, v;u*TX), set
ug = exp, (&)
and denote by ¥z : LPQY! (3, u*TX) — LPQY(3, u;ZTX ) the map induced by parallel transport
along the geodesics ¢ — exp,,(t£). Define &, j v.j: WHT(Z, v;u*TX) — LPQY (3, u*TX) by
3u,j,v;](§) = \I/;lé](ug’ 7)- .

Definition 2.26. Define the linear operator 8, j,.;: WT(Z, v;u*TX) — LPQ! (2, u*TX) by

Dy jvy & = doBu,jvy & = %(V§+](u) o (V&) o j+(Vg])oduo j). .

Remark 2.27. If u is J-holomorphic, then d,, ; ,. ; does not depend on the choice of torsion-free
connection V on TX; see [MS12, Proposition 3.1.1]. *

The operator b, j . is the restriction to WT' (2, v;u*TX) of the operator
Dy WHT(Z,u'TX) — LPQY (2, u'TX)

given by the same formula. The former controls the deformation theory of u as a nodal J-
holomorphic map from the nodal Riemann surface (2, j, v) whereas the latter controls the
deformation theory of u as a smooth J-holomorphic map from the smooth Riemann surface
(2, j), ignoring the nodal structure.

Proposition 2.28. The index of 0, ,.; is given by
(2.29) index Dy, j,v;y = 2([Z], u"er(X, ) +2n(1 = pa(Z, v)).

Proof. The inclusion
WYPL(3, v;u* TX) — WYPT (S, u*TX).

has index —n#S. By the Riemann-Roch Theorem,
indexd, .7 = 2([Z], u"c1 (X, J)) + ny(Z).

These together with (2.10) imply the index formula. [ ]
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Remark 2.30. For our discussion in Section 5.7, which establishes the key technical result of this
article, the following detailed description of the kernel and cokernel of d,, ; ,.; will be important.

Denote by
V. C @Tu(n)x

nes

the subspace of those (v,),es satisfying

Uy(n) = —Un.

Define diff: kerd, j; — V_ by

diffx == (x(n) — k(v(n))) es-

Evidently,
kerd, j ,.; = ker diff.

The map diff is induced by the analogously defined map W (3, u*TX) — V_ which fits in to
the following commutative diagram with exact rows

0 —— WY (S, v;u*TX) —— WLP(3,u*TX) V. 0
lbu,j,V'J lbu,j;J l
0 —— LPQUI(Z, u*'TX) —— LPQY(Z, u*TX) 0 0.

Therefore, the Snake Lemma yields the short exact sequence
0 — coker diff — cokerd, j,.; — coker®d, ;; — 0.
The dual sequence
0 — (cokerd, jj)* — (cokerd,j,.;)* — (cokerdiff)* — 0

can be understood as follows. Let g € (1,2) be such that 1/p + 1/q = 1. The dual space
(cokerd, jy.7)* can be identified via the pairing between L? and L? with the space # consisting
of those { € LIQ% (2, u*TX) which satisfy a distributional equation of the form

b, ,( = abn.

nes

with 0 = (vp)nes € (imdiff)* = (coker diff)* and 8, denoting the Dirac § distribution at n. The
map (cokerd, j,,.;)* — (coker diff)* maps { to v. *

Definition 2.31. Define the map 1, j,.;: W"T (2, v;u*TX) — LPQ% (3, u*TX) by

nu,j,v;](g) = %u,j,v;](,g) - 5](14, ]) - t)u,j,v;]g- b
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Proposition 2.32 ([MS12, Proposition 3.5.3 and Remark 3.5.5]). Denote by cs > 0 an upper bound
for the norm of the embedding W' (3) «— C%172/P(%) and let cg > 0. For every &, & with
lE1llwie < cg and [|E2|lwre < cf

Mt jvy (81) = Mg (82) e < c(ess e lldullze) - (1Eillwre + [182llwre) - 161 = Sallwre-

So far, the complex structure j has been held fixed. Denote by #(X) the space of complex
structures on X and by Diff (2, v) the group of diffeomorphism of ¥ which are isotopic to the
identity and commute with v. Denote by

T = F(2)/Diffo (2, v)
the corresponding Teichmiiller space. This is a complex manifold whose real dimension satisfies
dimJ — dimaut(Z, j,v) + #S = 6(p(Z,v) — 1).

For every j € £ (X) there is a Teichmiiller slice through j; that is: an open neighborhood A of
0 € Clime 7 together with a Aut(3, j, v)—equivariant map j: A — #(Z) such that ;(0) = j.

Definition 2.33. Consider the bundle over A whose fiber over ¢ € A is the Banach space
PO (5, u* TX).

Here the space of (0, 1) forms on ¥ is defined with respect to complex structure j(o). A choice
of a trivialization of this bundle gives rise to the map

(234) WYT (S, v;u*TX) x A — LPQ%Y(Z, u*TX)
2.34
(gs 0) = gu,](a),v;](§)~

Define d,, ;dy.;: WPT (2, v;u*TX) @ TyA — LPQ%! (3, u*TX) to be the derivative of the map
(2.34) at (0,0). L

Definition 2.35. The index of u is

index(u) := index(dy, jdy;y) — dimaut (2, j,v) + #S
= 2([Z],u’cr(X, ))) + 2(n = 3)(1 = pa(Z,v)).
The map u: (3, j,v) — (X, ]) is said to be unobstructed if d,, jd,.; is surjective. °
Henceforth, to simplify notation, we will often drop some or all of the subscripts j, v, J
from the maps defined above.
2.7 Transversality for simple maps

Throughout the remainder of this section, (X, w) is a compact symplectic manifold of dimension
2n > 6 and we only consider pseudo-holomorphic maps from smooth Riemann surfaces.

Definition 2.36. Denote by Zmp(X,w) C 7 (X, w) the subspace of those almost complex
structures compatible with « for which the following hold:

14



(1) there are no simple J-holomorphic maps with negative index,
(2) every simple J-holomorphic map with index(u) < 2n — 4 is an embedding, and
(3) every pair of simple J-holomorphic maps us, u, satisfying
index(u;) + index(u;) < 2n -4
either have disjoint images or are related by a reparametrization.
Denote by fe :nb (X, w) C Femb (X, w) the subset of those J for which, moreover,
(4) every simple J-holomorphic map is unobstructed. °

Definition 2.37. Given J, J; € 7 (X, ), denote by 7 (X, w; Ji, J1) the space of smooth paths
(Jt)tefoa) in 7 (X, w) from Jo and J;. Given Jo, ; € £, (X, w), denote by > (X, w, Jo, J1) the
subset of those (J;):e[0,1] € J (X, @; Jo, J1) such that for every ¢ € [0, 1]:

(1) Ji € Jemp(X, ) and
(2) ifu: (2, j) = (X, J;) is a simple J;~holomorphic map, then either:

(a) cokerd, ;jdj, = {0} or
(b) dim cokerd,, ;dj, = 1 and the map kerd,, jd;, — cokerd, ;dj, defined by

d _
& Pr(g du,jafsf),

s=t

with pr: Q% (Z,u*TX) — cokerd, ;J;, denoting the canonical projection, is sur-
jective. °

Proposition 2.38. Let A € Hy(X,Z) and g € Ny.

(1) Z’?r evei.’y] € Jx (X, w) the moduli space /%:“’g(X, J) is an oriented smooth manifold of
imension

2<Cl(X> w)>A> + 2(” - 3)(1 - g)
(2) Forevery pair Jo,Ji € F (X, ) and (Ji)rejo1] € I (X, 5 Jo, i) the moduli space

ﬂ:{,g(X, (]t)te[o,l]) = U -/%X,g(X,]t),

tel0,1]

is an oriented smooth manifold with boundary

M (X ) U=l (X, o).
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This is a consequence of the Implicit Function Theorem; see [MS12, Theorem 3.1.6 and
Theorem 3.1.7]. The orientation on the moduli spaces is obtained by trivalizing the determinant
line bundle of the family of operators d,, jéj; see [MS12, Proof of Theorem 3.1.6, Remark 3.2.5,
Appendix A.2]. If the moduli space is zero-dimensional, that is: a discrete set, then every
[u] € %X’g(X, J) is assigned a sign

signfu] € {+1,-1}.
The signed count of /%Xg(X, J) is then
#ﬂ;{,g(X,]) = Z sign[u].
[ul et} (X.])
Proposition 2.39.
() 7x, (X, 0) c F(X,w) is residual.
(2) For every pair Jo, Ji € F (X,), Ty (X, 0: Jo, ) € F (X, 03 Jo, 1) is residual,
The proof is a standard application of the Sard—Smale theorem; cf. [OZo9, Theorem 1.2;
[P18, Proposition A.4; MS12, Sections 3.2 and 6.3]. Some details of the proof will be reviewed in
the proof of Proposition 2.47.

2.8 J-holomorphic maps with constraints

Definition 2.40. Let A € N. A J-holomorphic map with A marked points is a J-holomorphic
map u: (2, j) — (X,]) together with A distinct labeled points z1, ...,z € 2.
The reparametrization of (u;zy,...,z5) by ¢ € Diff(X) is the J-holomorphic map with A

marked points @, (u;z1,...,zp) = (wo ¢~ d(z1), ..., P(zp)).
A J-holomorphic map (u;zy,...,z5) with A marked points is said to be simple if u is
simple. °

Definition 2.41. Given A € Hy(X,Z), g € No, A € N, and J € #(X, w), the moduli space of
simple /-holomorphic maps with A marked points representing A and of genus g is the set

ﬂ;\r’g’/\(x’ J)

of equivalence classes J-holomorphic maps u: (%, j) — (X, J) with A marked points z, ...,z
up to reparametrization with

w[X]=A and ¢(Z) =g
Define the evaluation map ev: /%Xg A(X,]) = X2 by

ev([u;z1,...,24]) = (u(z1),...,u(zp)). .
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Remark 2.42. Given twomaps f: X — Zand g: Y — Z, the fiber product is
X XY = (fxg) (D)

with A € ZXZ denoting the diagonal. If X, Y, Z are smooth manifolds and f and g are transverse
smooth maps, then X #x,Y is a submanifold of X xY of dimension dim(X)+dim(Y)—-dim(Z). &

Let (fi: VA = X )3\:1 be a A-tuple of pseudo-cycles in general position such that
codim(f}) = dim X — dim V)

is even and positive for every A. The following discussion assumes some familiarity with the
notions of pseudo-cycle, pseudo-cycle cobordism, and pseudo-cycle transversality. In particular,
we make use of the following facts, which are discussed in Appendix B:

(a) For every A € {1,..., A}, there is a manifold V/{9 of dimension dim(V)) — 2 and a smooth
map f7: V7 — X whose image contains the pseudo-cycle boundary bd(f}).

(b) A smooth map g: M — X is said to be transverse to the pseudo-cycle f; if it is transverse
to both f) and f/{’ in the usual sense.

(c) ForeveryI c {1,...,A} the product [, fa is a pseudo-cycle and f/{’ induces in a natural
way a map from a smooth manifold whose image contains bd([],¢; f1)-

In the following, f: V? — X stands for either f}: V3 — X or ff: V/{’ - X.
Definition 2.43. Given A € Hy(X,Z), g € Ny, and J € (X, w), set
/%;’g(x,];f;, v fa) = ﬂ;,g,A(X,]) evXfoscxpe Vi X X VR

The expected dimension of ﬂ:{’g (X, J; fis-- -, fa) is defined to be

A
vdim M5 (X, s fir o fa) = 2(e1 (X, ), A) + (n = 3)(2 = 29) + ) (2 - codim(fy)).  ®
A=1

The following are analogues of Definition 2.36 and Definition 2.37 in the setting of J-
holomorphic maps with constraints.

Definition 2.44. Denote by femb (X, @; fi, - - -, fo) C F (X, w) the subset of those almost complex
structures J compatible with @ for which the following conditions hold for every A, A;, A; €
HZ(X, Z), 9,91, 92 € No, and LL,I, C {1, ey A} with LNl =o:

() if vdim 2 (X, J; (f)aer) <O, then A3 (X, J5 (f)ser) = @5

(2) if vdim ./%:{’g (X, J; ( ) re1) < 2n — 4, then every J-holomorphic map underlying an
element of ﬂ;}g (X I ( f/{) le 1) is an embedding; and

(3) if vdim ﬂlzl;gl (X, J; (f)aer) +Vdimﬂ:{2’g2 (X, J; (f{)aer,) < 2n—4, then every pair of ev-

ery J-holomorphic maps underlying elements of ‘%:1(1,91 (X, J; ( fiaen ) and ﬂ;z,gz (X, J; ( £ ren,)
either have disjoint images or are related by a reparametrization.
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Denote by jc:nb (X, w; f15 - - -, fa) the subset of those elements of Zep (X, ; fi, - - ., fa) for which,
moreover:

(4) every simple J-holomorphic map is unobstructed, and

(5) forevery A € Hy(X,Z),g € N,and I C {1,..., A}, the pseudo-cycle [],¢; f2 is transverse
toev: %;g 1] (X,J) — X" in the sense of Definition B.s. .

Definition 2.45. Given Jy, J; € jfnb(X, ®; fi, - . ., fo), denote by je’:nb(X, @; fis -5 fas Jo, J1) the

e

space of smooth paths (J;);c[o,1] in # (X, w) from J; and J; such that for every ¢ € [0,1]:
() Jr € Jemb(X, 05 fr, .-, fa),
(2) ifu: (Z,j) = (X, J;) is a simple J;—-holomorphic map, then either:

(a) cokerd, ;dj, = {0} or
(b) dimcokerd,, ;d;, = 1 and the map kerd,, jd;, — cokerd, ;d;, defined by

d -
— —|  du;oi€).
§ pr( dS - u,j ]55)
with pr: Q*1(,u*TX) — cokerd, ;d;, denoting the canonical projection, is sur-
jective; in particular, for every A € Hy(X,Z), g € N, and k € N the moduli space
M (X Udecron) = || 3 (X T0)
tel0,1]
is an oriented smooth manifold with boundary ./%X’g)k (X, o —%X’g, (X, Jo),
and

(3) forevery A € Hy(X,Z),g € N,and I C {1,...,A} the pseudo-cycle [],¢; fa is transverse

to the evaluation map ev: ﬂ;g I (X,A; (]t)te[o,l]) — X!"I'in the sense of Definition B.3.
[}

The next two results are analogues of Proposition 2.38 and Proposition 2.30.
Proposition 2.46. Let A € H,(X,Z) and g € Ny.

(1) Forevery] € g2 (X,w;fi,..., fa) the moduli space /%X’g (X, J5 £, ... f3) is an oriented
smooth manifold of dimension

vdim A5 (X, T £ i)

(2) Forevery pair Jo,Ji € 5\ (X, @; fi, ..., fa) and (Jo)iepoa) € Ly (X @3 fis s fas Jos J1)
the moduli space

/%X,g(X, (ft)te[o,l]);ﬁ.a---’f/;) = U /%X,g(X,ft;ﬁ.,---,fA.)

tel0,1]

is an oriented smooth manifold with boundary

ﬂzg(X,];fl',...,f/;) I —ﬂz,g(X,];ﬁ',...,f/:).
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Proposition 2.47.
() 2 (X, 0 fi,.... fa) € F(X, ) is residual.
(2) For everypair]()sjl € je:(nb(x’ (/);ﬁ, . '5fA): fe’:nb(X, (/);ﬁ, . sz;]Oa.]l) C j(X,O);]O,]l)

is residual.

Proof. We will prove the first part; the proof of the second part is similar. It follows from
Proposition A.2, proved in Appendix A, that the set of J € (X, w) satisfying conditions (4)
and (5) from Definition 2.44 is residual. Note that condition (4) implies condition (1). To prove
that condition (2) is also satisfied by a generic J, consider the evaluation map

ev: My, (X, ] (f)aer) = X2
If ev is transverse to the diagonal X = A c X 2 then ev !(A) is a submanifold of codimension
dim A o (X, J; (f )aer) = 2n = dim M5 (X, J5 (fF)aer) = (2n = 4).

Therefore, if dim /%;'{,g (X, J; (f{)aer) < 2n —4, then ev™'(A) is empty and two distinct maps in
ﬂ:{’g (X, J; (f,{)/lel) have disjoint images. By Proposition A.2, the set of J for which the map

ev is transverse to the diagonal X < X? is residual. This shows that the set of J satisfying
condition (2) from Definition 2.44 is residual. In the same way we conclude that the set of J
satisfying condition (3) is residual. ]

The following will be important for relating moduli spaces defined using cobordant pseu-
docycles. Let F: W — X be a cobordism between two pseudo-cycles f; and f]' in X, and let
F?: W9 — X be such that bd(F) is contained in the image of F?; see Definition B.1 for the
notation and the definition of a pseudo-cycle cobordism. In what follows, F* denotes either F
or F°. Let f;,. .., fr be pseudo-cycles in X such that F, f;,. .., f are in general position, as in
Definition B.4.

Given J € #(X,w) and asubset I C {2,...,A}, set

M (X TP () rer) = g 110 06 T) Xl 0 WO X [ ]V
Ael

Definition 2.48. Let

I (X i F fo oo fa) © IX (X s [ for oo o) N TS (X 05 £ oo )

be the subset of those J for which the following conditions hold for every A, Ay, A; € Hy(X,Z),
9:91.92 € No,and LI1, I, € {2,..., A} with; N[, = @:

(1) if vdim .%X’g (X, J;F*, ( ) Aer) < 2n — 4, then every J-holomorphic map underlying an
element of ./%;{,g (X,]; F°, (f,f)/lel) is an embedding;

(2) if vdim 2 | (X, J:F*, (f)zer,) +vdim ), | (X, J; (f)re) < 2n — 4, then every pair
of J-holomorphic maps underlying elements of

M 0 X T F (faer) and MG, (X, TP (f)aer,)

either have disjoint images or are related by a reparametrization; and
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(3) for every A € Hz(X,Z), g € N,and I C {2,...,A}, the pseudo-cycle F X [],¢; fa is
transverse as pseudo-cycle with boundary to ev: ﬂ;g | I|+1(X, J) — X#1 in the sense
of Definition B.3. °

It follows from this definition that for every J € je:‘nb (X, w;F, fas-. s fa), FX o X ... X fais
transverse as pseudo-cycle cobordism to ev : ﬂ:{gA(X, J) — XA Inthis case, ./%Xg(X,];F,fz, ..

is an oriented cobordism from ./%X’g(X,];flo,fz, ..., fa) to ./%X,g(X,];fll,fz, s fA)-
Proposition 2.49. je:‘nb (X, w;F, fo, ..., fa) is residual in (X, w).

The proof is almost identical to that of Proposition 2.47.

3 Gromov compactness

3.1 Deformations of nodal Riemann surfaces

Definition 3.1. Let 2" and A be complex manifolds and let 7: & — A be a holomorphic map.
Set n := dimc A and suppose that dim¢ & = n + 1. A critical point x € 2 of x is called nodal if
there are holomorphic coordinates at x and holomorphic coordinates at 7 (x) with respect to

which

m(z,w, b, ..., ty) = (2w, ta,. .., 1,).

A nodal family is a surjective, proper, holomorphic map 7: & — A between complex manifolds
of dimension dim¢ & = dimc A + 1 such that every critical point of  is nodal. The fiber over
a € A is the nodal Riemann surface (3, j, v) associated with the nodal curve 7~!(a). Henceforth,
we engage in the abuse of notation of identifying n~*(a) with (%, j, v). o

Definition 3.2. Let (3, j, v) be a nodal Riemann surface. A deformation of (, j, v) is a nodal
family 7: & — A, together with a base-point *x € A, and a nodal, biholomorphic map
(25, v) = 7 (%). o

Definition 3.3. Let (3, j, v) be a nodal Riemann surface and let (7: & — A, %,1) and (p: ¥ —
B, 1, k) be two deformations of (2, j, v). A pair of holomorphic maps ®: & — % and¢: A — B
forms a morphism (®, ) : (p, *,1) — (¥, 1, k) of deformations if

¢(*):T, pod=¢dom, Poi=«k

and for every a € A the restriction ®: 77!(a) — p~'(¢(a)) induces a nodal, biholomorphic
map. °

Definition 3.4. A deformation (p: % — B, T, k) of (3, j, v) is (uni)versal if for every deforma-
tion (m: & — A, %,1) of (3, j, v) there exists an open neighborhood U of x € A and a (unique)
morphism of deformations (7: 77 1(U) — U, *,1) — (p, T,x). .

A nodal Riemann surface (2, j, v) admits a universal deformation if and only if it is stable
[DM69; ACGHu1, Chapter XI Theorem 4.3; RSo6, Theorem A]. However, every nodal Riemann
surface (2, j, v) admits a versal deformation. This will be discussed in detail in Section 4.
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Definition 3.5. Let (7: & — A, %,1) be a deformation of a nodal Riemann surface (2, j, v).
Denote by S the nodal set of v. A framing of (, %, 1) is a smooth embedding ¥: (Z\S)XA —» I
such that

mo¥=pr, and Y(, %) =1 °

3.2 The Gromov topology

Let X be a manifold and denote by % (X) the set of almost Hermitian structures (J, h) on X
equipped with the C* topology. The following defines a topology on

Mag(X):= || HagX)).
(Lh e (X)

Definition 3.6. Let (X, J, h) be an almost Hermitian manifold. Let (2, j, v) be a closed, nodal
Riemann surface. The energy of a nodal map u: (3,v) — X is

1
E(u) = —/|du|2vol.
2 Js
Implicit in this definition is a choice of Riemannian metric in the conformal class determined by

Jj- The right-hand side, however, is independent of this choice. °

Definition 3.7. Let (_](), ho) S %(X) Let [uo: (Zo,jo, V()) g (X,]O)] S %A)g(x,]o), let
(m: & — A, *,1) be a versal deformation of (2, jo, Vo), let ¥ be a framing of (=, %, 1), let
e>0.let Uy € C*(30\S, X) be an open neighborhood of ux|5,\s in the C}>. topology, and let
Ug be an open neighborhood of (Jy, hy) in % (X). Define

U (uo, &, Uy, Uz ) C %A,g(x)

to be the subset of the equivalences classes of nodal J-holomorphic mapsu: (3, j,v) — (X, ])
satisfying the following:

(1) (J.h) € U,

(2) 1E(u) — E(uo)| < e,

(3) (2, j,v) = 7~ '(a) for some a € A, and
(4) @:=uo¥(,a) €U,

The Gromov topology on %A,g (X) is the coarsest topology with respect to which every subset
of the form % (uy, ¢, Uy, Uy ) is open. °

In practice, it is more convenient to use the notion of Gromov convergence defined on the
level of nodal maps.

Definition 3.8. Let (X, Joo, hoo) be an almost Hermitian manifold and let (Ji, hix)xen be a sequence
of almost Hermitian structures on X converging to (Jo, i) in the C* topology. For every
k € NU {oco} let ug: (Zk, jk, vk) — (X, Ji) be a nodal Jy—holomorphic map. Denote by S the
nodal set of (2, Vo). The sequence (ug, ji)ren Gromov converges to (e, jo) if
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(1) limg—e E(uk) = E(uoo) and
(2) there are:

(a) a deformation (7: L — A, des, Leo) Of (Z oo, joos Veo) together with a framing P,
(b) a sequence (ay)ren in A converging to ac, and

(c) anodal, biholomorphic map tx: (2, jk, k) — 7~ (ax) for every sufficiently large
k €N,

such that the sequence of maps
g = ug o ’1;1 oW(+,ar) Ol Too\S = X
converges to ux|s,,\s in the > topology. .

Remark 3.9. If (7, %, 1) is a versal deformation of (2, joo, Veo) and ¥ is a framing of this deforma-
tion, then for every sequence (uy, jk)xen Which Gromov converges to (U, jo) the deformation
in Definition 3.8 can be assumed to be (7, %, 1) and the framing can be assumed to be ¥. This is
an immediate consequence of the definition of a versal deformation. *

Theorem 3.10 (Gromov [Gro85]; see also [PW93; Yegs; Humgy; MS12, Chapters 4 and 5]). Let
(X, Joo» hoo) be a closed almost Hermitian manifold and let (Ji, hx)ren be a sequence of almost
Hermitian structures on X converging to (Jw, hoo) in the C* topology. For every k € N let

up: Cr i vie) = (X, Ji)

be a stable nodal J—-holomorphic map. Denote by #my(2Zy) the number of connected components of
Sk If

lim sup #7(Zx) < co, limsup pa(Zk, k) < 00, and limsup E(uy) < oo,
k—o0 k—oo k—o0
then there exists a stable nodal Jo.—holomorphic map ue: (Zeos joos Vo) — (X, Joo) and a subse-
quence of (uk, jk)ken which Gromov converges 10 (Uco, joo). The limit (Uoo, joo, o) IS Unique up to
automorphism.

Remark 3.11. The Gromov topology on %A,g (X) is metrizable, which can be seen as follows.
Theorem 3.10 implies that it is Hausdorff and the projection map %A’g(X) — Z(X) xRis
is proper and closed. This implies, in particular, that %A,g (X) is a regular topological space.
(In general, if A is a Hausdorff space, B is a regular space, and f: A — B is a proper, closed
map, then A is a regular space.) Urysohn’s metrization theorem says that a second countable,
Hausdorff, regular space is metrizable. *

Henceforth, let (X, w) be a symplectic manifold. The set # (X, ) of almost complex struc-
tures compatible with w injects into # (X).
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Proposition 3.12 (Gromov [Gro8s5]; see also [MSi2, Lemma 2.2.1]). Let (X, w) be a symplectic
manifold and J € # (X, w). Let (%, v, j) be a closed, nodal Riemann surface. For every nodal map
u: (Z,v) » X

E(u) > (u*[w], [Z]),

and the equality holds if and only if u is J-holomorphic. Here E is to be understood with respect to
the Riemannian metrich = w(-, J-) on X.

Set

MagX0) = || agX. D).
JeF (X.0)
By the above energy identity, in the symplectic context, Theorem 3.10 is equivalent to the map

T %A,g(xsw) - J (X, 0)

being proper.

3.3 Behavior near the vanishing cycles

The results of this subsection will be important for proving the surjectivity of the gluing
construction in Section 5.6. Assume the situation of Definition 3.8. By condition (1) for every
& > 0 there are K € Ny and r > 0 such that for every k > K

E(”klN,:) )
with
(3.13) N =5 \{¥(z, ax) : z € Xy with d(z,S) > r}.

The subset Ny can be partitioned into regions N/  corresponding to the nodes n € S. If n is not
smoothed out in 2, then the corresponding region is biholomorphic to

B1(0) L1 B(0)

with v, identifying the origins. If n is smoothed out in X, then the corresponding region is
biholomorphic to
§' X (=Li, L)

with limy_, Lr = 0.
The behavior of J-holomorphic maps from such domains and with small energy can be
understood through the following two results.

Lemma 3.14 ([MS12, Lemma 4.3.1]). Let (X, ], h) be an almost Hermitian manifold. There is
a constant § = 6(X, J,h) > 0, depending continuously on (J, h), such that for every r > 0 the
following holds. Ifu: (B, (0),i) — (X, ]) is a J-holomorphic map with

E(u) <6,
then

ldul|r (B, (0)) < cr 1E(u)'/?,
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Lemma 3.15 ([MS12, Lemma 4.7.3]). Let (X, J, h) be an almost Hermitian manifold. For every
u € (0,1) there are constants: § = 8(X, J,h,u) > 0, depending continuously on (J,h), and
¢ = c(p) > 0 such that for every L > 0 the following holds. Ifu: (S' X (=L,L), jey1) — (X, ]) isa
J—holomorphic map with

E(u) <6,

then for every £ € (0,L)
E(ulsix(rrer—r) < ce” O E(w).

and for every 0 € S' and t € [-L+1,L — 1]
|du|(0, ) < ce *LIEDE@)1/2,

Proof. The first assertion is [MS12, Lemma 4.7.3]. The second assertion follows from the first by
Lemma 3.14. [ ]

The following is an important consequence of the previous two lemmas.

Proposition 3.16. Let (ur: (Zg, jr, Vi) = (X, Jk))ren be a sequence of nodal pseudo-holomorphic
maps which Gromov converges t0 Uso: (Zcos joos Vo) — (X, Joo). Denote by S the nodal set of
(3w, Vo) and let Ny be as in (3.13). For every § > 0 there arer > 0 and K € N such that for every
k>Kandnes

up(Nf,)) € By (tteo(n));

in particular, provided § is sufficiently small,

(i)« [Zk] = (too)« [Zeo].

4 Versal deformations of nodal Riemann surfaces

The purpose of this section is to construct a versal deformation of a nodal Riemann surface in a
rather explicit manner.
4.1 Deformations of nodal curves

Let us briefly review parts of the deformation theory of nodal curves in the complex analytic
category. For further details and proofs we refer the reader to [ACGH11, Chapter XI Section 3].
A thorough discussion of deformation theory in the algebraic category can be found in [Hario].

Definition 4.1. Let C be a nodal curve. A deformation of C consists of

(1) aproper flat* morphism 7: & — A between analytic spaces such that every fiber of r is
a nodal curve,

(2) abase-point x € A, and

A morphism f: A — B between two analytic spaces is flat if it makes the stalk O4 4 into a flat Op f(5)-module
for every a, that is: tensoring by 04 4 preserves short exact sequences of Op f(q)—modules.
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(3) an isomorphism t: C — 77 1(%). °

Proposition 4.2. Every nodal family r: & — A is flat. In particular, a deformation of a nodal
Riemann surface (2, j, v) is also a deformation of the associated nodal curve C.

Definition 4.3. Let C be anodal Riemann surface andlet (7: & — A, *,1)and (p: ¥ — B, {,k)
be two deformations of C. A pair of analyticmaps ®: & — % and¢: A — Bformsa morphism
(@,9): (p,*,1) = (%, 1,k) of deformations if

p(x) =1, pod=¢om, Poir=k,

and for every a € A the restriction ®: 77 !(a) — p~'(¢(a)) induces an analytic isomorphism.
[ J

Definition 4.4. A deformation (p: % — B, {,k) of C is (uni)versal if for every deformation
(m: & — A, 1) of (2, j,v) there exists an open neighborhood U of x € A and a (unique)
morphism of deformations (7: 77 1(U) — A, x,1) — (p, T,x). o

Definition 4.5. Denote by C[¢]/¢? the ring of dual numbers and set D := Spec(C[e]/¢%). A first
order deformation is a deformation over D. °

Let C be a nodal curve. Every first order deformation (7: & — D, 0,1) of C induces a short
exact sequence

0—>@C%7T*Q1D—>Q}Z®@cl—>gé—>0.

The map 7*Q}, — Qb ® Oc is given by pulling-back forms from D to 2 and Q4. ® Oc — Q.
is given by restricting forms on 2 to C. The extension class § € Ext'(QL, O¢) of this sequence
depends on the first order deformation only up to isomorphism of deformations. Indeed, two
first order deformation of C are isomorphic if and only if they yield the same extension class 8.

Definition 4.6. Let C be a nodal curve and let (n: & — A, %,1) be a deformation of C. Every
v € T, A corresponds to an analytic map ¢: D — A mapping 0 to x. The pullback of (x, , 1)
via ¢ is a first order deformation. Denote by §(v) € Ext'(QL, Oc) the corresponding extension
class. The map &: TxA — Ext!(QL, Oc) thus defined is called the Kodaira-Spencer map. o

It is instructive to analyze Ext!(QL, Oc) more closely. The local-to-global Ext spectral
sequence yields a short exact sequence

0 — HY(C, #om(QL, Oc)) — Ext}(QL, Oc) — H(C, &t} (QL, Oc)) — .

This can be interpreted in terms of the normalization 7: C — C as follows. Denote by S the set
of nodes of C and set S := 771(S). It can be shown that

%"om(Qlc, Oc) = ﬂ*%(—g); hence: H!(C, #om(QL,00)) = HI(CN,%(—g))

The space H'(C, %(—5)) parametrizes the deformations of the marked curve (C,S); that is:
deformations of C which fix S point-wise. The sheaf &xt'(QL, Oc) is supported on the nodes of
C:

&t (QL, 0c) = P Ext'(QL,, Oca).

nes
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For every n € S and {n,n;} = 7~ (n)
Ext! (Qf,, Ocn) = Tn,C ® T, C.

By considering the deformation {zw = ¢} of the node {zw = 0}, the space Extl(Ql’n, Oc.n)
can be seen to parametrize smoothings of the node n. The above discussion show that to first
order all deformations of C arise from smoothing nodes and deforming its normalization while
fixing the points mapping to the nodes. In the following we construct a deformation of C which
induces all of these deformations to first order.

4.2 Smoothing nodal Riemann surfaces

Let (2o, jo, Vo) be a closed, nodal Riemann surface with nodal set S. Let gy be a Riemannian
metric on ¥ in the conformal class determined by j, and such that there is a constant Ry > 0
such that for every n € S the restriction of gy to Bsg,(n) is flat and for every nj,n, € S
the balls Byg,(n1) and Byg,(n2) are disjoint. For every n € S define the holomorphic charts
¢n: B4R0(n) C Tp3o — 2 bY
$n(v) = exp,(v)
and define r,,: o — [0, c0) by
rn(2z) := max{d(n, z),4R,}.

Given a pair of complex vector spaces V and W, denote by 6: VW — W ® V the
isomorphism defined by o(v ® w) = w Q0.

Definition 4.7. A smoothing parameter for (2, jo, vo) is an element

T = (Tn)nes € l—l T30 ®c Tv(n)ZO

nes

such that for everyn € S
Tyn) = 0(1p) and |7,] < RS.

Given a smoothing parameter 7, for every n € S set
&n = || and 7, =1,/|tm| if 1, #0;

furthermore, set
¢ = max{e, : n € S}. °

Henceforth, let 7 = (7,,),es be a smoothing parameter for (2o, jo, vo)-

Definition 4.8. Set
A ={w € Xy : /Ry < rp(w) < Ry for some n € S with ¢, # 0}
and denote by 1,: A; — A; the biholomorphic map characterized by
brk 010 $u(0) B0 =1,

for every n € S and v € T, X with ¢,/Ry < |v]| < Ry. °

26



Definition 4.9. Consider the Riemann surface with boundary
)= {z €2 :ru(2) 2 8,11/2 for every n € S}.

Denote by ~; the equivalence relation on X7 generated by identifying the boundary components
via t;. The quotient
=20~

is a closed surface. The restrictions of the complex structure j, and the nodal structure v, to =
descends to a complex structure j; and a nodal structure v; on X;. The nodal Riemann surface
(24, jz» v7) is called the partial smoothing of (2, jo, vo) associated with 7. °

Remark 4.10. The above construction smooths out every node with ¢, > 0. In particular, if all
of the ¢, are positive, then v; is the trivial nodal structure and (2, j;, v;) is simply the Riemann
surface (2, j7). )

Definition 4.11. Denote by A the space of smoothing parameters for (2, jo, vo). Set
L ={(z1) e xA:z€52}/~

with (z1,71) ~ (22,72) if and only if 4 = 75 and z; ~; 2zz or 21,22 € S, v(z1) = 23, and

€z, = &, = 0. Denote by 7: & — A the canonical projection. .

The following example will be important in the proof of Theorem 1.1 in Section 5.8.

Example 4.12. Let (24, j;, v1) and (2, j2, v2) be two nodal Riemann surfaces with nodal sets
S; and S,. Given x; € ;\S; for i = 1, 2, we define a new nodal Riemann surface (2, js, va) by
setting X4 = X1 I ¥, and va(x;) = x2 (and otherwise agreeing with v; and v;). The nodal set of
(Za, ja, va) is

Sa ={x1,x} LIS, 1IS,.

Accordingly, the space of smoothing parameters for (Zs, ja, va) is
As =Ny X A1 X Ag,

where A, is an open neighborhood of zero in Ty, %1 ®c T, 22.

Suppose now that (X4, ji, v1) is a tree of spheres. It is easy to see that for every smoothing
parameter 7, = (7o, 71, 72) such that 7y # 0 and 7y, # 0 for every node n € Sj, there is a
biholomorphism

(2&,1',., Ja> V‘r,,) = (Zz,rz,jrz, Vrz)-

In particular, if 7y # 0, 71, # 0 for every n € Sy, and 7, = 0, there is a biholomorphism

(zﬂo,‘[_w jT.p VT;.) = (227 j29 VZ)' L)

Proposition 4.13. 2 is a smooth manifold and the complex structure on %o X A induces a complex
structure on 2 such that & is a nodal family and for every t € A the canonical map >, — 77 (1)
induces a nodal, biholomorphic map 1,: (3, jr, vz) — m (7).
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Proof. Tt suffices to consider the local model of a node Cy = {(z,w) € C? : zw = 0}. T =
{(z,w,7) € C® X C : zw = 1} is a complex manifold. The map 7: Z — C defined by
7(z,w,7) = t has only nodal critical points and its fiber over 0 is Cy. The nodal Riemann
surface associated with C is ¥y = C I C with the complex structure i on both components and
the nodal structure which interchanges the origins of the components. The partial smoothing
defined in Definition 4.9 is

Se=({zeCilzl > 72} T {we C:|w| > []/?}) )~

The map &: & — Z defined by ®([z],7) = (z,7/z 1) and ®([w], 7) := (z/z, 2, 7) is biholo-
morphic. This implies the assertion. [ ]
4.3 Construction of a versal deformation

Let (2, jo, vo) be a nodal Riemann surface with nodal set S. Denote by #(Z) the space of
almost complex structures on Xy and by Diff((Zo, vo) the group of diffeomorphism of 3, which
are isotopic to the identity and commute with v,. Denote by

T = F(30)/Diff(20, vo)

the corresponding Teichmiiller space. This is a complex manifold and there is an open neigh-
borhood A; of 0 € C4™c 7 together with amap j: A; — #(3) such that:

@ J(0) = jo,

(2) for every o € A; the almost complex structure j(o) agrees with j, in some neighborhood
U of S, and

(3) themap [j]: A; — T is an embedding.

For every o € A; set
ZO',O = 205 jO',O = J(O-), and VO',O = V0.

Choose a family of metrics (gs.0)sca, Whose restriction to the neighborhood U of S is indepen-
dent of ¢ and such that g, is in the conformal class determined by j, o for every o € A;. Let
Ry > 0 be such that the conditions at the beginning of Section 4.2 hold for every ¢ € A; and
B4R0 (S) cU.

Denote by A, the space of elements

T= (Tn)nES € l_l Tn20 ®c Tv(n)z()

nes

such that for everyn € S
Tyn) = 0(1p) and |7,] < R(z).
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Definition 4.14. Set A := A; X A,. Set
X = {(z;a,r) EXgXA{XNAy:z€ me}/fv

with (z1; 01, 71) ~ (22502, 72) if and only if 01 = 03, 71 = and z; ~,, z3 or 71 = Ty and 2z ~4, 2,
or z1,z3 € S, v(z1) = 22, and ¢;, = ¢;, = 0. Denote by 7: & — A the canonical projection. e

Proposition 4.15. X is a smooth manifold and the complex structure on %y X A induces a complex
structure on & such that  is a nodal family and for every (o, ) € A the canonical map ¥, —
n71(0, 1) induces a nodal, biholomorphic map i5..: (Zo.zs jo.rs Vo.r) — m (0, T).

Theorem 4.16 (cf. [ACGH11, Chapter XI Theorem 3.17 and Section 4]). Set x := (0,0) and 1 = 1.
The deformation (1, %, 1) of (Z, jo, Vo) is versal.

Proof. Denote by C the nodal curve associated with (2, jo, vo). It is proved in [ACGH11, Chap-
ter XI Theorem 3.17] that the Kodaira-Spencer map §: TyA; X ThA, — Ext!(QL, Oc) is an
isomorphism. This implies that the deformation is versal. Indeed, C has some versal family
(p: % — B,¥,«) for which the Kodaira-Spencer map is an isomorphism. Therefore, after
possibly shrinking A, there exists a morphism of deformations (®,¢): (z,x,1) — (p, T, ).
Since both Kodaira-Spencer maps are isomorphism, after possibly shrinking A, ¢ is a holomor-
phic embedding. Therefore, after possibly shrinking both A and A, both deformations become
isomorphic. |

To define a framing of the deformation (r, %, 1), choose an increasing, smooth function
n: [0,2] — [1,2] such that

n(0)=1 and n(r)=r forevery 3/2<r<2.
Definition 4.17. Define the framing ¥: X(\S X A — & of (7, x,1) by

Un(2) ifr,(z) < 25,11/2 for somen € S
¥Y(z;0,7) =

(z;0,7) otherwise,
with i, (z) defined by

- 1/2 ¢n' (2)
Un(2) = ¢n(n(rn<z>/en ) —rn(z)/e}/z)'
Observe that 1, is defined so that:

(1) r(Yn(2) = 5,11/2, so that indeed ¥,,(z) corresponds to a point in ',
(2) ¥, defines an embedding from a punctured neighborhood of n in %y to 2,

(3) Yn(z) =zwhenr,(z) = 3/26‘,1,/2, so that ¥ is continuous. .
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Remark 4.18. Let (0,7) € A and r € (2¢'/2, Ry). Set
20 = {z € 2p : rp(z) > r for every n € S}.

Denote by
N}, =3::\Y(2f X {(0,7)})

the part of X, ; not covered by X under the framing ¥, cf. Section 3.3. By construction,

roo_ r
NO',T - U No‘,l’;n
nesS
with
o,T;n

N = N;)m(n) = {z €2y, :rn(2z) <rorryp(z) < r}/~T )
If ¢, = 0, then N

o.:n 18 biholomorphic to

B,(0) L B,(0)

and the nodal structure v, ; identifies the two origins. If ¢, # 0, then N

&.z:n 18 biholomorphic to

{zeC:e/r<|z] <r}=S'x (—log(rg,_,l/z),log(rg,_ll/Z)). &

5 Smoothing nodal J-holomorphic maps

The purpose of this section is to prove Theorem 1.1. The strategy is to construct a Kuranishi
model for a Gromov neighborhood of u., and analyze the obstruction map. This idea goes
back to Ionel [long8] and has been used by Zinger [Zinog] and Niu [Niu16] to give a sharp
compactness results for genus one and two pseudo-holomorphic maps.

Throughout this section, fix a smooth function y: [0, c0) — [0, 1] with

(5.1) Xl =1 and  y|[2e) =0

and, moreover, fix p € (2, c0).

5.1 Riemannian metrics on smoothings

Let (2o, jo, Vo) be a nodal Riemann surface with nodal set S. Denote by gy a Riemannian metric
on X, as at the beginning of Section 4.2. In Section 4.2 we discussed the construction of a
smoothing ¥, of £, for every smoothing parameter 7. In this section we construct a Riemannian
metric g, on ¥; which is uniformly equivalent to the metric gy on ¥ in the smoothing region.
This property will be useful for proving estimates in the construction of a smoothing of a nodal
pseudo-holomorphic map from ¥,.

Definition 5.2. Given a smoothing parameter 7, let 27 be as in Definition 4.9. Recall that for
every node n € S we have the corresponding number ¢, = |7,|, the size of the smoothing
parameter at n, and local radial coordinate r,,: Xy — [0, 00).
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Define the Riemannian metric g; on X7 by

_go+z ( 1/2) n () (rPdr@dr+0®0) — go)

nes

with r denoting the distance from origin in T,,% = C and 6§ = —dr o j;. Since the Riemannian
metric r?dr ® dr + 6 ® 0 on C* is invariant under the involution z - ¢/z, g° descends to a
Riemannian metric g, on X;. °

Proposition 5.3. There is a constant ¢ > 1 such that for every nodal Riemann surface and every
smoothing parameter T

-1 o
¢ go < g, <cgo.-

Proof. Let n € S and let r and 6 be as in Definition 5.2. On the annulus {z €3 5,11/2 < rp(2) <
1/2
4e, }

Pigo=dr@dr+ri0®0

and, therefore,

g:Z(anOrn)-go with F; (r) _1+X(2 1/2),(&1’,—2_1)'

1/2

This implies the assertion because ¢! < F, (r) < ¢ for 51/2 < r < 4dg, [

Henceforth, the L? and W? norms of all sections and differential forms on ¥, are understood
with respect to the metric g;. The above proposition will often be implicitly used to bound these
norms by estimating various expressions with respect to gy over the corresponding region in
20-

5.2 Approximate smoothing of nodal /-holomorphic maps

Throughout the next four sections, let (X, J, h) be an almost Hermitian manifold, let ¢, > 0,
let up: (2, jo, vo) — (X, J) be a nodal map, and let 7 be a smoothing parameter. Furthermore,
choose gy and Ry as at the beginning of Section 4.2.

Definition 5.4. For every pomt x € X, denote by U, C T, X the segment/injectivity domain and
set Uy = expx(U ) and 1 21Uy = exp,(3 Uy). The map exp, U, — Uy is a diffeomorphism and
its inverse is denoted by expyl: Uy — Uy. .

Furthermore, we assume the following.

Hypothesis 5.5. The map uy and Ry > 0 satisfy

lluollcz < ¢ and  ug(Byg,(n)) C Uyy(ny forevery nes.
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Convention 5.6. Henceforth, constants may depend on p, (2, jo, vo), (X, J, h), ¢y, and Ry, but
not on 7.

Definition 5.7. For n € S define y?': X, — [0,1] by

)

Xr(2) = X( R

Let 1; be the map defined in Definition 4.8. Define 47 : 2 — X by
o) {expuo(n> (X0, © () + X2(2) - expl ) 0 wo(tr(2))) i ru(2) < 2R
uy(z) otherwise.
Since uy(vo(n)) = up(n), the restriction of u; to
{z € X7 : rp(z) < Rfor somen € S}
is invariant under i,. Therefore, u; descends to a smooth map
Ur: 2 — X.
This map is called the approximate smoothing of u associated with . .

Remark 5.8. This construction differs from that found, for example, in [MS12, Section 10.2; Par16,
Section B.3] in which the approximate smoothing is constant in the middle of the neck region.
The above construction is very similar to that in [Gouoo, Section 2.1]. It leads to a smaller error
term and significantly simplifies the discussions in Section 5.7. Morally, this section analyzes
how the interaction between the different components of u, affects whether uy can be smoothed
or not. The constructions in [MS12, Section 10.2; Par16, Section B.3] make it difficult to see such
interactions. &

Proposition 5.9. For every nodal map uy: Xo — X (not necessarily J-holomorphic) the map i,
satisfies

1
3+

(5.10) 19y (e, je)llLe < cll9f (uo, jo)llLo + e 7,

=

with ¢ = max{e, : n € S} as in Definition 4.7.

For the proof of this result and for future reference let us observe that for every k > 1

1 1
_kp\? 2r \» 1-k
(5.12) (/ rnkp) < ( ) el *.
Y2 <r,<2R, kp -2

Proof of Proposition 5.9. The map u; agrees with u in the region where r, > 2R, for every
n € S. Therefore, it suffices to consider the regions where r, < 2R, for some n € S. To simplify
notation, identify U, with U, via exp, for x := u(n). Here Uy, and Uy are as in Definition 5.4.
Having made this identification, in such a region, #; is given by

o n
U, =Ug+ X; - Uy O lg.
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Note that addition is well-defined since, with respect to the above identification, u, takes values
in an sufficiently small open subset of T, X. Therefore,

5 /~0 1 ~0 ~0 ~0 .
oy(uy, jr) = E(dur + J(47) odu; o ])

= 97 (uo, jo) + xr - 97 (uo © L7, jo)

=1

1
+ E(](ﬁ?) — J(ug)) o dug o jo+ x7 - %(](ﬁ?) —J(uo 0 17)) o d(ug © 17) © jo

=1L =1,
+0xr - upoir.
N ——
=III
The L? norm of the term I is controlled by the L” norm of 9;(uy, jo) over the regions of %
where &,/2Ry < r, < 2R, for some n € S. By Taylor expansion
1L | < cllJller - luo © tr] - |duo| < cen/rn

and

L] < ellJller - (luol + (1= )7) ~ lug o 1]) - 1d(uo © 1)

<
<c(rn+ (1= xDen/rn) - €a/rh < cen/rn.

On 2, by definition, r, > 8,1,/ % Therefore and by (5.11),

1
4

The term III is supported in the region where Ry < r, < 2Ry, whose area is independent of
&n, and satisfies
[II| < cldyr|lug o tr| < crn - (en/rn) = cén,

where in the last inequality we use that, with respect to the identifications introduced earlier,
up(0) = 0 so |up(z)| < c|z| in a neighborhood of 0. Therefore,

]| Lp < cep,. [ ]

5.3 Fusing nodal vector fields

The purpose of this section is to introduce the fusing operator. This operator assigns to every
vector field £ along u, a vector field fuse, (&) along #i;, which agrees with £ outside the gluing
region. The construction of the fusing operator makes use of the following local trivializations
of TX.

Definition 5.12. For every x € X and y € Uy define an isomorphism &, = @7 : T,.X — T,X by

(D);(U) = dexp;l(y) epr(U)

As y varies in Uy, these maps define a trivialization ® = ®*: U, X T, X — TX|y,. °
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The definition of the fusing operator uses a different cutoff function than the definition of
the approximate smoothing u,.

Definition 5.13. For n € S define p!: ¥, — [0,1] by

i) = x(rg%)

Here y is the cutoff function (5.1); that is: p! = 1 in the region where r, < E,l,/ * and pr=0in
. 1/4
the region where r, > 2¢,". °

Definition 5.14. Define fuse: W'PT (2, vo; ujTX) — W PT (22, vo; (42)*TX) by

D (12 (01 £+ P12 - (@1, E(1(2) = Q1Em))) i rn2) < 263"

fuse? (8)(2) = |
z) otherwise.
In the above formula, ® = ®* with x = ug(n). For every n € S the restriction of fuse; (¢) to
o 1/4
{z €X):rp(z) < ¢, forsomen € S}
is invariant under 1,. Therefore, fuse; induces a map
fuse, : WT(Zg, vo; us TX) — WUHPT(S,, vy 612TX). .
The following is a counterpart of Proposition 5.9.

Proposition 5.15. For every £ € WYXPT (2, vo; usTX)

=

1D, fuse () llr < cldullLr +c2(e§f’ ten

nes

)II§|Iww'

The proof requires the following results as a preparation.

Proposition 5.16. For everyn € S and € € W"PT (2, v; u;TX)

1_
2

ldp? - (0 1r — Em) e < cet * [Ellwa.

Proof. Morrey’s embedding theorem asserts that W? < C%'=%/?_ Hence,

£ 0 10(2) = E()| < c(en/ra(2)) 7P| Ellwrr-

The term dp? is supported in the annulus P} = {6}/ Yl < 25,11/ 4} and satisfies
|dp?| < c5;1/4.
Since the area of P! is proportional to 5,11/ 2
1 1
—1/4 3/4(1-2/p) 1/2 i 7p
ldp? - (£ 0 e = Em)lIee < ce e * TP e PN Ell s = con el .
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Proposition 5.17. Let U C % be an open subset. Let uy,u;: U — U, and set
v = exp,' oup — exp, ' ou;.
For every & € C*(U, T, X)
|(@u, 0Dy, 0 @) = Dy, 00y, 0 D7) E] < c(folldE] +|do] €] + |duy]|E] o).

Proof. To simplify notation, identify U, with Uy via exp,.. Having made this identification,
becomes the identity map and v = u; — uy. Therefore,

D€ = D = 2 () = J () 0 Vo
# (Ve ) = (Ve)(w2) 0 duy
+ %(Vg])(uz) o (duy —duy) o j.
This implies the asserted inequality. n

Proof of Proposition 5.15. Outside the regions where r, < 2R, for some n € S the operators d,,
and d;_ agree. Within such a region and with the usual identifications

dgofuse; (&) = vy & + Dz — D) E+p7 - (E0 1 = E(n)) +pf - Dz (E0 1) — p7 - Da2(n) .

=1 =1 =1II =1V

The difference v := 47 —ug = y7 - up o I, satisfies
1/2
< cepfrn < cgp and
n n 2
< |dy7 - uo o te| + [ x7d(uo 0 12)| < cen/ry

Therefore, by Proposition 5.17 and (5.11),

1
IMllze < ceq €llwra-

By Proposition 5.16,

1_1
Illr < cen *lEllwa-

The term III can be written as

I = p} - (dg2€) 0 17+ pl - (Dae — Diszor, ) (€ 0 1),

The first term in this sum satisfies

P} - (daz€) o telle < |Duyéllze + IITlIze-
To estimate the second term, consider the difference

wi=1d; —d; 01, = (1— ") (up —up o ir).
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It satisfies

lw| < cr, and
|[dw| < c.
Since p? is supported in the region where 8,11/ < < 25,1,/ *, Proposition 5.17 implies that

llp™ - (das — Dazer, ) (£ 0 1) |le < cen P || Ellyn.

Therefore,
T e < 10wy Elle + cen P NE o

To estimate the term IV, write it in the form
IV = pg - (dag = du(n) ) (1),

with b, (,) denoting the operator associated with the constant map with value u(n). Since the
difference u; — u(n) and its derivative are bounded, again from Proposition 5.17 we conclude
that

Vil < cer/ Il .

5.4 Construction of right inverses

Throughout this subsection, let © ¢ L?Q%1(%,, uyTX) be a finite dimensional subspace such
that

(5.18) imdy, + 0 = LPQ" (2o, u; TX).
In particular, O surjects onto coker dy,.
Definition 5.19. Define pull,: LPQ%! (2o, ujTX) — LPQ* (2, uiTX) by

%,([z])q),jj(z)n(Z) if 8:/2 < ra(z) < 2Ry

n(z) otherwise.

pull (n)([2]) := {

Recall that X, is defined in Definition 4.9 by identifying the boundary components of
{rn > 5,1,/ ?} and {rvin) = 8,1,/ ?Y using ;. The operator pull, is obtained by simply restricting
(0, 1)—forms to these regions. The resulting (0, 1)-form on X, is typically not continuous but it
is still in L?. In particular, the ambiguity at r, = E:,/ % in Definition 5.19 is immaterial. The reader
should contrast Definition 5.19 with the definition of fuse,, cf. Definition 5.14, which produces
sections of class W2, and therefore continuous.

Definition 5.20. Define Suo : WHPT (2o, vo; usTX) @ O — LPQ! (2, u;TX) by

Suo(f, 0) =0y &+o0.
Define b;_: WYT (S, v it TX) @ 6 — LPQY (3, @' TX) by

i (£ 0) = by, &+ pull_(0). R
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By construction, Suo is surjective and, hence, has a right inverse 1, : LPQ%! (2, u;TX) —
WLPT (g, vo; usTX) ® O of Suo. Hengeforth, fix a choice of r,,,. The purpose of this subsection
is to construct a right inverse 1r;_to d;, for sufficiently small e.

Definition 5.21. Define push,: LPQ%! (2., a:TX) — LPQ*! (2, u;TX) by

0 if ry(z) < 5,11/2
push, (1) (2) = { Cuy (B3 |,y 1([2])  if &* < ra(2) < 2Ry .
n([z]) otherwise.

Definition 5.22. Define f;, : LPQ% (2, i:TX) —» W'PT (2, v;iiTX) & O by
1y, = (fuse; ®idp) o 1y, o push,. °

Proposition 5.23. The linear operator t;_ satisfies

=

_ 11
(5.24) ||bﬁT oty — id” < CZ(E,?’ +e) )Ilru0|| and

nesS

I%a. Il < cllvll-

Proof. The map push_ is bounded by a constant independent of 7 and, by Proposition 5.16, so is
fuse,. This implies the estimate on ||ty ||. B
Let n € LPQ% (3, u;TX). To prove (5.24), we estimate ||b,;rfgrry - ’7”1,1’ as follows. Set

(& 0) =1y, o push_(n),

so that
0y, + 0 =push_(n).

By Proposition 5.17 applied to @7 and uy and using (5.11) and the fact that on X7 we have
pull (o) = o,

1
IDaz & + pull,(0) = nllre < ce? [[E]lwrp
1
< ce [[ry llInlle-
Therefore, it remains to estimate

(5-25)  daz(py - (§otr—E(n)) =p7 - (§o1r—E(n)) +p7 - daz (&0 1) — pr - Dz £(n) .

=1 =1II =1II

By Proposition 5.16,

=

It Il 2o

To estimate the second term, observe that in the region where r,, > 5,11/ 2,

Dugor, (§ 0 1) = 17(dy, &) = 17 (push, (7)) = 0.

11 1
Mlie < ce? #||Ellwrp < ce?
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To understand the last identity, observe that r,(1,(2)) = e,r )(z) and push,_ () is defined to

-1
v(n
vanish in the region of X where r, ) < 5,1,/2. Thus, by Proposition 5.17 applied to @, and ug o i,

/

and using the fact that p? is supported in the region where 5,11/ Y < ry < 26,* whose area is

proportional to e,ll/ 2
a1 1
Illze < ce?[[Ellwre < ce? [ lllInliLe.

The vector field £(n) is constant with respect the chosen trivialization. Since the operator d,,(n)
associated with the constant map agrees with the standard 9-operator,

Duo(n)f(n) =0.

Therefore, using Proposition 5.17 applied to @, and the constant map u(n), and the estimate on
the area of the support of p7, we arrive at

1
Il < ce? ||ty lllInllLe. u
Throughout the remainder of this subsection, suppose the following.

Hypothesis 5.26. The smoothing parameter T is such that the right-hand side of (5.24) is at most
1/2.

Definition 5.27. Define the right inverse v;_: LPQ% (3, a:TX) —» WY (3, v;u:TX) @ O
associated with r,, by

_ -1 > _ k
T, = f’,}r (bgrfgr) = iﬁr Z (id — bﬁrfﬁr) . [
k=0
The following is an immediate consequence of the definition.
Proposition 5.28. The right inverset;_: LPQ" (3, 4:TX) —» WMT (2, vy uiTX) @ O satisfies

D, 1;, =id and

T

Ilra, || < cllty,ll;
furthermore,

im Iy, = im iﬁr.

5.5 Complements of the image of r;

Proposition 5.29. Given cy > 0 there is a constant 6 = §(cy) > 0 such that the following holds. If
T satisfiese < § and K ¢ WYPT (2, vo; Uy TX) is a subspace with dim K = dim kersuo and such
that for every k € K

[duklize < Sllkllwre and  |lkllwir < crllfuser (i) lwre,

then every (£,0) € WYPT (3, vy; i TX) @ O can be uniquely written as

(&0) = 13,1+ (K, 0)
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withn € LPQY (2., 4:TX) and x € K; moreover,

InllLe + llxllwie < c(ep)([[Ellwre + o).
Here |o| = ||o||r» is the norm of o induced by the inclusion 6 C LP Q! (2o, u;TX).

Proof. Because 1;;_ and fuse,|x are injective and given the hypothesis on fuse,|, it suffices to
show that WT (2., v;; uiTX) @ O is the direct sum of im(r;,) and im(fuse,|x) @ 0.
By the index formula (2.29), Remark 2.11, and Proposition 3.16,

index dy, = 2((uyc1(X, J), [Zo]) +2n(1 = pa(Zo, v0))
= 2((4r) e1(X, J), [Z:]) + 2n(1 = pa(3r, vr)
= index dg_.

Therefore and because d,, is surjective and r;, is injective,
codimim(r;,) = index d;, = index d,, = dimkerd,,.

Hence, it remains to prove that im(r;,) and im(fuse;|x) ® 0 intersect trivially.
Suppose that n € LPQ% (2, ,, #*TX) and k € K satisfy

1. (n) = (fuse,(k),0).

By Proposition 5.15 as well as the hypothesis on fuse, and for sufficiently small J,

Inllze = [1oa, fuser (x)||ze

< c[5+#$- (5* +5%_’%)]||K||WLP

<cep[s+#s- (5% +60F) |nlles
1

< §||’7||LP-

Therefore, n vanishes. u

5.6 Kuranishi model for a neighborhood of nodal maps

Throughout, let (2, jo, o) be a nodal Riemann surface with nodal set S, let (X, Jo, h) be an
almost Hermitian manifold, and let uy: (Zo, jo, vo) — (X, Jo) be a nodal Jy—holomorphic map.
Let (r: & — A, % =1(0,0),!) be the versal deformation of (g, jo, vo) constructed in Section 4.3
with fibers

(za,r: ja,r: Vcr,r) = 7T_1 (O', T)~
Let 67 > 0 and let
Uc{Je FX): 1= Il <5z}
be such that for every k € N

supl|J = Jollcx < oo.
Jeu
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In the upcoming discussion we may implicitly shrink A and d ¢, in order to ensure that Hypoth-
esis 5.5 and Hypothesis 5.26 hold and various expressions involving |o|, ¢ := max{e, : n € S}
with ¢, = |7,|, and ||J — Jol|c1 are sufficiently small.

The purpose of this subsection is to analyze whether u, can be slightly deformed to a
J-holomorphic map us;: (Zsr, jor Vor) — (X, J) with J € %. More precisely, we show
that a Gromov neighborhood of u in the space of nodal J-holomorphic maps with J € % is
homeomorphic to the zero set of a continuous map

ob: AXUXF — 0O,

where % an open subset of the deformation space ker d,,, j, and O = coker d, j, is the obstruction
space. This is a local Kuranishi model at u, for the universal moduli space of pseudo-holomorphic
nodal maps.

Remark 5.30. Since we are not interested here in the global properties of the universal moduli
space, we do not require that u is a stable map. A local Kuranishi model can be constructed
around any pseudo-holomorphic map. However, the Gromov limit, as defined in Definition 3.8,
is not necessarily unique for unstable maps, so the universal moduli space of all nodal pseudo-
holomorphic maps is not a Hausdorff space. *

To facilitate the discussion in Section 5.7 (and although it makes the present discussion
somewhat more awkward than it needs to be) the construction of the Kuranishi model proceeds
in two steps. Choose a partition

S= Sl I Sz with VO(Sl) = Sl and V()(Sz) = 52
and write every smoothing parameter 7 as
T=(11,72) with 7= (1 0)nes, and 1w = (Tzn)nes,-

The first step of our construction varies ¢ and 7; but 7, = 0 is fixed. The second step holds o
and 7; fixed and varies 7.
Denote by uso: 250 — X the smooth map underlying uy. Denote by

Dugsy 1 WHT(Zo, vos ug TX) — LPQY (2o, ugTX)
the linear operator associated with uy defined in Definition 2.26. Let
0 c Q" (20, ujTX) € LPQ" (30, uyTX)

be a lift of coker d,,.;,; that is: dim O = dim coker d,,, and (5.18) holds. We will assume that all
1-forms in O are smooth on each component of . (The canonical choice is O = ker DZO; "
but this choice is not always the most convenient.) Let A; parametrize complex structures on
(20, vo) as at the beginning of Section 4.3, and let % be an open neighborhood of J; as above.
Trivialize the bundle over A; x % whose fiber over (o, J) € A XU is Q%1 (340, u’ TX) with the

(0, 1)—part taken with respect to j;o and J. This identifies Q%! (%, uyTX) and Qo’l’(EU’o, uj;,OTX)
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and thus exhibits O as a subset of L Q%1 (3, uy ,TX) for which (5.18) holds for by, ;s instead
of dy,. Define

Bty 0 WPT (So,0,,0, Vaoi tly 1, oTX) © O — LPQY (Sg.1, 0, 115 1, o TX)

3
0,11,0 0,71,0

as in Definition 5.20. The construction in Section 5.4 yields a right inverse

Vi o)t L2 (S0, 8y 1 0 TX) = WHPT(S0,0,,05 Vo,ry 03 1 1, 0 TX) © O.
of bﬁa,q,o;]'

The next two propositions build a Kuranishi model for a neighborhood of u, in the Gromov
compactification of the moduli space of pseudo-holomorphic maps. In essence, they assert that
for every smoothing parameter 7 and an infinitesimal deformation k the pseudo-holomorphic
map equation can be solved modulo obstructions. The construction of the Kuranishi model
proceeds in two steps, described by Proposition 5.31 and Proposition 5.35, in order to obtain
better control of the obstruction map. The first step is to smooth the nodes in S;.

Proposition 5.31. There are constants 6., A > 0 such that for every (o, 71,0) € A and k € kerd,,
with |k| < Oy there exists a unique pair

(&(o, 3 J5x),0(0, 115 J5 %)) € imrg, oy C WEPT (262,05 Vo105 U 7 0 TX) ® O

with
IE(o, 7i; T ) lwre + lo(o, 113 J5x)| < A
satisfying
(5-32) Sty r, o7 (fuser ok + &(0, 715 J3 %)) + pull, o(0(0, 715 J5x)) = 0,

with § as in Definition 2.25. Furthermore,
1,1

(5:33) 1€(0, 715 T 1) llwr + lo(o, 713 J350) | < e(lol + 1727 + 11T = Jollco + |xcl).
Proof. Since ty,, . is injective, (5.32) is equivalent to the fixed-point equation

N =F(n) =1 = ity o, oy (user, ok +pry¥a, , o17) = pully, o (Prota,,oyn)-
Here pr, and pr, denote the projections to the first and second summand of

WUPT (S0,2,.0: Vorz1,03 tlgy 1, 0 TX) © O
respectively. By Proposition 2.32,
F(’]) = _a_](ﬁo')fl)o’ jo':‘[l,o) - bac,‘rl,odfuseflaOK - nﬁa,rl,OJ (fusefl:OK + prl ° rﬁo,rl,o;]’])'

By Proposition 5.9 and Proposition 2.32,

1,1
IF() e < c{lof+ 1T = Jolles + 1zl + x| + |-
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Moreover, by Proposition 5.28 and Proposition 2.32,

IF(n1) = F(n2)llze < c(ll + limllee + lInzllzo)lln: = nallze.

Therefore, provided Jy is sufficiently small, there is an R > 0 such that ||F(0)||.» < R/2 and for
every 11,12 € Br(0) c LFQ% (3, ., iy  TX)

1
IF(71) = F(n2)llze < 5”’71 — N2llre.

This shows that F maps Bg(0) into Bg(0) and F: Bg(0) — Bg(0) is a contraction. Thus, the
first assertion follows from Banach’s fixed-point theorem. The second follows from the above
and Proposition 5.9. ]

This completes the first step. In the second step, we smooth the nodes in S,. This step is
analogous to the first one, with uy being replaced by the maps obtained from Proposition 5.31.
For (o,7) € A and k € kerd,, with ||x|[yy1r < i set

Us, 11,0k = enggyrllo (fuserl,OK + f(U, 11;J;k)) and aozr;];x = (uogrl,O;];K)T;
that is: ii5 7.7, is obtained from us 7, o.7. by the construction in Definition 5.7.

Definition 5.34. Define pull,, , . : LPQYL(Z,, usTX) — LPQY (3510, o O]KTX) to be the
composition of pull, , with the map induced by parallel transport along the geodesics

> expﬁmrlxo(t(fuseﬁ,orc +&(o, 113 J; K))).

Furthermore, denote by pull . LPQYL(Z,, *TX ) — LPQY (2, ;g IX ) the composi-

TX) — LPQ" (2, ,, ﬁZ’T;];KTX) defined

o,7;];K

tion of pull, . o7, With pull : LPQ* (31,0, u

0,71,0;];k
in Definition 5.19. °
The subspace pull,, ;. .7, (0) satisfies (5.18) for ug 7, 0.7 instead of ug. Define
ity gt WHT (S Voriily 7, TX) ® 0 > LPQ¥ (Sgr, i .1, TX)

as in Definition 5.20. The construction in Section 5.4 yields a right inverse

Vig gt LPQY Cor @ 17 TX) = WHPT (S0.0, Vo3 g .7, TX) ® O

of d;

Uo,r; ]k

Proposition 5.35. There are constants §,, A > 0 such that for every (o,7;]) € A X % and
k € kerd,, with ||k||y1r < O« there exists a unique pair

(5(0-3 T!J’ K)s 6(0-, T3]5 K)) € lm rac’,f;]{;] - Wl’pr(zo',l'a VO' ‘[" UTKTX) @ @
with

1€(a, 73 T3 ) lwio + 16(0, 73 T55)| < A
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satisfying
(5.36) Fiory (E(a, T 5K)) + pull, ... (0(o, 715 J3%) +6(0, 73 ]3%)) = 0.

Furthermore,

637 N&(o, m:Js0)llwie +16(0, 73 J5)| < clldy (fho,riyics Jor) + Pully 1y (0(0, 713 T3 %)) ||
Proof. This is similar to the proof of Proposition 5.31. ]

Definition 5.38. Set .# := Bs_(0) C ker d,,. The Kuranishi map ob: AX% X . — O is defined

by
ob(o,7;J;x) = 0(o,11; J; k) + 0(0, 75 ]; k),

with o and 6 as in Proposition 5.31 and Proposition 5.35. °

The upshot of the preceding discussion is that u, can be slightly deformed to a J-holomorphic
map Usr: (Zors jor Vor) — (X, J); if and only if there is a k € # with ob(o, 7;J;x) = 0.
The following shows that this Kuranishi model indeed describes a Gromov neighborhood of
uo: (2o, jos vo) = (X, Jo).

Proposition 5.39. Let (ok, 7k )ren be a sequence in A converging to (0,0) and let (Jx)ren be a
sequence in % converging to J. If

(uk: (Zok,rksjok,rk, Vak,rk) - (X, ]k))keN

is a sequence of nodal pseudo-holomorphic maps which Gromov converges to ug: (2o, jo, Vo) —
(X, Jo) then there is a K € N such that for every k > K there are ki € kerd,, and (&.,0) €
im rﬁ“k’fk"ck Je with

we=expg,  (&);

moreover,
klim kx| =0 and klim I |lwre = 0.
In particular,
ob (o, ks Jiks ki) = 0.
The proof of this proposition relies on the following result.

Proposition 5.40. Assume the situation of Proposition 5.39. There areK € N, 8, > 0, andc > 0 such

that for every k > K and k € kerd,, with ||k||y1r < O thereis a {iy € T(Zo 7 ﬁ;k Tk,]k_KTX)
with

e = expﬁak.rk;]k;]k;rc(gkgk);

moreover,

lim sup|| ke llwre < clx].
k—oo
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Proof. The proof has two steps: the construction of (., and the proof of the estimate. Recall
the definition of U, from Definition 5.4.

Step 1. There are K € N and 6, > 0 such that for every k > K, k € kerd,, with ||x|[y.r < I,
andz € oy 7,

ue(2) € Uiy, 4, o (2)3

in particular, there is a section (i, € I'(Zq, 7, uy .. IX) given by

. -1
e o— ~ [¢] .
gk,lc eXp”"k’Tk‘JkiK Ug

By (5.33), (5.37), and Proposition 5.9,

1,1
(5'41) d(uak,rk;]k;m uak,rk;]k;o) < C(|o-k| + E;: Py ||]k _]OHCO + |K|)

Therefore, it suffices to consider k = 0 and prove that there exists a K € N such that for every
k>K

1
Uk(Z) € EUﬁak,Tka;O(z)'
Using the framing ¥ from Definition 4.17, define vg: £o\S — X and 0,4 : £o\S — X by
Uk = Uy © 11:1 oW¥(-;0r 1) 01ty and
U = ﬁak,rk;]k;o ° l];l o \P( 5 O0ks Tk) © Lo,

cf. Definition 3.8. Both of the sequences (vx)ren and (O )ken converge to up: %o\S — X in the
G topology—the former by Definition 3.8 and the latter by construction.
With the notation of Remark 4.18 forr > 0 and n € S set
Ny, =N,

Ok, Tksn*

Choose r > 0 as in Proposition 3.16 with § = éinj ¢(X). By the preceding paragraph, the
assertion holds for sufficiently large k and z ¢ N; . By Proposition 3.16 and by construction of
tig,r, for sufficiently large k

u(N7,) € Bs(uo(n)  and iy o (NL,) C Bs(uo(m));
hence, for every z € NIZn
1
ur(z) € EUﬁJkaJk;O(Z).

Step 2. There is a constant ¢ > 0 such that the sections (i, defined in the preceding step satisfy

lim sup||{kuc|lwir < clxl.

k—o0
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By (5.33), (5.37), and Proposition 5.9, we can restrict to ¥ = 0. Furthermore, it suffices to
prove that for every n € S

(542) lim im supl|Ziollwr (s ) = 0.
Slo n

k—o0

The case when n is not smoothed is straightforward. The framing extends to identify a neigh-
borhood of n in X, ;, with a neighborhood of n in 3. It follows from Lemma 3.14 and elliptic
regularity that, on this subset, the maps uy converge to u in the C}; topology. Let us therefore
assume that n is smoothed out; that is: ¢, # 0 for sufficiently large k.

Define py € C°°(N,:;n, Ty (n)X) and py € C‘X’(Nr;n, Ty (n)X) by

— -1 ~ -1 ~
Pk = €XPy (n) © Uk and  py = €XPyy(n) © Yor,mkiJi:0-

By construction,
lim || pk || w1 = 0.
k—oo

Therefore, it suffices to prove that

lim i ) sy=0
im lim supllpkllwie(nz )

k—o0

As explained in Remark 4.18, the subset N/ is biholomorphic to the cylinder

S'x (L, Ly) with Ly = log(re, }/?).

Hence, pi can be thought of as a map pzyl: S X (=Lg, L) — Tuy(myX. More concretely, the
canonical chart ¢, defines a holomorphic embedding

On: {v € T2 : Erll/]f < Jo] < r} — N,:;n
which glues via t; with the embedding ¢, to a biholomorphic map
Br(o)\Ben;k/r(O) = N]:;n'

Choose identifications T,,%y = C = T, (,) X, such that i,(z) = £,/z. The map p;yl is then defined
by

cyl . JPk© én (grll(lfefﬂe) ift >0
Pk (6.0) = [ 1/2 _p_ip .
Pk © Pu(n) (en;ke ) iftr<o.

. . . 1.
Since uy is Jx—holomorphic, p,iy is exp

)( Ji)-holomorphic. Since the energy is confor-
mally invariant,

*
up(n

E (P;iyl) = E(ung,,)-

Choose u € (1—-2/p,1). By Lemma 3.15,

cyl — —
Vo (0,01 < ce BV E (g )12,
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By the above and Proposition 5.3, for z € %7  with r,(z) <r

Vpr(2)] < er #ra(2)" E(ulyy, )%
There is a corresponding estimate with n replaced with v(n). Hence,
cr HP
(p—1p+2

Since (g — 1)p + 2 > 0, the right-hand converges to zero as s converges to zero. ]

s(y—l)p+2E( )P/Z'

||Vpk(2)||fp(Ni;n) < uklNr

Proof of Proposition 5.39. Let k > K and k € kerd,, with |x| < §,. Let (i be as in Proposi-
tion 5.40. By Proposition 5.29 the latter can be uniquely written as

Qi = fuseq (M) + Pry © Vi o gcllie With Agge € ker by,

It remains to be proved that after possibly increasing K for every k > K there exists a k € kerd,,
with |k| < & and A, = 0. The following statement is a consequence of (5.41), (5.42), and the
fact that v;, . .. depends smoothly on k when interpreted as a family of operators on a fixed
Banach space LF Q%' (2, ., ﬁ;k’fk; JeolX ) @ O using parallel transport along geodesics. If y is

sufficiently small, then for every k, ux can be written in the form
Uk = eXPg o (fuser, (k + Ak) + Vi ol + ek )s
with ey, satisfying lim sup;._, [|ex.0llw1» = 0 and a quadratic estimate
(5.43) ek, — i, llwre < c(frer] + [r2]) k1 — K2
It follows from Proposition 5.29 that for |x| < &,
K+ Aye + (@fc) = 0,

where 7 denotes the projection on fuse,, (kerd,,) precomposed fuse;kl; the latter is defined
because fuse,, is injective on ker d,,, provided k is sufficiently large. Thus, the existence of a
unique small x such that Ax, = 0 is a consequence of (5.43) and the Banach fixed point theorem
applied to the map x — —m(ex.). ]

5.7 The leading order term of the obstruction on ghost components

Assume the situation of Section 5.6. The purpose of this subsection is to analyze the leading
order term of part of the obstruction map ob constructed in Section 5.6. This construction
requires a choice of partition of S and a choice of lift © c LPQ%! (2, u;TX) of coker dy,. The
following paragraphs introduce a particular choice tailored to the upcoming discussion.

Let C c Xy be a ghost component of uy; see Section 2.4 for the definitions of a ghost
component and related notation. Denote by

x0 €X

the constant value which ug takes on C.
To simplify the upcoming discussion, we will make the following assumption, which will
be satisfied in the situation considered in the proof of Theorem 1.1.
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Hypothesis 5.44. SO consists of one point, that is: C and 3,\C meet at one node.

Denote by B C C the base-locus of the dualizing sheaf of C, cf. Proposition 2.19. If B does
not contain the node at which C and %y\C meet, then set By := @; otherwise, denote by By the
connected component of B containing the node. Set

C. = C\BO and Z,,, = Zo\C.
and abbreviate
Ve :i=ve, and va =y,

The significance of this construction is as follows. By Proposition 2.19, every connected com-
ponent of C, attaches to 2, at a unique node; moreover: these nodes are not contained in the
base-locus of the dualizing sheaf of C,.

The partition of the set of nodes we choose is, with the notation from Section 2.4,

5.45 S=S51US, with S§; :=SMIIs0 and S, := SIS,
Za Ce Za C,

that is: first, we will smooth the interior nodes of >, and C, and then the exterior nodes
connecting them.

Next we discuss the choice of the obstruction space 0. Set d,, 4 = and let

Uo |24.

Os € Q" (24, ui TX) € LPQ" (24, us TX)

be a lift of coker d,, 4 such that every o € O, vanishes in a neighborhood of S;’it if By is empty,
and over all of By if By is non-empty. Furthermore, let

0. ¢ Q*(C., C) ®c Ty, X C LPQ* (Cu, usTX)

be a lift of coker(d ®c 1).

Every £ € WYPT (24, Va; uyTX) can be extended to X in the following way. Given n € Se’it,
extend & to a constant section taking value £(n) over the connected component of the nodal
curve (C,, Vo) containing v(n). This defines an inclusion

(5.46) WUPT (B, vas ugTX) € WHPT (S, vo; ug TX).
Furthermore, extension by zero defines inclusions
LPQ" (3, i TX) € LPQY (2, usTX) and LPQ™ (Co,uyTX) C LPQ% (30, usTX).

Set
O =0, 0,.

Proposition 5.47. The map (5.46) induces an isomorphism ker d,,, o = kerd,, and O is a lift of
coker Dy, .
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Proof. Denote by vy the nodal structure on Xy which agrees with vy on the complement of S,
and is the identity on S,. This nodal structure disconnects X4 and C,. Denote by

Dup1: WHPT(Zg, vis ug TX) — LPQY (20, u*TX)

the operator induced by d,,. Define V_ and diff: kerd,, ;1 — V_ as in Remark 2.30 with S,
instead of S. As is explained in Remark 2.30,

ker d,, = ker diff

and there is a short exact sequence
0 — cokerdiff — cokerd,, — cokerd,, 1 — 0.

The domain and codomain of d,, 11 decompose as

WUPT (3, vins ug TX) = WHPT (B, vas ug TX) @ WHPT(Co, ve; C) ®c Ty, X and
LPQY (30, us TX) = LPQY (24, us TX) ® LPQ*' (C,, C) ®c Ty, X.

With respect to these decompositions

b _ Dypa 0
uo, 1l 0 0®c 1

with Dy s = Dy s, and 0®c 1 = Dy, is the standard Cauchy-Riemann operator since u is
constant on C,. Therefore,

kerd,, 11 = kerd,, + ®ker(d®c 1) and cokerd,, 1 = cokerd,, 4 ® coker(d Q¢ 1).

The task at hand is to understand ker d,, and coker b, in terms of the above.

Since elements of ker(d ®c 1) are locally constant, ker(d ®c 1) has a direct summand T, X
for every connected component of (C, Vo). Hypothesis 5.44 and Proposition 2.19 imply that
there is one connected component for each node in Sg’it. Therefore,

ker(d ®c 1) = V_ = Map(S55', T, X).
With respect to this identification the map diff : kerd,,  ® ker(d ®c 1) — V_ is given by
diff (x,v)(n) = x(n) —v(n).

Therefore, ker diff = ker d,,, » and coker diff = {0}, which, by Remark 2.30, completes the proof
of the proposition. ]

Construct the Kuranishi model as in Section 5.6 for the above choices of S = S; 11 S, and O.
As a final piece of preparation, let us make the following observation, which by Remark 2.30,
in particular, gives an explicit description of O] = coker(d ®¢ 1)*.
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Proposition 5.48. Let (C, v) be a nodal Riemann surface with nodal set S. Denote the corresponding
nodal curve by C and its dualizing sheaf by we. Let q € (1,2) be such that1/p +1/q = 1. Define

x c LIQ%(C,C)

to be the subspace of solutions { of the distributional equation

(5.49) F{= ) f(mdn)

nes

for some weight function f: S — C with f ov = —f. Here §(n) is the Dirac delta distribution at
n. The subspace 7 satisfies .
% =H(C, ).

Proof. If C is smooth, then C = C and the dualizing sheaf wc is simply the canonical sheaf K.
By the Kahler identities,

H =ker(o": QV1(C,C) — Q(C,C))
=ker(9: Q®1(C,C) — QL1(C,C))
= ker(d: QM(C,C) — QY(C,0))
=~ H°(C,K¢).

Recall from the proof of Proposition 2.19, that the dualizing sheaf of C is constructed as follows;
Denote by 7: C — C the normalization map. Denote by @ the subsheaf of Kc(S) whose
sections { satisfy

Res, { +Res,(,) { =0

for every n € S, with Res, 1 being the residue of the meromorphic 1-form 7 at n. The dualizing
sheaf wy then is
WF = Tl

Therefore, H(C, we) = HY(C, &¢). By definition every ¢ € H°(C, @) is smooth away from
S and blows-up at most like 1/dist(n, -) at n for n € S; hence: { € LIQ%!(C, C). The residue
condition amounts to (5.49). This shows that H°(C, ) C X . Conversely, by elliptic regularity
every { €  defines an element of H(C, »y). [

The following is the technical backbone of the proof of Theorem 1.1. The reader is advised to
recall Definition 5.38 and Proposition 5.39 because these are the main ingredients of the proof.

Lemma 5.50. Denote by C, the nodal curve corresponding to (Ca, ve). There is a constant ¢ > 0 such
that the obstruction map defined in Definition 5.38 satisfies the following. For every (o, 1; J; k) €
AXUXSF, (e Ho(é.,wé.), andv € T, X

<pullg,f;];x(0b(o-3 T’J’ K))’ pullo"r;];]c(g_ ®C U)>L2 = Z ”((g(n) ®C dvb(n)uO',Tl,O;]QK) (Tn)’ U> t+e¢

ext
nese,
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with

1
lel < clZlloles )" en

nesgj
and
.— . int ext
£o = max{gn :n € Sc. U SC‘ }

Example 5.51. To understand better the significance of Lemma 5.50, it is helpful to consider
the following example. Suppose that (2, jo, o) consists of two components: the higher genus
ghost C = C, and a spherical bubble %, = CP! meeting at points

neC and v(n)e CP.

(In that case, B = By = @.) In that case, there is only one smoothing parameter z, which, after
trivializing the tangent spaces of C and X4 at the nodes, can be thought of as a complex number,
and ¢ = |z|. By Lemma 5.50, for every holomorphic 1-form ¢ € H°(C, wc),

(5:52)  (pull, .7, (0b(0, 7 J;5)), pully 1.7 (§ ®c 0)) o = 7(({ (1) ®c diy(mytoos) (7),0) +e

with
le| < c|¢]lo]e*.

Since C has positive genus, there exists { € H°(C, w.) such that {(n) # 0. If the restriction of
uo to the bubble CP! is unobstructed, then u,. Ja = U on CP! for all ¢ and k. If, moreover,
dymuo # 0, it follows that the right-hand side of (5.52) is never zero unless ¢ = 0, and so
ob(o, 1, J; ) # 0 for T # 0. We conclude that in that case u, cannot be smoothed. '

Proof of Lemma 5.50. The proof is based on analyzing the expression

0 = (Fity.y (£(o, T3 J56)) +pull, . (0(0, 715 5 5) +6(0, 73 J3)), pull,, .. (£ ®c 0))p2

and the identity
ob(o,1;J;k) = 0(o,11;J;k) +0(0, 7, J; K).

Step 1. The vector field &(o, 11; J; k) is constant on Co and o(o, 11; J; k) is supported on Zy; in
particular, )
(pull, ;s (0(o, 715 J5 %)), pull,; 7., ( ®c 0))2 = 0.

The construction in Proposition 5.31 can be carried out for uy|x, with the choice of © = O,
and S, = @. For every (o, 11,0; J]) € AX% and k € ker d,, » with || < J, denote by (o, 71; J; k)
and o(o, 71; J; k) the solution of (5.32) obtained in this way.

Henceforth, regard &(o, 71; J; k) as an element of Wl’PF(EOVO;ua‘TX) and o(o, 71; J; k) as
an element of @. By construction these satisfy (5.32) for uy and with the choices of @ and
S = $;11S; made in the discussion preceding Lemma 5.50. Therefore and since ker d,,, » = ker dy,,
&(o, 113 ];x) and o(o, 71; J; k) are precisely the output produced by Proposition 5.31. The first
part of the assertion thus holds by construction.
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Step 2. The term
a] (ﬂO-,T;];Kﬁ jO',T) + pullo"‘[;];x (O(O—’ 715 ]s K))

is supported in the regions where r, < 2R, for somen € Sg’:t. Set Xp, = Ug 1,075 (n). Identifying
Uy, with Ux,, via exp, in the region where r, < 2R, the error term can be written as
O, * Uo,my, 0] © bry +
with
(553) 0X2, - Uor 00 © Lry] < cen  and |a] < cel.

The proof is a refinement of that of Proposition 5.9. A priori, the error term 9y (#ig .7, jo,r) +
pull, ;. (00,715 ;%)) is supported in the in the regions where r, < 2R, for some n € S,.
Ifn e S;’it, then it is immediate from Definition 5.7 that s ;.j, agrees with us 7, 0.7« in the
region under consideration; hence, the error term vanishes. For n € S, in the region under
consideration and with the identifications having been made,

o on
Us g = X1y~ Uo,r1,0: )5k O lry-

Therefore,
3 (~O . _ a.n
a](ua,r;];K’ JCT,T) = aX‘L’g *Uo,1,0:ix © lr

1 . .
+ X?Z : E(J(MZ,T;];K) - J(uO',Tl,O;];K ° [‘l'z)) © d(uo,rl,o;];x © ll'z) © Jo,11,0

=1

n = .
+ Xz, - 91 (Uo1,0,)5 © Lys Jom,,0) -

=1I

(Observe that by elliptic regularity and (5.32), the map t4. 7. is smooth in the region in question,
so we can take its derivative. We will use this fact in the remaining part of the proof.) The term
I is supported in the region where Ry < r, < 2R,. By Taylor expansion at vy(n), in this region

|uO',T1,0;];K o [Tzl CEn/rn and

<
|d(ucf,1'1,0;];1< o lrz)l <

cen 2.

Therefore,
) -
1| <ce, and  [9xy, « Usr 00 © bny| < Cp.

Since 1, is holomorphic and o(a, 71; k) is defined by (5.32),
II= X‘?z ) l*‘[zé](uo',‘['l,o;];l(’ ja,rl,O) = _X"Flz : 1;20(0-: 1;.J; %),

and thus II vanishes by our choice of 0.
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Step 3. For everyn € S

<é)(1r-l2 *Uo,11,0,];x © lrys PUHU,T;];K(é; ®c z))>L2 = _”<(§/ ®c dVo(n) ua,rl,O;];K)(Tn)’ U> +¢
with
lez| < cepl{]lol.

To simplify the notation, we choose an identification T,,C = C and work in the canonical
holomorphic coordinate z on C at n and the coordinate system at vy(n) with respect to which
W = 15, (z) = &,/z. In particular, with respect to the induced identification T, (,)C = C the gluing
parameter is simply 7, = &, - 1 Q¢ 1.

Since ug 7, 0.7 is J-holomorphic, by Taylor expansion,

uO',Tl,O;];K(ETl/Z) = awua,rl,o;];x(o) : En/z +1r with |r| < cgi/lzlz,

The term
e, = (dxg, ' ¥, pully ;.. (¢ ®c )12

satisfies
les] < celldllol.

Since ¢ is holomorphic,

/ {(re'®) da = 27 - £(0).
Sl

Therefore,

vol

_ - 1 ,(lz1\ {(=)
S
‘ox e Ro<|z|<2Ry 2% Ry | Ro|z|

o (r\1 ;
= v == re'®)da | dr
/Ro 2" (RO)RO ( st £re) )

2Ro r\il .
= "= =dr -zl (re'*).
/ X(RO)RO ¢ (rei®)

0

The integral evaluates to —1. Thus the assertion follows because the term (£ (0) -0\ ug. 7,,0.7:<(0), 0)
can be written in coordinate-free form as

”<(§ ®c dVO(n)“cr,n,O;J;K)(Tn)’0>-
Step 4. The term
€3 = <bfto,r;];r<é(o-: T;]; K) + nﬁa,r;];x (g(o-’ T;J; K))’ pl'lllo',‘l';];K(éj ®C U)>L2

satisfies

1
lesl < ce2 )" enllllo]

ext
nESC.
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By Step 2 and Proposition 5.35,

£(o. s i) lwre < cén.

This immediately implies that

¢} = (Mg .y (E(0, 73 J3%)), pull, o (£ @ 0)) 12

satisfies

el <e > enldllol.

neSeC".t
It remains to estimate
es = Vi, . E(0. T T; K),pulla,T;];K(g; ®c v))pz.

Set
Cf,,r =Ce N Z‘;T.

Since k and &(o, 71; k) are constant on C, Proposition 5.17 implies that the term
b':‘d,f;];x'f(o-’ T;]; K) - 55(0', T;J; K)>

defined over C; _, is supported in the regions where 5,11/ 2 < ry < 2R, for some n € St and

0,7
satisfies

Y o Wb e gin)
sl/ZSrn<2Ro

neSec"_t
<c E / |E(o, 73 J;x)||VE(0, 73 5 6)| + |E(o, 75 T3 ) |2
1/2
meses e <ra<2Ry

< cllE(o, 1 510 15

<c Z 6,21.

ext
HESC.

Therefore,

lef| < ¢ Z ea +[(9€(0, 73 J:%),{ ®c 0)12(cs, |

ext
nESC‘

Since 9*°( =0 on C2

0,7

integration by parts yields

(b0, 7500, @ 0) oo | < el 3 (o, i)l

ext
nESC.

3

ext
nESC_

< ce

® i

Combining the above estimates yields the asserted estimate on es.
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Step 5. Conclusion of the proof.
By Step 1, Step 2, Step 3, and Step 4 the term

o = (pull, ;. (ob(o,7; J; K)),pulla,T;J;K(f Q®c v))r2

satisfies

0 = —(Fiy e (E(0. 7755, pull, 1 ( ®C 0))2
= Z ﬂ(({ ®c dm(n)ua,fl,g;];,c)(r,,)m) +e;+ey+e;

ext
nESC.

with the error terms arising from the corresponding terms in the preceding steps. The term ¢,
arises from the L? inner product of the sum, over all nodes n € S, of error terms from Step 2

and pull ; . ];K(g‘; ®c v), which multiplies the estimate (5.53) by |£||v|. The preceding steps thus
yield the asserted estimate on e = ¢; + ¢, + e3. [ ]
5.8 Proof of Theorem 1.1

Without loss of generality, suppose that

(2/0 Jk) = (zak,rk’ j(rk,‘rk)

with 7., # 0 for every k € N and n € S; that is: all nodes are smoothed and v,, ;, is the trivial
nodal structure. By Proposition 5.40 there is a sequence (kg )xen in F corresponding to (ug)ren.

Again, without loss of generality, Ue: (Zco, joor Vo) — (X, Jo) has at least one ghost
component C with one non-ghost component

Zhubble = 2o \C

attached at a single node, so that Hypothesis 5.44 is satisfied. Denote by C the nodal curve
corresponding to C and let B be the base-locus of the dualizing sheaf of C. Define By, C B and

Co :=C\By and X, :=2,\C,
as at the beginning of Section 5.7. Observe that
2a = Bo I Zpupble
so that ¥, decomposes into
Yoo = Co LI By LI Zpybble -

— ——
Za

Write 7 = (7x.1, Tk,2) With 74 ; and 7x » denoting the smoothing parameters corresponding to
the sets of nodes S; and S; defined in (5.45). Since By is a tree of spheres, the partial smoothing
Y o.m1,0 COntains a component biholomorphic to Zpypble; as discussed in Example 4.12. Let

br: Zpubble — X
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be the restriction of us 7, | 0.« to this component. After reparametrizing by by biholomorphisms
of Zpubble We can guarantee that by converges to uyls, ,,,. in the C* topology. Let x be any node
in SE’:t; the point v (x) under the above biholomorphisms it is mapped to a point x; € Zpupble
and the sequence (xy) satisfies

lim x; = veo(n).
k—o0

Let C, be the nodal curve corresponding to C,. By the construction of C,, for every node
n € C, such that v(n) € Z,, there is exists a holomorphic section { € H*(C,, we,) with {(n) # 0.
Since ob(ok, 7k; Ji; kx) = 0, it follows from Lemma 5.50 that

1/2

|dxk bi | < Ek;ghost'

(Observe that reparametrizing by by biholomorphisms of Zppble does not affect the estimate in
Lemma 5.50, which is independent of the choice of a Riemannian metric in the given conformal
class.) Passing to the limit k — oo yields that d,_()uo = 0. —=/)

6 Calabi-Yau classes in symplectic 6—manifolds

6.1 Proof of Theorem 1.3

Denote by Cy, ..., Cr the connected components of 3, on which u., is non-constant and set

ul, = uwlc, and A; = (ul,).[C;]. By the index formula (2.29),

I 1

D index(ul,) = " 2er(X, @), Ai) = 2(e1 (X, ), A) = 0

i=1 i=1

Since Jo € Jomp(X, ), for every i = 1,...,1, index(ul,) > 0 and thus index(u’)) = 0. Con-
sequently, the images of the simple maps underlying u’, and u, either agree or are disjoint.

However,
I

M = U imu!,
i=1
is connected. Therefore and since A is primitive, I = 1 and u}, is simple and, hence, an embedding

because | € Zmp(X, w). Given the above, it follows from Theorem 1.1 that (X, joo, Veo) 1S
smooth.

6.2 Proof of Theorem 1.5

The proof of Theorem 1.5(1) is completely standard and straightforward. Nevertheless, let us
spell it out. Let J € 7>, (X, w). By Proposition 2.38 and Theorem 1.3, %Xg(X, J) is a compact
oriented zero-dimensional manifold; that is: a finite set of points with signs. The signed count

43 (X, )
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is independent of the choice of J. To see this, let Jo, /i € 7, (X, ) and (Ji)re[o1] € Foy (X @3 Jo, J1)-
By Proposition 2.38 and Theorem 1.3, .ﬂ;g (X, (J)te[o1]) is a compact oriented manifold with
boundary

My (X, ) U=ty (X, Jo)-
Therefore,

$lL3 (X, J1) = #0%(X. Jo)-

Theorem 1.5(2) follows from [DW21, Theorem 1.6]. Indeed, the latter asserts that for every
J € F(X, w) the set

| [z ,x.0

g=0
is a finite set. Therefore, there exists a gy € Ny such that for every g > g, the moduli space
ﬂ;sg (X, A;]) is empty; in particular, na 4(X, ) = 0 for g > gy. ]

7 Fano classes in symplectic 6-manifolds

The proofs in this section make use of definitions and results from Section 2.8.

7.1 Proof of Theorem 1.4

Denote by C‘l, ...,C 1 the connected components of 3., on which u., is non-constant, set il =
Uclg,, denote by ul,: C; — X the simple map underlying @’,, let d; € N be the degree of
the covering map relating @, and u,, set A; = (ul,).[C;], and set g; := g(C;). Since (ux)ren
Gromov converges to U,

(1) ur(Zx) converges to U (Zs) in the Hausdorff topology, and
(2) S, diA; = A

These are the only two consequences of Gromov convergence that will be used in the following
argument.

Denote by I the subset of those i € {1,...,I} with {(¢;(X,w0),A;) = 0 and set [, =
{1,...,I}\Ip. Without loss of generality all of the pseudo-cycles f} have codim(f;) > 4. For
every i € I, denote by A; the subset of those A € {1, ..., A} such that

(7.1) imu’, Nim f; # @.

Since Joo € Femb(X, 05 fi, ..., fo), foreveryi € [y and A € {1,...,A} we have imu, Nim f; = @.
Therefore and since u (Zy) converges to us(Zw) in the Hausdorff topology, for every A €
{1,..., A} there exists at least one i € I, such that (7.1) holds. Forevery i € {1,...,I} and A € A;
set

i {f,1 if imul, Nim f # @
AT

f/{’ otherwise
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with f/{’ as in in Section 2.8; in particular: codim f; < codim f/{ with equality if and only if
imul, Nim f; # @. By definition, u’, represents an element of ﬂ;g(X, T ( f)f) 2ea;)- Therefore
and since J € fomp (X, @, fi,- -, fa),

2(c1 (X, w), A;) — Z (codim(f) - 2) > 0.

AEA,’

On the one hand, multiplying by d; and summing yields

>0 > (eodim(f) —=2) < > > di(codim(f]) - 2)

i€l AeA; i€l AeA;
1
< Z 2(c1(X, w),d;iA;)
i=1
= 2(c1(X, »), A)

A
= > (codim(fy) - 2).
A=1

On the other hand, by the preceding discussion, the reverse inequality also holds. Therefore,
equality holds and this implies that

(1) d; = 1foreveryi € L,

(2) 2(e1(X, @), As) = S pen, (codim(£) - 2),

(3) fi = fo, and

(4) the subsets A; are non-empty and pairwise disjoint.

This implies that for every i € I, the map ', agrees with u’, and thus is simple; moreover,
this map has index zero (in the sense of (2.29)) and its image intersects f) for every 1 € A;.
Furthermore, every fj intersects the image of precisely one map u’, with i € I,. Therefore, the
images of the maps u, with i € I, are pairwise disjoint.

Since 2(c;(X, w),A) > 0, I, is non-empty. For i € I, and j € I, the images of u’, and ul,
must also be disjoint, because otherwise they would have to agree—contradicting A; # A;.

However,
I

imue, = U im ufx,
i=1

is connected. Therefore, if Iy # @, then there is are i € I and j € I, such that the images of uf;o
and ul, intersect. The preceding discussion shows this to be impossible; hence: Iy = @. Similarly,
if I; were to contain more than one element, then there are i, j € I, with such that the images
of ul, and ul, intersect—which is impossible. Therefore, I = 1 and @}, = ul, is an embedding.

Given the above, it follows from Theorem 1.1 that (T, joo, Vo) 1S sSmooth and im ue, Nim f #
@everyA=1,...,A. [}
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7.2 Proof of Theorem 1.8

Given Gromov compactness, Theorem 1.4, and Proposition 2.46, the proof that n 4 (X, 03715+, YA)
is well-defined and independent of the choice of ] is identical to that of Theorem 1.5 up to
changes in notation.

To prove that ns4(X, w;y1,. .., ya) is independent of the choice of pseudo-cycle representa-
tives, suppose that f and f]! are two representatives of PD[y1] such that f}, f5,..., fy are in
general position fori = 0,1. Let F: W — X be a pseudo-cycle cobordism between f,” and f;! such
that F, fo, ..., fo are in general position. Let J be an element of the set Z;nb (X, w; F, fa, ..., fa) de-
fined in Definition 2.48, which is residual by Proposition 2.49. It follows that ./%X’g (X, J; flo, N
and ﬂ;{’g X, J; fll, ..., fa) are finite sets of points with orientations and ﬂ;{)g X LF fase s fa)
is an oriented 1-dimensional cobordism between them. This cobordism is compact by Gromov
compactness and the argument used in the proof in Theorem 1.4. Thus,

#/%;,g(x,];ﬁ, o) = #./%;,g(x,];ff, o )

The fact that ns ¢(X, w;y1,...,ya) = 0 for g > 11is a consequence of the following analog
of [DW21, Theorem 1.6] for Fano classes.

Theorem 7.2. Let (X, w) be a compact symplectic 6—manifold, let fi, ..., fa be a collection of
even-dimensional pseudo-cycles in general position, and let A € Hy(X,Z) be such that

A
2(c1(X, w), A) = Z(codim fi—2) > 0.
A=1

Forevery ] € (X, w; fi, ..., fa) there are only finitely many simple J—holomorphic maps repre-
senting A and passing through im f} foreveryA=1,...,A.

Proof. The proof is a minor variation of the proof of [DW21, Theorem 1.6]. Suppose, by contra-
diction, that there are infinitely many distinct J-holomorphic curves Cy representing A and
passing through im f) for all A = 1,..., A. Here, by a J-holomorphic curve we mean the image
of a simple J-holomorphic map. Considering Cy as J-holomorphic cycles, we can pass to a
subsequence which converges geometrically to a J-holomorphic cycle Co, = {:1 d;Ci,, see
[DW21, Definition 4.1, Definition 4.2, Lemma 1.9]. Here d; > 0 are integers and each C., is a
J-holomorphic curve. Geometric convergence implies that

1
D dilci]=[Ce] = A
i=1

and that (Cy)xen converges to Co in the Hausdorff topology. Since these were the only two
conditions needed for the argument in the proof Theorem 1.4, the same argument shows that:

(1) d; =1foreveryie€l,
(2) Co has only one connected component,

(3) Cw intersects every im f}, and consequently
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(4) C is embedded and unobstructed by the condition J € 7* (X, w; fi, ..., fa)-

We will now adapt the rescaling argument from the proof of [DW21, Proposition 5.1]—
originally due to Taubes in the 4-dimensional setting [Taug6]—to the present situation. Let
N — C be the normal bundle of C,, in X. Identify a neighborhood of C, with a neighborhood
of the zero section in N using the exponential map. For sufficiently large k, Cy is contained
in that neighborhood and by abuse of notation we will consider Cy as an exp* J-holomorphic
curve in N and f; as maps to N.

Since the Cy, are distinct, Cy # Coo. For € > 0 denote by 0.: N — N the map which rescales
the fibers by ¢. Let (&x)ren be the sequence of positive numbers such that the rescaled sequence

ék = (Gfk)_l(ck)

satisfies
du(Cr,Co) =1,

where dy is the Hausdorff distance. The sequence (& )xen converges to zero. The curves Cy. are
Jk—holomorphic where Ji = o}, exp® J. The sequence of rescaled almost complex structures
(Jx)ken converges to an almost complex structure J, which is tamed by a symplectic form
[DW21, Proposition 3.10]. In the same way as in the proof of [DW21, Proposition 5.1] we
conclude that the sequence (Cy)xren converges geometrically to a Jo,—holomorphic cycle whose
support is a union of J.,—holomorphic curves C., C N satisfying

dii(Coo, Coo) = 1.

Since [C] = [Cs] = A for all k, and the bundle projection 7: N — Cq is Joo—holomorphic,
7 induces an isomorphism Co, 2 Co. Let 1: Coo — X be the inclusion map and denote by
9, the deformation operator corresponding to 1, as in Definition 2.26. By [D'W21, Proposition
3.12], Cwo is the graph of a non-zero section & € I'(Coo, N) C T'(Co, 1*TX) satisfying d,& = 0. In
Proposition 7.3 below we show that there is an algebraic constraint for the values of ¢ at the
points of intersection of Co, with each pseudocycle.

For every A = 1,..., A, denote by V) the domain of f, and let z; , € Cy and x,x € V) be
such that z; x = fi(x3x). After passing to a subsequence, we may assume that

lim z)x =23 € Coo and lim x5 =x3 € V),

k—oo k— o0
and z; = fi(xy).
Proposition 7.3. For A =1,..., A there existv) € T,,C and w € T, V) such that
(74) g(zﬂ.) + dZAl *0) = dng;l * W)

Equation (7.4) can be understood as the limit as k — oo of the condition that Cy intersects
each of the im f}. The proof is deferred to the end of this section. We will now show that
Proposition 7.3 implies Theorem 7.2. Let g be the genus of Cw, so that the embedding 1: Coo — X
corresponds to an element in %X’g’A(X, J). Since J € X (X, o, fi,..., fa),
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(1) the derivative of evy : .%X’g’A(X, J) = XM at [Lz,...,24], and

(2) the derivative of Hfl\:l E Hﬁ‘zl V) — XM at Hfl\:l X
are transverse to each other. Since
A
dim 2%, (X, ]) + ) dim V; = Adim X,
A=1

the images of these two maps intersect trivially. Since & # 0, this contradicts the existence of v,
and w; satisfying (7.4). The contradiction shows that the sequence (Cy) cannot exist. [

Proof of Proposition 7.3. Set ) = cr;kl(z 1k)- After possibly passing to a further subsequence,
(7.5) Jim Z). = §(z2)-

Let prydy, fo: Tx, Vi — Nz, be the projection of the derivative of f} at x on N;, C T, X. We
will show that for every A there exists w) € T,V such that limg_,« Z3x = pryds, f1 - Wa.

The fact that the images of the maps (1) and (2) introduced above intersect trivially implies
that prydy, fi is injective for every A. Indeed, otherwise there would exist v € T;,Cs and
w € T, V) for some A such that

dzt-o=dgfi-w,

violating the above transversality condition. Fix a trivialization of N in a neighborhood of z;
and a chart centered at x, in V. Denoting by pr,; the projection on the fiber N, in the given
trivialization, the Taylor expansion gives us

pryzak = Prnfi(xak) = pryds, fi(xak — x1) + O(lxak — x21%).
Since prydy, fi is injective, there is a constant ¢ > 0 such that
lxak — xa] < clpryzakl < cek.

Thus, after passing to a subsequence, we may assume that the sequence E;l (x)k —x)) converges
to a limit wy € T, V). By construction,

lim Z); = lim pryz)i = prydy, fo - wa.
k—o00 k—o0

Comparing this with (7.5), we see that for every A there exists v, € T,Cs such that (7.4)
holds. "

A Transversality for evaluation maps

Throughout this section, (X, w) is a symplectic manifold of dimension dimX > 6 and £ (X, w)
denotes the space of almost complex structures on X compatible with w.
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Definition A.1. Let A € N. Given a partition into nonempty pairwise disjoint subsets
{1,2,...,A}=Lu...uly withk <A,

the generalized diagonal associated with the partition is the submanifold A ¢ X* consisting of
the points (xi,...,xa) such that for every pair of indices , § € I; we have x, = xz. °

Generalized diagonals are partially ordered by inclusion and each point of X which belongs
to a generalized diagonal belongs to a unique one which is minimal with respect to the partial
order.

Proposition A.2. LetV be a manifold and let f: V — X* be a map which is transverse to every
generalized diagonal. Denote by #* (X, w; f) the set of all ] € #*(X, w) such that

(1) every simple J—holomorphic map is unobstructed, and

(2) forevery A € Hy(X,Z) and g € Ny, the evaluation map from the A—pointed moduli space

(cf. Definition 2.41)
ev: MY, A(X,]) = XD

is transverse to f.
The set 7* (X, w; f) is residual in ] € F*(X, w).

Proof. The proof that condition (1) is generic is a standard application of the Sard—Smale theorem
[0Zog, Theorem 1.2], [IP18, Proposition A.4], [MS12, Sections 3.2 and 6.3]. Below we outline
this proof and adapt it to show that condition (2) is generic.

Let (2, jo) be a closed Riemann surface of genus g, and let A € Hy(X,Z). Denote by
WI:IJP (2, X;A) the subset of W' (3, X) consisting of functions u: ¥ — X which represent A
and are somewhere injective in the sense that there exist zy € ¥ and § > 0 such that for all
zZ€EX

distx (u(zp), u(z)) = ddists(z, 2).

A J-holomorphic map is somewhere injective if and only if it is simple [MS12, Proposition 2.5.1].
Given a slice & ¢ #(X) for the action of Diff((X) on 7 (X) passing through jj, set

=W (EX;A) xS

inj

and let & — 2 be a Banach vector bundle whose fiber over (u, j) is the space L? Q%! (X, u*TX)
defined using the complex structure j.

Lets: 7(X,w) XX — & be a section given by s(J, u, j) = 9;(u, j). The following hold; see,
for example, [MS12, Section 3.2]:

« this section is Fredholm,
« it is transverse to the zero section, therefore

« s71(0) is a submanifold of I; in particular, it is a Banach manifold, and
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« the universal moduli space ﬂ:“g(X , ) can be covered by a countable number of subman-
ifolds of the form s71(0), for different choices of (2, jo).

The projection 7: s71(0) — #(X, ) is a Fredholm map of index vdim ﬂ;\‘,g (X, ]); in fact, the
kernel and cokernel of d, ; are isomorphic to the kernel and cokernel of d,, 95, and therefore
finite-dimensional. It follows from the implicit function theorem that if J is a regular value of
this map, the preimage

7)) = M (X))
is a manifold of dimension vdim ﬂ;{’g (X,J) and every map in /%X’g (X, J) is unobstructed. Since

: s 1(0) > #(X,w) is a Fredholm map between separable Banach manifolds, the Sard—Smale
theorem implies that the set of regular values of 7 is residual in # (X, ). This shows that
condition (1) holds for a generic J.

Using a similar argument, we will show for a generic J, the evaluation map

ev: M}, \(X,]) = X
is transverse to f. With the notation introduced above, consider the Fredholm map

S: F(X,0)x T x3M - &xx?
S(J’ (u:j)’zl’---,zA) = (s(]’u’j):u(zl)s'">u(ZA))'

We will show that S is transverse to the map
(A.3) zero section X f: X xV — & x XM,

Since s is transverse to the zero section ' — &, it suffices to show that whenever (J, (u, j), z1,...,2a)
and x € V satisfy

s(,u,j)=0 and (u(zy),...,u(zp)) = f(x),
then

A
imdS +im dxf = Tf(x)XA = @ Tu(z,»)X'
i=1

Here dS denotes the projection on Tf(x)XA of the derivative of S at (J, (4, j), z1,...,2za) and dy f
is the derivative of f at x. The variation of S in the direction of a vector field

£e WHT (3, u*TX)

is

(A.g) dS(&) = (£(z1), ..., &(za)).
If (u(z1),...,u(za)) does not lie on any generalized diagonal in X*, we can find ¢ with any
prescribed values at zy, . . ., za, and

imdS = Tf(x)XA.
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Suppose, on the other hand, that (u(z;),...,u(zs)) belongs to a generalized diagonal A ¢ X*,
and let A be the minimal such diagonal. In that case, (A.4) implies that

imdS = Ty A.
Since f is transverse to A, we have
imdS +imdyf = TroA +imdyf = T X"

as desired. This shows that S is transverse to the map (A.3). It follows from the Sard—Smale
theorem that the set of J such that S(J,-) is transverse to (A.3) is residual in £ (X, ). This
completes the proof that condition (2) is generic. [ ]

B Pseudo-Cycles

Given a collection of homology classes, we are interested in counting J-holomorphic maps
passing through cycles representing these classes. Since not every homology class is represented
by a map from a manifold, it is convenient to use the language of pseudo-cycles. We briefly
review the theory of pseudo-cycles below; for details, see [MS12, Section 6.5; Schgg; Kahoz;
Zino8].

Definition B.1.

(1) A subset of a smooth manifold X is said to have dimension at most k if it is contained in
the image of a smooth map from a smooth k—dimensional manifold.

(2) A k-pseudo-cycle is a smooth map f: V — X from an oriented k—dimensional manifold
V such that the closure f(V) is compact and the boundary of f, defined by

b(H =[] FOV-K,

K CV compact

has dimension at most k — 2. We will use notation

codim(f) := dim(X) — dim(V).

(3) Two k-pseudo-cycles f;: V; — X, for i = 0,1, are cobordant if there exists a smooth,
oriented (k + 1)-dimensional manifold with boundary W and a smooth map F: W — X
such that F(W) is compact, bd(F) has dimension at most k — 1, and

3W=VlH—V0 and FlV1 =f1, F|Vo=f()-

pseudo
Hk

(4) Denote by (X) the set of equivalence classes of k—pseudo-cycles up to cobordism.

The disjoint union operation endows H,fseudo (X) with the structure of an abelian group.
L]
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A smooth map g: X — Y between two smooth manifolds induces a group homomorphism
g.: HY seudo (X) - HY Seuc10( Y) by composing pseudo-cycles with g. Thus, HY Seudo(-) is a functor

from the category of smooth manifolds to the category of Z—graded abelian groups.

Theorem B.2 ([Schog; Kaho1; Zino8]). There exists a natural isomorphism Hfseudo(-) = H,(-,Z)
as functors from the category of smooth manifolds to the category of Z—graded abelian groups.

In what follows we will use this isomorphism to identify these two homology theories and
represent any class in H.(X, Z) by a pseudo-cycle.

Definition B.3. Let M be a smooth manifold and let g: M — X be a smooth map. We say that
a k—pseudo-cycle f: V — X is transverse as a pseudo-cycle to g2 if

(1) there exists a smooth manifold V? of dimension dim V? < dim V — 2 and a smooth map
f2: V9 — X such that bd(f) C im f?, and

(2) f and f? are transverse to g as smooth maps from manifolds.

If W is a manifold with boundary W, we require additionally that f is transverse as a pseudo-
cycle to glow: W — X.

Similarly, if M is a manifold without boundary and F: W — X is a cobordism between two
pseudo-cycles fy and f;, we say that F is transverse as a pseudo-cycle cobordism to g if

(1) there exists a smooth manifold with boundary W¢ of dimension dim W9 < dim W — 2
and a smooth map F?: W? — X such that bd(F) C im F? and bd(f;) C im F?| o for
i=0,1,

(2) F and F? are transverse to g as smooth maps from manifolds with boundary. .

Note that if f: V — X be a k—pseudo-cycle and g: W — X is an f-pseudo-cycle, then
fxg: VxW — X%isa (k + £)-pseudo-cycle.

Definition B.4. Let (f;: V) — X) be a collection of pseudo-cycles indexed by a finite set I. We
say that (f))1cs are in general position if the pseudo-cycle

l_[f;l: I_IV)L —>X|I|

Ael Ael

is transverse as a pseudo-cycle to all generalized diagonals in X'I; see Definition A.1 for the
definition of a generalized diagonal. This is equivalent to the following condition: for every
subset S C I, the pseudo-cycle [],cs fi is transverse as a pseudo-cycle to the diagonal X < XS,

Similarly, if one of f} is a cobordism between two pseudo-cycles, then so is [[,¢; /1 and we
require that it is transverse to all generalized diagonals as a pseudo-cycle cobordism. °

2McDuff and Salamon [MS12, Definition 6.5.10] use the term weakly transverse, which we prefer to avoid,
regarding that this notion of transversality is stronger than the transversality of f and g as smooth maps in the
usual sense.
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Proposition B.5. Given a finite collection of pseudo-cycles (fy: V) — X),e1, the set

{(¢,1),1€I e DIff (X)) - (Pr © fa)rer arein generalposition}

is residual in Diff (X)!.

Proof. The proof is similar to that of [MSi2, Lemma 6.5.5]. Let us work with the group Diffy (X)
of C* diffeomorphism for any integer k > 1; the corresponding statement for Diff (X) follows
then using standard arguments [MS1i2, pp. 52—54, Remark 3.2.7]. A countable intersection
of residual sets is residual; therefore, without loss of generality, consider the case S = I in
Definition B.4. Define the map & : Diffy (X)/I x [T,¢; Va2 — X/ by

F((pD)rer (x)aer) = (a0 fi(x2)) per-

Let A ¢ X!l be the diagonal. If we show that & is transverse to A, then it follows from the
Sard-Smale theorem that for all (¢,),¢; from a residual subset of Diff; (X) the maps [] ¢4 o fi
is transverse to A. (The same argument can be applied to f/{’ to conclude transversality as
pseudo-cycles.) In fact, the derivative of F is surjective at every point x = ((P3)rer, (X1)1er)-
Without loss of generality suppose that ¢4 = id for all A € I. Let Vecty (X) denote the space of
Ck vector fields on X. Given

£ = (&aer € | | TaDiffe(X) = | | Vect(X),

Ael Ael

we have

& (&) = (G (HG))acr € | | ThonX.

Ael

Since for every p € X the evaluation map Vect(X) — T,X is surjective, the map dyF is
surjective, which finishes the proof. [ ]

C Proof of nyy =BPSsy

In this section, we outline Zinger’s proof that for a primitive Calabi-Yau class
nA,g(X, a)) = BPSA,g(X, a)),

where BPS4 4(X, w) is the Gopakumar-Vafa invariant defined in terms of the Gromov-Witten
invariants via (1.11). We use the same notation as in the proof of Theorem 1.5.

Given ] € f* (X, w), every stable J-holomorphic map of arithmetic genus h factors
through a J-holomorphic embedding from a smooth domain of genus g < h. In other words,
every element of %A,h (X, ]) is of the form [u o ¢] for some [u] € ﬂ;{)g (X,J) with g < h, and

[¢] € %[ZM(Z, 7). Here (2, j) is the domain of u. Denote by (2, #, j) the domain of ¢. Given
such J-holomorphic maps, let N be the normal bundle of (%), and let

oY WYT(Z,u*N) — LPQO (3, u*N)
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be the restriction of the operator d, = b, j.;; to the subbundle u*N C u*TX followed by the
projection on #*N. Similarly, we define

oY . WHT(S, 70°N) — LPQN (4" N).

The spaces coker baN , as @ varies, play an important role in computing the contribution of maps
factoring through u to the Gromov-Witten invariant of (X, w). In this case, there is a simple
description of these spaces.

First, we will see that ker dY = {0} and coker d) = {0}. Indeed, the Hermitian metric on
u*TX induced from X gives us a splitting u*TX = TX & N,,, with respect to which

ars  *
B = ( 0o oY ) ;
see, for example, [DW18, Appendix A]. Since u is unobstructed, i.e. cokerd, = {0}, and
index(u) = 0, we have ker d)Y = {0} and coker d} = {0}.

Second, since ¢: (3,7, j) — (3, j) has degree one, (X, 7, j) has a unique irreducible com-
ponent which is mapped by ¢ biholomorphically to (2, j), and ¢ is constant on the other
components. In particular, #*N is trivial over these components. It follows that ker bf}V = {0}
and coker bg’ is the direct sum of the corresponding spaces for the standard d—operator with
values in the trivial bundle #*N over the components which are mapped to a point by ¢.

In this situation, the following is a special instance of [Zin11, Theorem 1.2].

Proposition C.1.

(1) The family of vector spaces coker bfl\{)(p,

orbibundle Oy (2, j,u) — %[z],h(z, j), called the obstruction bundle.

as[3,7, ], 9] € %[z],h(Z, J) varies, forms an oriented

(2) Denoting by [M 51 (Z, j)]"" the virtual fundamental class and by e(Op(Z, j,u)) the Euler
class of the obstruction bundle, we have

h
GWan(X, @) = Z Z sign(Z, j, u){e(On(Z, j,w)), [M 510 (Z, N1,
9=0 [u]edy ,(X.])

Pandharipande [Pangg, Section 2.3] proved that for g := g(X),

(sin(t/z) )29‘2

D (e(On(S, jyw), [ 15143, )] = 17977 t/2

h=g

Therefore, after changing the order of summation };’ 2;‘:0 = Ygmo Z;":g, we obtain

&) o . -
t/2

2 CWan(X o)™ = ) ”A,g(X,w)tzg_z(smt(/%) |

h=0 =

Since the numbers BPS4 4(X, w) are uniquely determined by the Gopakumar-Vafa formula (1.11)
[BPo1, Section 2], na4(X, w) = BPSa 4(X, ).
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