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Abstract

Based on computations of Pandharipande [Pan99], Zinger [Zin11] proved that the Gopakumar–

Vafa BPS invariants BPS𝐴,𝑔 (𝑋,𝜔) for primitive Calabi–Yau classes and arbitrary Fano classes

𝐴 on a symplectic 6–manifold (𝑋,𝜔) agree with the signed count 𝑛𝐴,𝑔 (𝑋,𝜔) of embedded

𝐽–holomorphic curves representing𝐴 and of genus𝑔 for a generic almost complex structure

𝐽 compatible with𝜔 . Zinger’s proof of the invariance of 𝑛𝐴,𝑔 (𝑋,𝜔) is indirect, as it relies on
Gromov–Witten theory. In this article we give a direct proof of the invariance of 𝑛𝐴,𝑔 (𝑋,𝜔).
Furthermore, we prove that 𝑛𝐴,𝑔 (𝑋,𝜔) = 0 for 𝑔 � 1, thus proving the Gopakumar–Vafa

�niteness conjecture for primitive Calabi–Yau classes and arbitrary Fano classes.
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1 Introduction

Are there invariants of symplectic manifolds which count embedded pseudo-holomorphic curves?
Such counts can fail to be invariants for two reasons: (a) pseudo-holomorphic embeddings

can degenerate to multiple covers, and (b) they can undergo bubbling and their domains can

degenerate. In the following we consider two situations in which both of these can be ruled out.

Let (𝑋,𝜔) be a closed symplectic 6–manifold equipped with an almost complex structure

𝐽 compatible with 𝜔 . Denote byM★
𝐴,𝑔

(𝑋, 𝐽 ) the moduli space of simple 𝐽–holomorphic maps

representing a homology class𝐴 ∈ 𝐻2(𝑋,Z) and of genus 𝑔. For a generic choice of 𝐽 the moduli

space M★
𝐴,𝑔

(𝑋, 𝐽 ) is an oriented smooth manifold of dimension

dimM★
𝐴,𝑔 (𝑋, 𝐽 ) = 2〈𝑐1(𝑋,𝜔), 𝐴〉.
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If 𝐴 is a Calabi–Yau class, that is: 〈𝑐1(𝑋,𝜔), 𝐴〉 = 0, then M★
𝐴,𝑔

(𝑋, 𝐽 ) is a �nite set of signed
points and can be counted. If 𝐴 is primitive in 𝐻2(𝑋,Z), then multiple cover phenomena can be

ruled out, and it will be proved that this count de�nes an invariant𝑛𝐴,𝑔 (𝑋,𝜔). If𝐴 is a Fano class,
that is: 〈𝑐1(𝑋,𝜔), 𝐴〉 > 0, then M★

𝐴,𝑔
(𝑋, 𝐽 ) can be cut-down to a �nite set of signed points by

imposing incidence conditions governed by suitable cohomology classes 𝛾, . . . , 𝛾Λ ∈ 𝐻 even(𝑋,Z).
In this case, multiple cover phenomena can be ruled out regardless of whether 𝐴 is primitive

or not, and it will be proved that counting the cut-down moduli space de�nes an invariant

𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ).
These invariants are not new. They were considered by Zinger [Zin11, Theorem 1.5 and

footnote 11] who proved that they agree with Gopakumar and Vafa’s BPS invariants. The

proof of the invariance of 𝑛𝐴,𝑔 (𝑋,𝜔) and 𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) in [Zin11] is indirect: it relies on

these numbers satisfying the Gopakumar–Vafa formula and the invariance of Gromov–Witten

invariants. The novelty in the present work is that we give a much simpler direct proof of

invariance. Furthermore, we prove that the invariants vanish for 𝑔 su�ciently large; thus

establishing the Gopakumar–Vafa �niteness conjecture for primitive Calabi–Yau classes and

arbitrary Fano classes.

1.1 Ghost components

The main technical result of this paper allows us to rule out, in certain situations, degenera-

tions in which the limiting nodal pseudo-holomorphic map has a ghost component, that is: a
component on which it is constant. The precise de�nitions used in the following statement are

given in Section 2 and Section 3.

Theorem 1.1. Let (𝑋,𝑔∞, 𝐽∞) be an almost Hermitian manifold and let (𝐽𝑘 )𝑘∈N be a sequence of
almost complex structure on𝑋 converging to 𝐽∞ in the𝐶1 topology. If (𝑢𝑘 : (Σ𝑘 , 𝑗𝑘 ) → (𝑋, 𝐽𝑘 ))𝑘∈N
is a sequence of pseudo-holomorphic maps from smooth, closed Riemann surfaces which Gromov
converges to the nodal 𝐽∞–holomorphicmap𝑢∞ : (Σ∞, 𝑗∞, 𝜈∞) → (𝑋, 𝐽∞), then one of the following
holds:

(1) (Σ∞, 𝑗∞, 𝜈∞) has no ghost components.

(2) (Σ∞, 𝑗∞, 𝜈∞) has a ghost component 𝐶 with at least two non-ghost components attached to
𝐶 .

(3) (Σ∞, 𝑗∞, 𝜈∞) has a ghost component 𝐶 with a non-ghost component attached to 𝐶 at at least
two nodes.

(4) (Σ∞, 𝑗∞, 𝜈∞) has a ghost component 𝐶 with precisely one non-ghost component attached to
𝐶 at a single node 𝑛 ∈ 𝐶 ; in that case, d𝜈∞ (𝑛)𝑢∞ = 0, that is: the corresponding node 𝜈∞(𝑛)
in the non-ghost component is a critical point of 𝑢∞.

Remark 1.2. Zinger [Zin09, Theorem 1.2] has analyzed in detail when a nodal pseudo-holomorphic

map whose domain has arithmetic genus one appears as a Gromov limit of pseudo-holomorphic

maps with smooth domain. Jingchen Niu’s PhD thesis [Niu16] extends Zinger’s analysis to

genus two. Their results are based on analyzing the obstruction map of a Kuranishi model of a
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neighborhood of the limiting pseudo-holomorphic map. The proof of Theorem 1.1 in Section 5

uses similar methods. This idea goes back to Ionel [Ion98, Proposition 1.20] and Pandharipande

[Pan95, Lemma 1]. Recently, a di�erent proof of a result similar to Theorem 1.1 has appeared in

the work of Ekholm and Shende [ES19, Lemma 4.9]. ♣
Given a symplectic manifold (𝑋,𝜔) of dimension at least 6, denote by J(𝑋,𝜔) the set of

almost complex structures 𝐽 compatible with 𝜔 and denote by Jemb(𝑋,𝜔) the subset of those 𝐽
for which the following hold:

(a) there are no simple 𝐽–holomorphic maps of negative index,

(b) every simple 𝐽–holomorphic map is an embedding, and

(c) every two simple 𝐽–holomorphic maps of index zero either have disjoint images or are

related by a reparametrization;

see De�nition 2.36. The complement of Jemb(𝑋,𝜔) in J(𝑋,𝜔) has codimension two; in par-

ticular: Jemb(𝑋,𝜔) is open and dense, and every path (𝐽𝑡 )𝑡 ∈[0,1] in J(𝑋,𝜔) with end points in

Jemb(𝑋,𝜔) is homotopic relative to the end points to a path in Jemb(𝑋,𝜔).

Theorem 1.3. Let (𝑋,𝜔) be a compact symplectic 6–manifold, let (𝐽𝑘 )𝑘∈N be a sequence of almost
complex structures compatible with 𝜔 converging to 𝐽∞, and let (𝑢𝑘 : (Σ𝑘 , 𝑗𝑘 ) → (𝑋, 𝐽𝑘 ))𝑘∈N be
a sequence of pseudo-holomorphic maps which Gromov converges to the nodal 𝐽∞–holomorphic
map 𝑢∞ : (Σ∞, 𝑗∞, 𝜈∞) → (𝑋, 𝐽∞). Set 𝐴 ≔ (𝑢∞)∗ [Σ∞] ∈ 𝐻2(𝑋,Z). If 𝐴 is primitive, satis�es
〈𝑐1(𝑋,𝜔), 𝐴〉 = 0, and 𝐽∞ ∈ Jemb(𝑋,𝜔), then (Σ∞, 𝑗∞, 𝜈∞) is smooth and 𝑢∞ is an embedding.

There is a variant of the de�nition of J(𝑋,𝜔) adapted to pseudo-holomorphic maps with

Λ marked points constrained by pseudo-cycles 𝑓1, . . . , 𝑓Λ. (See Appendix B for a review of the

theory of pseudo-cycles.) The precise de�nition of this subspace J(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) is rather
lengthy and deferred to De�nition 2.44.

Theorem 1.4. Let (𝑋,𝜔) be a compact symplectic 6–manifold, let (𝐽𝑘 )𝑘∈N be a sequence of almost
complex structures compatible with 𝜔 converging to 𝐽∞, and let (𝑢𝑘 : (Σ𝑘 , 𝑗𝑘 ) → (𝑋, 𝐽𝑘 ))𝑘∈N be a
sequence of pseudo-holomorphic maps which Gromov converges to the nodal 𝐽∞–holomorphic map
𝑢∞ : (Σ∞, 𝑗∞, 𝜈∞) → (𝑋, 𝐽∞). Set𝐴 ≔ (𝑢∞)∗ [Σ∞] ∈ 𝐻2(𝑋,Z). Let 𝑓1, . . . , 𝑓Λ be even-dimensional
pseudo-cycles of positive codimension in general position. If

(1) im𝑢𝑘 ∩ im 𝑓𝜆 ≠ ∅ for every 𝜆 = 1, . . . ,Λ,

(2) 2〈𝑐1(𝑋,𝜔), 𝐴〉 =
∑Λ
𝜆=1

(codim 𝑓𝜆 − 2) > 0, and

(3) 𝐽∞ ∈ Jemb

(
𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ

)
,

then (Σ∞, 𝑗∞, 𝜈∞) is smooth and𝑢∞ is an embedding with im𝑢∞∩ im 𝑓𝜆 ≠ ∅ for every 𝜆 = 1, . . . ,Λ.
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1.2 Embedded curve counts

Denote byJ★
emb

(𝑋,𝜔) the subset of those 𝐽 ∈ Jemb(𝑋,𝜔) for which every simple 𝐽–holomorphic

map is unobstructed; see De�nition 2.36.

Theorem 1.5. Let (𝑋,𝜔) be a symplectic 6–manifold. Let 𝐴 ∈ 𝐻2(𝑋,Z) be a primitive class such
that 〈𝑐1(𝑋,𝜔), 𝐴〉 = 0.

(1) For every 𝑔 ∈ N0 and 𝐽 ∈ J★
emb

(𝑋,𝜔) the moduli spaceM★
𝐴,𝑔

(𝑋, 𝐽 ) of simple 𝐽–holomorphic
maps representing the class𝐴 and of genus𝑔 is a compact oriented zero-dimensional manifold,
and the signed count

(1.6) 𝑛𝐴,𝑔 (𝑋,𝜔) ≔ #M★
𝐴,𝑔 (𝑋, 𝐽 )

is independent on the choice of 𝐽 .

(2) There is a 𝑔0 ∈ N0, depending on (𝑋,𝜔) and 𝐴, such that

𝑛𝐴,𝑔 (𝑋,𝜔) = 0 for every 𝑔 > 𝑔0.

Remark 1.7. In fact, 𝑛𝐴,𝑔 (𝑋,𝜔) depends on 𝜔 only up to deformation. ♣
Again, there is a variantJ★

emb
(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) ofJ★

emb
(𝑋,𝜔) adapted to pseudo-holomorphic

maps with Λ marked points constrained by pseudo-cycles 𝑓1, . . . , 𝑓Λ; see De�nition 2.45.

Theorem 1.8. Let (𝑋,𝜔) be a symplectic 6–manifold, let𝐴 ∈ 𝐻2(𝑋,Z), let𝛾1, . . . , 𝛾Λ ∈ 𝐻 even(𝑋,Z)
be such that deg(𝛾𝜆) > 0 and

2〈𝑐1(𝑋,𝜔), 𝐴〉 =
Λ∑︁
𝜆=1

(deg(𝛾𝜆) − 2) > 0.

(1) Let 𝑓1, . . . , 𝑓Λ be pseudo-cycles in 𝑋 which are Poincaré dual to 𝛾1, . . . , 𝛾Λ and in general posi-
tion. For every𝑔 ∈ N0 and 𝐽 ∈ J★

emb

(
𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ

)
the moduli spaceM★

𝐴,𝑔

(
𝑋, 𝐽 ; 𝑓1, . . . , 𝑓Λ

)
of simple 𝐽–holomorphic maps representing the class𝐴, of genus 𝑔, and intersecting 𝑓1, . . . , 𝑓Λ
is a compact oriented zero-dimensional manifold, and the signed count

(1.9) 𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) ≔ #M★
𝐴,𝑔 (𝑋, 𝐽 ; 𝑓1, . . . , 𝑓Λ)

is independent on the choice of 𝑓1, . . . , 𝑓Λ and 𝐽 .

(2) There exists a 𝑔0 ∈ N0, depending on (𝑋,𝜔), 𝐴, and 𝛾1, . . . , 𝛾Λ, such that

𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) = 0 for all 𝑔 > 𝑔0.

Remark 1.10. Remark 1.7 applies mutatis mutandis. ♣
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1.3 Gopakumar and Vafa’s BPS invariants

Using ideas from 𝑀–theory, Gopakumar and Vafa [GV98a; GV98b] predicted that there are

integer invariants BPS𝐴,𝑔 (𝑋,𝜔) associated with every closed symplectic 6–manifold (𝑋,𝜔), a
class 𝐴 ∈ 𝐻2(𝑋,Z) with 〈𝑐1(𝑋,𝜔), 𝐴〉 = 0, and 𝑔 ∈ N0, which count BPS states supported on

embedded 𝐽–holomorphic curves representing 𝐴 and of genus 𝑔. Gopakumar and Vafa did

not give a direct mathematical de�nition of BPS𝐴,𝑔 (𝑋,𝜔); however, they conjectured that their

invariants are related to the Gromov–Witten invariants GW𝐴,𝑔 (𝑋,𝜔) by the marvelous formula

(1.11)

∑︁
𝐴

∞∑︁
𝑔=0

GW𝐴,𝑔 (𝑋,𝜔) · 𝑡2𝑔−2𝑞𝐴 =
∑︁
𝐴

∞∑︁
𝑔=0

BPS𝐴,𝑔 (𝑋,𝜔) ·
∞∑︁
𝑘=1

1

𝑘
(2 sin(𝑘𝑡/2))2𝑔−2𝑞𝑘𝐴

with the sum taken over all non-zero Calabi–Yau classes𝐴 and, moreover, that BPS𝐴,𝑔 (𝑋,𝜔) = 0

for 𝑔 � 1.

In algebraic geometry, there are approaches to de�ning the BPS invariants for projective

Calabi–Yau three-folds [HST01; PT09; PT10; KL12; MT18]. These satisfy the Gopakumar–Vafa

formula (1.11) in some cases, but it is not currently known whether the formula holds in general.

An alternative approach is to take (1.11) as the de�nition of BPS𝐴,𝑔 (𝑋,𝜔); see [BP01, Section
2]. This approach leads to the following conjecture.

Conjecture 1.12 (Gopakumar and Vafa [GV98a; GV98b]; see also [BP01, Conjecture 1.2]). The
numbers BPS𝐴,𝑔 (𝑋,𝜔) de�ned by (1.11) satisfy

(integrality) BPS𝐴,𝑔 (𝑋,𝜔) ∈ Z, and

(�niteness) BPS𝐴,𝑔 (𝑋,𝜔) = 0 for 𝑔 � 1. �

The Gopakumar–Vafa integrality conjecture has been proved by Ionel and Parker [IP18].

Zinger [Zin11, footnote 11] has proved that for primitive Calabi–Yau classes

BPS𝐴,𝑔 (𝑋,𝜔) = 𝑛𝐴,𝑔 (𝑋,𝜔);

see also Appendix C. Therefore, Theorem 1.5 implies the following.

Corollary 1.13. The Gopakumar–Vafa �niteness conjecture holds for primitive Calabi–Yau classes;
that is: for every closed symplectic 6–manifold (𝑋,𝜔) and every primitive Calabi–Yau class
𝐴 ∈ 𝐻2(𝑋,Z) there is a 𝑔0(𝜔,𝐴) such that for every 𝑔 > 𝑔0(𝜔,𝐴)

BPS𝐴,𝑔 (𝑋,𝜔) = 0. �

Remark 1.14. The �niteness conjecture for general Calabi–Yau classes has been resolved recently

[DIW21]. ♣
The genus bound in Corollary 1.13 is not e�ective; therefore, it is natural to ask the following.

De�nition 1.15. Let (𝑋,𝜔) be a closed symplectic 6–manifold and 𝐴 ∈ 𝐻2(𝑋,Z) a Calabi–Yau
class. De�ne the BPS Castelnuovo number 𝛾𝐴 (𝑋,𝜔) by

𝛾𝐴 (𝑋,𝜔) ≔ inf

{
𝑔 ∈ N : BPS𝐴,𝑔 (𝑋,𝜔) = 0

}
∈ N0 •
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Question 1.16. Is there an bound on 𝛾𝐴 (𝑋,𝜔) analogous to Castelnuovo’s bound for the genus

of an irreducible degree 𝑑 curve in P𝑛 [Cas89; ACGH85, Chapter III Section 2]; that is: a bound

of 𝛾𝐴 (𝑋,𝜔) by a formula involving 𝐴 and the geometry of 𝑋? (See Huang, Katz, and Klemm

[HKK15] and Knapp, Scheidegger, and Schimannek [KSS21] for some work in this direction.)

There is an analogue of the Gopakumar–Vafa formula for Fano classes. Given 𝐴 ∈ 𝐻2(𝑋,Z),
𝑔 ∈ N0, and 𝛾1, . . . , 𝛾Λ ∈ 𝐻 even(𝑋,Z) satisfying deg(𝛾𝜆) > 0 and

(1.17) 2〈𝑐1(𝑋,𝜔), 𝐴〉 =
Λ∑︁
𝜆=1

(deg(𝛾𝜆) − 2) > 0,

denote by GW𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) be the corresponding Gromov–Witten invariant. The ana-

logue of (1.11) is∑︁
𝐴

∞∑︁
𝑔=0

GW𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) · 𝑡2𝑔−2𝑞𝐴

=
∑︁
𝐴

∞∑︁
𝑔=0

BPS𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) · (2 sin(𝑡/2))2𝑔−2+〈𝑐1 (𝑋,𝜔),𝐴〉𝑞𝐴
(1.18)

with the sum taken over all 𝐴 ∈ 𝐻2(𝑋,Z) satisfying (1.17). Zinger [Zin11, Theorem 1.5] has

proved that

BPS𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) = 𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ);

thus establishing the analogue of the Gopakumar–Vafa integrality conjecture. Furthermore,

Theorem 1.8 implies the following.

Corollary 1.19. The analogue of the Gopakumar–Vafa �niteness conjecture holds for all Fano
classes. �

Of course, there is an analogue of Question 1.16 in the Fano case.
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2 Nodal pseudo-holomorphic maps

This section reviews a few de�nitions and results regarding nodal pseudo-holomorphic maps.
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2.1 Nodal manifolds

De�nition 2.1. Let 𝑋 be a manifold, possibly disconnected. A nodal structure on 𝑋 is an

involution 𝜈 : 𝑋 → 𝑋 whose �xed-point set has a discrete complement. (This involution is

discontinuous unless 𝜈 = id.) The set of points not �xed by 𝜈 is called the nodal set. A nodal
manifold is a manifold together with a nodal structure. •

The quotient 𝑋/𝜈 should be considered as the topological space underlying the nodal

manifold (𝑋, 𝜈). The atlas of 𝑋 induces a “nodal atlas” for 𝑋/𝜈 consisting of “charts” mapping

either to R𝑛 or R𝑛 × {0} ∪ {0} × R𝑛 ⊂ R2𝑛
. The nodes of 𝑋/𝜈 are precisely the points mapping

to (0, 0) ∈ R2𝑛
in some chart or, equivalently, the images of the points in the nodal set.

De�nition 2.2. Let (𝑋1, 𝜈1) and (𝑋2, 𝜈2) be nodal manifolds. A nodal map 𝑓 : (𝑋1, 𝜈1) → (𝑋2, 𝜈2)
is a smooth map 𝑓 : 𝑋1 → 𝑋2 such that

𝑓 ◦ 𝜈1 = 𝜈2 ◦ 𝑓 . •

De�nition 2.3. Let (𝑋, 𝜈) be a nodal manifold. A di�eomorphism of (𝑋, 𝜈) is an element of

Di� (𝑋, 𝜈) ≔ {𝜙 ∈ Di� (𝑋 ) : 𝜙 ◦ 𝜈 = 𝜈 ◦ 𝜙}. •

Every manifold 𝑋 canonically is a nodal manifold with 𝜈 = id𝑋 and a smooth map between

manifolds, trivially, is a nodal map. In other words, the category of manifolds is a full subcategory

of the category of nodal manifolds.

De�nition 2.4. Let (𝑋, 𝜈) be a nodal manifold, let 𝑌 be a manifold, and let 𝑓 : (𝑋, 𝜈) → 𝑌 be a

nodal map. For a vector bundle 𝐸 → 𝑌 , set

Γ(𝑋, 𝜈 ; 𝑓 ∗𝐸) ≔ {𝜉 ∈ Γ(𝑋, 𝑓 ∗𝐸) : 𝜉 ◦ 𝜈 = 𝜉}. •

Remark 2.5. In the situation of the preceding de�nition, set 𝑛 ≔ dim𝑋 and let 𝑝 > 𝑛. Given

a Riemannian metric on 𝑋 , a Euclidean metric on 𝐸, and a metric covariant derivative on 𝐸,

denote by𝑊 1,𝑝Γ(𝑋, 𝑓 ∗𝐸) the completion of Γ(𝑋, 𝑓 ∗𝐸) with respect to the corresponding𝑊 1,𝑝

norm. By Morrey’s embedding theorem,𝑊 1,𝑝 ↩→ 𝐶0,1−𝑛/𝑝
. Therefore, the evaluations maps

ev𝑥 : Γ(𝑋, 𝑓 ∗𝐸) → 𝐸𝑓 (𝑥) extend to𝑊 1,𝑝Γ(𝑋, 𝑓 ∗𝐸) and

𝑊 1,𝑝Γ(𝑋, 𝜈 ; 𝑓 ∗𝐸) =
{
𝜉 ∈𝑊 1,𝑝Γ(𝑋 ; 𝑓 ∗𝐸) : 𝜉 (𝜈 (𝑥)) = 𝜉 (𝑥) for every 𝑥 ∈ 𝑋

}
.

For 𝑝 < 𝑛 it can be shown that the 𝑊 1,𝑝
completion of Γ(𝑋, 𝜈 ; 𝑓 ∗𝐸) agrees with the𝑊 1,𝑝

completion of Γ(𝑋 ; 𝑓 ∗𝐸). ♣

2.2 Nodal Riemann surfaces

De�nition 2.6. A nodal Riemann surface is a Riemann surface (Σ, 𝑗) together with a nodal

structure 𝜈 . •
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De�nition 2.7. Let𝐶 be a complex analytic curve. A point of𝐶 is a node if it has a neighborhood
which is isomorphic to a neighborhood of the point (0, 0) in the curve{

(𝑧,𝑤) ∈ C2
: 𝑧𝑤 = 0

}
.

A nodal curve is a complex analytic curve all of whose points are either smooth or a node. •

Let 𝐶 be a nodal curve and denote by 𝜋 : 𝐶 → 𝐶 its normalization. The complex analytic

curve
˜𝐶 is smooth and, hence, equivalent to a closed Riemann surface (Σ, 𝑗). Since ˜𝐶 is obtained

from 𝐶 by replacing every node with a pair of points, Σ inherits a canonical nodal structure

𝜈 . This sets up an equivalence between complete, nodal curves 𝐶 and closed, nodal Riemann

surfaces (Σ, 𝑗, 𝜈).

De�nition 2.8. The automorphism group of a nodal Riemann surface (Σ, 𝑗, 𝜈) is

Aut(Σ, 𝑗, 𝜈) ≔ {𝜙 ∈ Di� (Σ, 𝜈) : 𝜙∗ 𝑗 = 𝑗}.

A nodal Riemann surface (Σ, 𝑗, 𝜈) is stable if Aut(Σ, 𝑗, 𝜈) is �nite. •

De�nition 2.9. Let (Σ, 𝜈) be a nodal surface with nodal set 𝑆 . The arithmetic genus of (Σ, 𝜈) is

•(2.10) 𝑝𝑎 (Σ, 𝜈) ≔ 1 − 1

2

(𝜒 (Σ) − #𝑆) .

Remark 2.11. If (Σ̃, 𝜈) denotes a nodal surface obtained from (Σ, 𝜈) by attaching a 1–handle at

some pairs of nodes {𝑛, 𝜈 (𝑛)}, then

𝑝𝑎 (Σ, 𝜈) = 𝑝𝑎 (Σ̃, 𝜈) . ♣

2.3 Nodal 𝐽–holomorphic maps

Throughout the next four subsections, let (𝑋, 𝐽 ) be an almost complex manifold of dimension

2𝑛.

De�nition 2.12. A nodal 𝐽–holomorphic map 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) is a nodal Riemann surface

(Σ, 𝑗, 𝜈) together with a nodal map 𝑢 : (Σ, 𝜈) → 𝑋 which is 𝐽–holomorphic; that is:

•(2.13) 𝜕𝐽 (𝑢, 𝑗) ≔
1

2

(d𝑢 + 𝐽 (𝑢) ◦ d𝑢 ◦ 𝑗) = 0.

De�nition 2.14. If 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) is a nodal 𝐽–holomorphic map and 𝜙 ∈ Di� (Σ, 𝜈), then
the reparametrization 𝜙∗𝑢 ≔ 𝑢 ◦ 𝜙−1

: (Σ, 𝜙∗ 𝑗, 𝜈) → (𝑋, 𝐽 ) is a nodal 𝐽–holomorphic map as

well. The automorphism group of a nodal 𝐽–holomorphic map 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) is

Aut(𝑢) ≔ {𝜙 ∈ Aut(Σ, 𝑗, 𝜈) : 𝑢 ◦ 𝜙 = 𝑢}.

The map 𝑢 is said to be stable if Aut(𝑢) is �nite. •

De�nition 2.15. Let (Σ, 𝑗) and (Σ̃, 𝑗) be smooth Riemann surfaces. Let 𝑢 : (Σ, 𝑗) → (𝑋, 𝐽 ) be a
𝐽–holomorphic map and let 𝜋 : (Σ̃, 𝑗) → (Σ, 𝑗) be a holomorphic map of degree deg(𝜋) > 2.

The composition 𝑢 ◦ 𝜋 : (Σ̃, 𝑗) → (𝑋, 𝐽 ) is said to be a multiple cover of 𝑢. A 𝐽–holomorphic

map is simple if it is not constant and not a multiple cover. •
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2.4 Ghost components

Let 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) be a nodal 𝐽–holomorphic map. Let 𝑆 be the nodal set of (Σ, 𝜈).

De�nition 2.16. Suppose 𝐶 ⊂ Σ is a union of connected components of Σ. Set

𝑆 int𝐶 ≔ {𝑛 ∈ 𝑆 : 𝑛 ∈ 𝐶 and 𝜈 (𝑛) ∈ 𝐶} and 𝑆ext𝐶 ≔ {𝑛 ∈ 𝑆 : 𝑛 ∈ 𝐶 and 𝜈 (𝑛) ∉ 𝐶}

and denote by 𝜈𝐶 the nodal structure on 𝐶 which agrees with 𝜈0 on 𝑆
int

𝐶
and the identity on the

complement of 𝑆 int
𝐶
. Denote by

ˇ𝐶 the nodal curve associated with (𝐶, 𝑗, 𝜈). •

De�nition 2.17. A ghost component of 𝑢 is a union 𝐶 of connected components of Σ such that

𝑢 |𝐶 is constant, 𝐶 is connected, and which is a maximal subset satisfying these properties. •

Proposition 2.19 below, which will be used in the proof of Theorem 1.1 (speci�cally in

Section 5.7), concerns the dualizing sheaf of a nodal curve 𝐶 . The dualizing sheaf is a general-

ization of the canonical sheaf of a smooth curve; for the reader’s convenience, we describe its

construction in the proof of Proposition 2.19.

De�nition 2.18. Let 𝐶 be a nodal curve. The dual graph of 𝐶 is the weighted graph whose

set of vertices is the set of irreducible components of 𝐶 with the genus as the weight function,

and edges between two vertices if and only if the corresponding irreducible components of 𝐶

intersect. •

Proposition 2.19. Let 𝐶 be a nodal curve. Denote the dual graph of 𝐶 by Γ. Denote by 𝜔𝐶 the
dualizing sheaf of 𝐶 and by 𝐵 its base-locus:

𝐵 ≔ {𝑥 ∈ 𝐶 : 𝜁 (𝑥) = 0 for every 𝜁 ∈ 𝐻 0(𝐶,𝜔𝐶 )}.

The base-locus has the following description:

(1) 𝐵 is a union of irreducible rational components of 𝐶 .

(2) The dual graph of 𝐵 is the subgraph Δ ⊂ Γ obtained by

(a) removing every vertex of non-zero weight, and

(b) removing every simple cycle in Γ.

In particular, Δ is a forest with weight zero. Moreover, if 𝑒1, 𝑒2 are distinct vertices of a tree
𝑇 ⊂ Δ, then they cannot be connected by a path in (Γ\𝑇 ) ∪ {𝑒1, 𝑒2}.

The proof relies on the following.

Proposition 2.20. Let Σ be a connected smooth curve. For every three 𝑝, 𝑞, 𝑟 distinct points on Σ
there is a 𝜁 ∈ 𝐻 0(𝐾Σ (𝑝 + 𝑞)) with

Res𝑝 𝜁 = −Res𝑞 𝜁 ≠ 0 and 𝜁 (𝑟 ) ≠ 0.

Here Res𝑝 𝜁 denotes the residue at 𝑝 of the meromorphic 1–form 𝜁 .
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Proof. For Σ = P1 without loss of generality 𝑝 = 0 and 𝑞 = ∞; hence, the meromorphic 1–form

can be taken to be 𝑧−1d𝑧.
Suppose Σ ≠ P1. Consider the exact sequence

𝐻 0(𝐾Σ) 𝐻 0(𝐾Σ (𝑝 + 𝑞)) 𝐻 0(O𝑝 ⊕ O𝑞) � C ⊕ C 𝐻 1(𝐾Σ) � C
𝜌 𝛿

with 𝜌 (𝜁 ) ≔ (Res𝑝 𝜁 , Res𝑞 𝜁 ) and 𝛿 (𝑎, 𝑏) ≔ 𝑎 −𝑏. This implies that there is a 𝜁 ∈ 𝐻 0(𝐾Σ (𝑝 +𝑞))
with non-vanishing residues at 𝑝 and 𝑞. Since 𝐾Σ is base-point-free, 𝜁 can be arranged not to

vanish at 𝑟 . �

Proof of Proposition 2.19. The dualizing sheaf of𝐶 is constructed as follows; see [ACGH11, p. 91].

Denote by 𝜋 : Σ → 𝐶 the normalization map. Denote by 𝑆 the set of nodal points of 𝐶 . Denote

by 𝜔̃𝐶 the subsheaf of 𝐾Σ (𝑆) whose sections 𝜁 satisfy

(2.21) Res𝑛 𝜁 + Res𝜈 (𝑛) 𝜁 = 0

for every 𝑛 ∈ 𝑆 . Here 𝜈 denotes the obvious involution on 𝜋−1(𝑆). The dualizing sheaf 𝜔𝐶 then

is

𝜔𝐶 = 𝜋∗𝜔̃𝐶 .

The base-locus of 𝐾Σ are precisely the rational connected components of Σ. This implies

(1). It follows from the above Proposition 2.20 that the dual graph of 𝐵 is contained in Δ. By
the Residue Theorem any meromorphic 1–form with simple poles must have at least two poles.

This implies that the dual graph of 𝐵 agrees with Δ. �

2.5 Moduli spaces of nodal pseudo-holomorphic maps

De�nition 2.22. Given 𝐴 ∈ 𝐻2(𝑋,Z) and 𝑔 ∈ N0, the moduli space of stable nodal 𝐽–
holomorphic maps representing 𝐴 and of genus 𝑔 is the set

M𝐴,𝑔 (𝑋, 𝐽 )

of equivalence classes of stable nodal 𝐽–holomorphicmaps𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) up to reparametriza-

tion with

𝑢∗ [Σ] = 𝐴 and 𝑝𝑎 (Σ, 𝜈) = 𝑔.
The subset ofM𝐴,𝑔 (𝑋, 𝐽 ) parametrizing simple 𝐽–holomorphic maps is denoted by

M★
𝐴,𝑔 (𝑋, 𝐽 ) . •

At this stage,M𝐴,𝑔 (𝑋, 𝐽 ) is just a set. In Section 3.2, it will be equipped with the Gromov
topology. This topology induces the 𝐶∞

topology onM★
𝐴,𝑔

(𝑋, 𝐽 ).

De�nition 2.23. Let (𝑋,𝜔) be a symplectic manifold. Denote by J(𝑋,𝜔) the space of almost

complex structures on 𝑋 which are compatible with 𝜔 ; that is:

𝑔(·, ·) ≔ 𝜔 (·, 𝐽 ·)

de�nes a Riemannian metric on 𝑋 . Equip J(𝑋,𝜔) with the 𝐶∞
topology. •
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De�nition 2.24. Given 𝐴 ∈ 𝐻2(𝑋,Z) and 𝑔 ∈ N, set

M𝐴,𝑔 (𝑋,𝜔) ≔
∐

𝐽 ∈J (𝑋,𝜔)
M𝐴,𝑔 (𝑋, 𝐽 ) and M★

𝐴,𝑔 (𝑋,𝜔) ≔
∐

𝐽 ∈J (𝑋,𝜔)
M★

𝐴,𝑔 (𝑋, 𝐽 ) .

Denote by 𝜋 : M𝐴,𝑔 (𝑋,𝜔) → J(𝑋,𝜔) the canonical projection. •

2.6 Linearization of the 𝐽–holomorphic map equation

Let 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) be a nodal 𝐽–holomorphic map. Let ℎ be a Hermitian metric on (𝑋, 𝐽 )
and let ∇ be a torsion-free connection on 𝑇𝑋 . Throughout the remainder of this article, let

𝑝 > 2.

De�nition 2.25. Given 𝜉 ∈𝑊 1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ), set

𝑢𝜉 ≔ exp𝑢 (𝜉)

and denote by Ψ𝜉 : 𝐿
𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ, 𝑢∗

𝜉
𝑇𝑋 ) the map induced by parallel transport

along the geodesics 𝑡 ↦→ exp𝑢 (𝑡𝜉). De�ne𝔉𝑢,𝑗,𝜈 ;𝐽 : 𝑊 1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) by

𝔉𝑢,𝑗,𝜈 ;𝐽 (𝜉) ≔ Ψ−1
𝜉
𝜕𝐽 (𝑢𝜉 , 𝑗). •

De�nition 2.26. De�ne the linear operator 𝔡𝑢,𝑗,𝜈 ;𝐽 : 𝑊 1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) by

𝔡𝑢,𝑗,𝜈 ;𝐽 𝜉 ≔ d0𝔉𝑢,𝑗,𝜈 ;𝐽 𝜉 =
1

2

(
∇𝜉 + 𝐽 (𝑢) ◦ (∇𝜉) ◦ 𝑗 + (∇𝜉 𝐽 ) ◦ d𝑢 ◦ 𝑗

)
. •

Remark 2.27. If 𝑢 is 𝐽–holomorphic, then 𝔡𝑢,𝑗,𝜈 ;,𝐽 does not depend on the choice of torsion-free

connection ∇ on 𝑇𝑋 ; see [MS12, Proposition 3.1.1]. ♣
The operator 𝔡𝑢,𝑗,𝜈 ;𝐽 is the restriction to𝑊 1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) of the operator

𝔡𝑢,𝑗 ;𝐽 : 𝑊
1,𝑝Γ(Σ, 𝑢∗𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 )

given by the same formula. The former controls the deformation theory of 𝑢 as a nodal 𝐽–

holomorphic map from the nodal Riemann surface (Σ, 𝑗, 𝜈) whereas the latter controls the

deformation theory of 𝑢 as a smooth 𝐽–holomorphic map from the smooth Riemann surface

(Σ, 𝑗), ignoring the nodal structure.

Proposition 2.28. The index of 𝔡𝑢,𝑗,𝜈 ;𝐽 is given by

(2.29) index𝔡𝑢,𝑗,𝜈 ;𝐽 = 2〈[Σ], 𝑢∗𝑐1(𝑋, 𝐽 )〉 + 2𝑛(1 − 𝑝𝑎 (Σ, 𝜈)) .

Proof. The inclusion
𝑊 1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ, 𝑢∗𝑇𝑋 ) .

has index −𝑛#𝑆 . By the Riemann–Roch Theorem,

index𝔡𝑢,𝑗 ;𝐽 = 2〈[Σ], 𝑢∗𝑐1(𝑋, 𝐽 )〉 + 𝑛𝜒 (Σ) .

These together with (2.10) imply the index formula. �
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Remark 2.30. For our discussion in Section 5.7, which establishes the key technical result of this

article, the following detailed description of the kernel and cokernel of 𝔡𝑢,𝑗,𝜈 ;𝐽 will be important.

Denote by

𝑉− ⊂
⊕
𝑛∈𝑆

𝑇𝑢 (𝑛)𝑋

the subspace of those (𝑣𝑛)𝑛∈𝑆 satisfying

𝑣𝜈 (𝑛) = −𝑣𝑛 .

De�ne di� : ker𝔡𝑢,𝑗 ;𝐽 → 𝑉− by

di�𝜅 ≔ (𝜅 (𝑛) − 𝜅 (𝜈 (𝑛)))𝑛∈𝑆 .

Evidently,

ker𝔡𝑢,𝑗,𝜈 ;𝐽 = ker di� .

The map di� is induced by the analogously de�ned map𝑊 1,𝑝 (Σ, 𝑢∗𝑇𝑋 ) → 𝑉− which �ts in to

the following commutative diagram with exact rows

0 𝑊 1,𝑝 (Σ, 𝜈 ;𝑢∗𝑇𝑋 ) 𝑊 1,𝑝 (Σ, 𝑢∗𝑇𝑋 ) 𝑉− 0

0 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) 0 0.

𝔡𝑢,𝑗,𝜈 ;𝐽 𝔡𝑢,𝑗 ;𝐽

=

Therefore, the Snake Lemma yields the short exact sequence

0 coker di� coker𝔡𝑢,𝑗,𝜈 ;𝐽 coker𝔡𝑢,𝑗 ;𝐽 0.

The dual sequence

0 (coker𝔡𝑢,𝑗 ;𝐽 )∗ (coker𝔡𝑢,𝑗,𝜈 ;𝐽 )∗ (coker di�)∗ 0

can be understood as follows. Let 𝑞 ∈ (1, 2) be such that 1/𝑝 + 1/𝑞 = 1. The dual space

(coker𝔡𝑢,𝑗𝜈 ;𝐽 )∗ can be identi�ed via the pairing between 𝐿𝑝 and 𝐿𝑞 with the spaceH consisting

of those 𝜁 ∈ 𝐿𝑞Ω0,1(Σ, 𝑢∗𝑇𝑋 ) which satisfy a distributional equation of the form

𝔡∗𝑢,𝑗,𝐽 𝜁 =
∑︁
𝑛∈𝑆

𝑣𝑛𝛿𝑛 .

with 𝑣 = (𝑣𝑛)𝑛∈𝑆 ∈ (im di�)⊥ � (coker di�)∗ and 𝛿𝑛 denoting the Dirac 𝛿 distribution at 𝑛. The

map (coker𝔡𝑢,𝑗,𝜈 ;𝐽 )∗ → (coker di�)∗ maps 𝜁 to 𝑣 . ♣

De�nition 2.31. De�ne the map 𝔫𝑢,𝑗,𝜈 ;𝐽 : 𝑊
1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) by

𝔫𝑢,𝑗,𝜈 ;𝐽 (𝜉) ≔𝔉𝑢,𝑗,𝜈 ;𝐽 (𝜉) − 𝜕𝐽 (𝑢, 𝑗) − 𝔡𝑢,𝑗,𝜈 ;𝐽 𝜉 . •

13



Proposition 2.32 ([MS12, Proposition 3.5.3 and Remark 3.5.5]). Denote by 𝑐𝑆 > 0 an upper bound
for the norm of the embedding𝑊 1,𝑝 (Σ) ↩→ 𝐶0,1−2/𝑝 (Σ) and let 𝑐𝜉 > 0. For every 𝜉1, 𝜉2 with
‖𝜉1‖𝑊 1,𝑝 6 𝑐𝜉 and ‖𝜉2‖𝑊 1,𝑝 6 𝑐𝜉

‖𝔫𝑢,𝑗,𝜈 ;𝐽 (𝜉1) − 𝔫𝑢,𝑗,𝜈 ;𝐽 (𝜉2)‖𝐿𝑝 6 𝑐 (𝑐𝑆 , 𝑐𝜉 , ‖d𝑢‖𝐿𝑝 ) · (‖𝜉1‖𝑊 1,𝑝 + ‖𝜉2‖𝑊 1,𝑝 ) · ‖𝜉1 − 𝜉2‖𝑊 1,𝑝 .

So far, the complex structure 𝑗 has been held �xed. Denote by J(Σ) the space of complex

structures on Σ and by Di�0(Σ, 𝜈) the group of di�eomorphism of Σ which are isotopic to the

identity and commute with 𝜈 . Denote by

T ≔ J(Σ)/Di�0(Σ, 𝜈)

the corresponding Teichmüller space. This is a complex manifold whose real dimension satis�es

dimT − dim𝔞𝔲𝔱(Σ, 𝑗, 𝜈) + #𝑆 = 6(𝑝𝑎 (Σ, 𝜈) − 1).

For every 𝑗 ∈ J(Σ) there is a Teichmüller slice through 𝑗 ; that is: an open neighborhood Δ of

0 ∈ CdimC T
together with a Aut(Σ, 𝑗, 𝜈)–equivariant map 𝚥 : Δ → J(Σ) such that 𝚥 (0) = 𝑗 .

De�nition 2.33. Consider the bundle over Δ whose �ber over 𝜎 ∈ Δ is the Banach space

𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) .

Here the space of (0, 1) forms on Σ is de�ned with respect to complex structure 𝚥 (𝜎). A choice

of a trivialization of this bundle gives rise to the map

𝑊 1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) × Δ → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 )
(𝜉, 𝜎) ↦→ F𝑢,𝚥 (𝜎),𝜈 ;𝐽 (𝜉) .

(2.34)

De�ne d𝑢,𝑗 𝜕𝜈 ;𝐽 : 𝑊
1,𝑝Γ(Σ, 𝜈 ;𝑢∗𝑇𝑋 ) ⊕ 𝑇0Δ → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 ) to be the derivative of the map

(2.34) at (0, 0). •

De�nition 2.35. The index of 𝑢 is

index(𝑢) ≔ index(d𝑢,𝑗 𝜕𝜈 ;𝐽 ) − dim𝔞𝔲𝔱(Σ, 𝑗, 𝜈) + #𝑆

= 2〈[Σ], 𝑢∗𝑐1(𝑋, 𝐽 )〉 + 2(𝑛 − 3) (1 − 𝑝𝑎 (Σ, 𝜈)) .

The map 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 ) is said to be unobstructed if d𝑢,𝑗 𝜕𝜈 ;𝐽 is surjective. •

Henceforth, to simplify notation, we will often drop some or all of the subscripts 𝑗 , 𝜈 , 𝐽

from the maps de�ned above.

2.7 Transversality for simple maps

Throughout the remainder of this section, (𝑋,𝜔) is a compact symplectic manifold of dimension

2𝑛 > 6 and we only consider pseudo-holomorphic maps from smooth Riemann surfaces.

De�nition 2.36. Denote by Jemb(𝑋,𝜔) ⊂ J(𝑋,𝜔) the subspace of those almost complex

structures compatible with 𝜔 for which the following hold:
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(1) there are no simple 𝐽–holomorphic maps with negative index,

(2) every simple 𝐽–holomorphic map with index(𝑢) < 2𝑛 − 4 is an embedding, and

(3) every pair of simple 𝐽–holomorphic maps 𝑢1, 𝑢2 satisfying

index(𝑢1) + index(𝑢2) < 2𝑛 − 4

either have disjoint images or are related by a reparametrization.

Denote by J★
emb

(𝑋,𝜔) ⊂ Jemb(𝑋,𝜔) the subset of those 𝐽 for which, moreover,

(4) every simple 𝐽–holomorphic map is unobstructed. •

De�nition 2.37. Given 𝐽0, 𝐽1 ∈ J(𝑋,𝜔), denote by J(𝑋,𝜔 ; 𝐽0, 𝐽1) the space of smooth paths

(𝐽𝑡 )𝑡 ∈[0,1] in J(𝑋,𝜔) from 𝐽0 and 𝐽1. Given 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔), denote by J★
emb

(𝑋,𝜔, 𝐽0, 𝐽1) the
subset of those (𝐽𝑡 )𝑡 ∈[0,1] ∈ J(𝑋,𝜔 ; 𝐽0, 𝐽1) such that for every 𝑡 ∈ [0, 1]:

(1) 𝐽𝑡 ∈ Jemb(𝑋,𝜔) and

(2) if 𝑢 : (Σ, 𝑗) → (𝑋, 𝐽𝑡 ) is a simple 𝐽𝑡–holomorphic map, then either:

(a) coker d𝑢,𝑗 𝜕𝐽𝑡 = {0} or
(b) dim coker d𝑢,𝑗 𝜕𝐽𝑡 = 1 and the map ker d𝑢,𝑗 𝜕𝐽𝑡 → coker d𝑢,𝑗 𝜕𝐽𝑡 de�ned by

𝜉 ↦→ pr

(
d

d𝑠

����
𝑠=𝑡

d𝑢,𝑗 𝜕𝐽𝑠 𝜉

)
,

with pr : Ω0,1(Σ, 𝑢∗𝑇𝑋 ) → coker d𝑢,𝑗 𝜕𝐽𝑡 denoting the canonical projection, is sur-

jective. •

Proposition 2.38. Let 𝐴 ∈ 𝐻2(𝑋,Z) and 𝑔 ∈ N0.

(1) For every 𝐽 ∈ J★
emb

(𝑋,𝜔) the moduli space M★
𝐴,𝑔

(𝑋, 𝐽 ) is an oriented smooth manifold of
dimension

2〈𝑐1(𝑋,𝜔), 𝐴〉 + 2(𝑛 − 3) (1 − 𝑔).

(2) For every pair 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔) and (𝐽𝑡 )𝑡 ∈[0,1] ∈ J★
emb

(𝑋,𝜔 ; 𝐽0, 𝐽1) the moduli space

M★
𝐴,𝑔

(
𝑋, (𝐽𝑡 )𝑡 ∈[0,1]

)
≔

∐
𝑡 ∈[0,1]

M★
𝐴,𝑔 (𝑋, 𝐽𝑡 ),

is an oriented smooth manifold with boundary

M★
𝐴,𝑔 (𝑋, 𝐽1) q −M★

𝐴,𝑔 (𝑋, 𝐽0) .
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This is a consequence of the Implicit Function Theorem; see [MS12, Theorem 3.1.6 and

Theorem 3.1.7]. The orientation on the moduli spaces is obtained by trivalizing the determinant

line bundle of the family of operators d𝑢,𝑗 𝜕𝐽 ; see [MS12, Proof of Theorem 3.1.6, Remark 3.2.5,

Appendix A.2]. If the moduli space is zero-dimensional, that is: a discrete set, then every

[𝑢] ∈ M★
𝐴,𝑔

(𝑋, 𝐽 ) is assigned a sign

sign[𝑢] ∈ {+1,−1}.

The signed count ofM★
𝐴,𝑔

(𝑋, 𝐽 ) is then

#M★
𝐴,𝑔 (𝑋, 𝐽 ) ≔

∑︁
[𝑢 ] ∈M★

𝐴,𝑔
(𝑋,𝐽 )

sign[𝑢] .

Proposition 2.39.

(1) J★
emb

(𝑋,𝜔) ⊂ J(𝑋,𝜔) is residual.

(2) For every pair 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔), J★
emb

(𝑋,𝜔 ; 𝐽0, 𝐽1) ⊂ J(𝑋,𝜔 ; 𝐽0, 𝐽1) is residual.

The proof is a standard application of the Sard–Smale theorem; cf. [OZ09, Theorem 1.2;

IP18, Proposition A.4; MS12, Sections 3.2 and 6.3]. Some details of the proof will be reviewed in

the proof of Proposition 2.47.

2.8 𝐽–holomorphic maps with constraints

De�nition 2.40. Let Λ ∈ N. A 𝐽–holomorphic map with Λ marked points is a 𝐽–holomorphic

map 𝑢 : (Σ, 𝑗) → (𝑋, 𝐽 ) together with Λ distinct labeled points 𝑧1, . . . , 𝑧Λ ∈ Σ.
The reparametrization of (𝑢; 𝑧1, . . . , 𝑧Λ) by 𝜙 ∈ Di� (Σ) is the 𝐽–holomorphic map with Λ

marked points 𝜙∗(𝑢; 𝑧1, . . . , 𝑧Λ) ≔ (𝑢 ◦ 𝜙−1
;𝜙 (𝑧1), . . . , 𝜙 (𝑧Λ)).

A 𝐽–holomorphic map (𝑢; 𝑧1, . . . , 𝑧Λ) with Λ marked points is said to be simple if 𝑢 is

simple. •

De�nition 2.41. Given 𝐴 ∈ 𝐻2(𝑋,Z), 𝑔 ∈ N0, Λ ∈ N, and 𝐽 ∈ J(𝑋,𝜔), the moduli space of
simple 𝐽–holomorphic maps with Λ marked points representing 𝐴 and of genus 𝑔 is the set

M★
𝐴,𝑔,Λ(𝑋, 𝐽 )

of equivalence classes 𝐽–holomorphic maps 𝑢 : (Σ, 𝑗) → (𝑋, 𝐽 ) with Λmarked points 𝑧1, . . . , 𝑧Λ
up to reparametrization with

𝑢∗ [Σ] = 𝐴 and 𝑔(Σ) = 𝑔.

De�ne the evaluation map ev : M★
𝐴,𝑔,Λ(𝑋, 𝐽 ) → 𝑋Λ

by

ev( [𝑢; 𝑧1, . . . , 𝑧Λ]) ≔ (𝑢 (𝑧1), . . . , 𝑢 (𝑧Λ)). •
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Remark 2.42. Given two maps 𝑓 : 𝑋 → 𝑍 and 𝑔 : 𝑌 → 𝑍 , the �ber product is

𝑋 𝑓 ×𝑔 𝑌 ≔ (𝑓 × 𝑔)−1(Δ)

with Δ ⊂ 𝑍×𝑍 denoting the diagonal. If𝑋 ,𝑌 ,𝑍 are smooth manifolds and 𝑓 and𝑔 are transverse

smoothmaps, then𝑋 𝑓×𝑔𝑌 is a submanifold of𝑋×𝑌 of dimension dim(𝑋 )+dim(𝑌 )−dim(𝑍 ). ♣
Let (𝑓𝜆 : 𝑉Λ → 𝑋 )Λ𝜆=1 be a Λ–tuple of pseudo-cycles in general position such that

codim(𝑓𝜆) ≔ dim𝑋 − dim𝑉𝜆

is even and positive for every 𝜆. The following discussion assumes some familiarity with the

notions of pseudo-cycle, pseudo-cycle cobordism, and pseudo-cycle transversality. In particular,

we make use of the following facts, which are discussed in Appendix B:

(a) For every 𝜆 ∈ {1, . . . ,Λ}, there is a manifold 𝑉 𝜕
𝜆
of dimension dim(𝑉𝜆) − 2 and a smooth

map 𝑓 𝜕
𝜆
: 𝑉 𝜕

𝜆
→ 𝑋 whose image contains the pseudo-cycle boundary bd(𝑓𝜆).

(b) A smooth map 𝑔 : 𝑀 → 𝑋 is said to be transverse to the pseudo-cycle 𝑓𝜆 if it is transverse

to both 𝑓𝜆 and 𝑓
𝜕
𝜆
in the usual sense.

(c) For every 𝐼 ⊂ {1, . . . ,Λ} the product∏𝜆∈𝐼 𝑓𝜆 is a pseudo-cycle and 𝑓
𝜕
𝜆
induces in a natural

way a map from a smooth manifold whose image contains bd(∏𝜆∈𝐼 𝑓𝜆).

In the following, 𝑓 •
𝜆
: 𝑉 •

𝜆
→ 𝑋 stands for either 𝑓𝜆 : 𝑉𝜆 → 𝑋 or 𝑓 𝜕

𝜆
: 𝑉 𝜕

𝜆
→ 𝑋 .

De�nition 2.43. Given 𝐴 ∈ 𝐻2(𝑋,Z), 𝑔 ∈ N0, and 𝐽 ∈ J(𝑋,𝜔), set

M★
𝐴,𝑔 (𝑋, 𝐽 ; 𝑓

•
1
, . . . , 𝑓 •Λ ) ≔ M★

𝐴,𝑔,Λ(𝑋, 𝐽 ) ev×𝑓 •1 ×···×𝑓 •Λ 𝑉
•
1
× · · · ×𝑉 •

Λ .

The expected dimension ofM★
𝐴,𝑔

(𝑋, 𝐽 ; 𝑓1, . . . , 𝑓Λ) is de�ned to be

vdimM★
𝐴,𝑔 (𝑋, 𝐽 ; 𝑓1, . . . , 𝑓Λ) ≔ 2〈𝑐1(𝑋,𝜔), 𝐴〉 + (𝑛 − 3) (2 − 2𝑔) +

Λ∑︁
𝜆=1

(2 − codim(𝑓𝜆)). •

The following are analogues of De�nition 2.36 and De�nition 2.37 in the setting of 𝐽–

holomorphic maps with constraints.

De�nition 2.44. Denote byJemb(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) ⊂ J(𝑋,𝜔) the subset of those almost complex

structures 𝐽 compatible with 𝜔 for which the following conditions hold for every 𝐴,𝐴1, 𝐴2 ∈
𝐻2(𝑋,Z), 𝑔,𝑔1, 𝑔2 ∈ N0, and 𝐼 , 𝐼1, 𝐼2 ⊂ {1, . . . ,Λ} with 𝐼1 ∩ 𝐼2 = ∅:

(1) if vdimM★
𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
< 0, thenM★

𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
= ∅;

(2) if vdimM★
𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
< 2𝑛 − 4, then every 𝐽–holomorphic map underlying an

element of M★
𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
is an embedding; and

(3) if vdimM★
𝐴1,𝑔1

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼1

)
+vdimM★

𝐴2,𝑔2

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼2

)
< 2𝑛−4, then every pair of ev-

ery 𝐽–holomorphicmaps underlying elements ofM★
𝐴1,𝑔1

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼1

)
andM★

𝐴2,𝑔2

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼2

)
either have disjoint images or are related by a reparametrization.
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Denote byJ★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) the subset of those elements ofJemb(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) for which,
moreover:

(4) every simple 𝐽–holomorphic map is unobstructed, and

(5) for every 𝐴 ∈ 𝐻2(𝑋,Z), 𝑔 ∈ N, and 𝐼 ⊂ {1, . . . ,Λ}, the pseudo-cycle ∏
𝜆∈𝐼 𝑓𝜆 is transverse

to ev : M★
𝐴,𝑔, |𝐼 | (𝑋, 𝐽 ) → 𝑋 |𝐼 |

in the sense of De�nition B.3. •

De�nition 2.45. Given 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ), denote by J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ; 𝐽0, 𝐽1) the
space of smooth paths (𝐽𝑡 )𝑡 ∈[0,1] in J(𝑋,𝜔) from 𝐽0 and 𝐽1 such that for every 𝑡 ∈ [0, 1]:

(1) 𝐽𝑡 ∈ Jemb(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ),

(2) if 𝑢 : (Σ, 𝑗) → (𝑋, 𝐽𝑡 ) is a simple 𝐽𝑡–holomorphic map, then either:

(a) coker d𝑢,𝑗 𝜕𝐽𝑡 = {0} or
(b) dim coker d𝑢,𝑗 𝜕𝐽𝑡 = 1 and the map ker d𝑢,𝑗 𝜕𝐽𝑡 → coker d𝑢,𝑗 𝜕𝐽𝑡 de�ned by

𝜉 ↦→ pr

(
d

d𝑠

����
𝑠=𝑡

d𝑢,𝑗 𝜕𝐽𝑠 𝜉

)
,

with pr : Ω0,1(Σ, 𝑢∗𝑇𝑋 ) → coker d𝑢,𝑗 𝜕𝐽𝑡 denoting the canonical projection, is sur-

jective; in particular, for every 𝐴 ∈ 𝐻2(𝑋,Z), 𝑔 ∈ N, and 𝑘 ∈ N the moduli space

M★
𝐴,𝑔,𝑘

(
𝑋, (𝐽𝑡 )𝑡 ∈[0,1]

)
≔

⊔
𝑡 ∈[0,1]

M★
𝐴,𝑔,𝑘

(𝑋, 𝐽𝑡 )

is an oriented smooth manifold with boundaryM★
𝐴,𝑔,𝑘

(𝑋, 𝐽1) q −M★
𝐴,𝑔,𝑘

(𝑋, 𝐽0),

and

(3) for every 𝐴 ∈ 𝐻2(𝑋,Z), 𝑔 ∈ N, and 𝐼 ⊂ {1, . . . ,Λ} the pseudo-cycle ∏
𝜆∈𝐼 𝑓𝜆 is transverse

to the evaluation map ev : M★
𝐴,𝑔, |𝐼 |

(
𝑋,𝐴; (𝐽𝑡 )𝑡 ∈[0,1]

)
→ 𝑋 |𝐼 |

in the sense of De�nition B.3.

•

The next two results are analogues of Proposition 2.38 and Proposition 2.39.

Proposition 2.46. Let 𝐴 ∈ 𝐻2(𝑋,Z) and 𝑔 ∈ N0.

(1) For every 𝐽 ∈ J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) the moduli spaceM★
𝐴,𝑔

(
𝑋, 𝐽 ; 𝑓 •

1
, . . . , 𝑓 •Λ

)
is an oriented

smooth manifold of dimension

vdimM★
𝐴,𝑔

(
𝑋, 𝐽 ; 𝑓 •

1
, . . . , 𝑓 •Λ

)
.

(2) For every pair 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) and (𝐽𝑡 )𝑡 ∈[0,1] ∈ J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ; 𝐽0, 𝐽1)
the moduli space

M★
𝐴,𝑔

(
𝑋, (𝐽𝑡 )𝑡 ∈[0,1]); 𝑓 •1 , . . . , 𝑓 •Λ

)
≔

∐
𝑡 ∈[0,1]

M★
𝐴,𝑔 (𝑋, 𝐽𝑡 ; 𝑓

•
1
, . . . , 𝑓 •Λ )

is an oriented smooth manifold with boundary

M★
𝐴,𝑔

(
𝑋, 𝐽 ; 𝑓 •

1
, . . . , 𝑓 •Λ

)
q −M★

𝐴,𝑔

(
𝑋, 𝐽 ; 𝑓 •

1
, . . . , 𝑓 •Λ

)
.
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Proposition 2.47.

(1) J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) ⊂ J(𝑋,𝜔) is residual.

(2) For every pair 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ), J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ; 𝐽0, 𝐽1) ⊂ J(𝑋,𝜔 ; 𝐽0, 𝐽1)
is residual.

Proof. We will prove the �rst part; the proof of the second part is similar. It follows from

Proposition A.2, proved in Appendix A, that the set of 𝐽 ∈ J(𝑋,𝜔) satisfying conditions (4)

and (5) from De�nition 2.44 is residual. Note that condition (4) implies condition (1). To prove

that condition (2) is also satis�ed by a generic 𝐽 , consider the evaluation map

ev : M★
𝐴,𝑔,2

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
→ 𝑋 2.

If ev is transverse to the diagonal 𝑋 = Δ ⊂ 𝑋 2
, then ev

−1(Δ) is a submanifold of codimension

dimM★
𝐴,𝑔,2

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
− 2𝑛 = dimM★

𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
− (2𝑛 − 4) .

Therefore, if dimM★
𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
< 2𝑛 − 4, then ev

−1(Δ) is empty and two distinct maps in

M★
𝐴,𝑔

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼

)
have disjoint images. By Proposition A.2, the set of 𝐽 for which the map

ev is transverse to the diagonal 𝑋 ↩→ 𝑋 2
is residual. This shows that the set of 𝐽 satisfying

condition (2) from De�nition 2.44 is residual. In the same way we conclude that the set of 𝐽

satisfying condition (3) is residual. �

The following will be important for relating moduli spaces de�ned using cobordant pseu-

docycles. Let 𝐹 : 𝑊 → 𝑋 be a cobordism between two pseudo-cycles 𝑓 0
1
and 𝑓 1

1
in 𝑋 , and let

𝐹 𝜕 : 𝑊 𝜕 → 𝑋 be such that bd(𝐹 ) is contained in the image of 𝐹 𝜕; see De�nition B.1 for the

notation and the de�nition of a pseudo-cycle cobordism. In what follows, 𝐹 • denotes either 𝐹
or 𝐹 𝜕 . Let 𝑓2, . . . , 𝑓Λ be pseudo-cycles in 𝑋 such that 𝐹, 𝑓2, . . . , 𝑓Λ are in general position, as in

De�nition B.4.

Given 𝐽 ∈ J(𝑋,𝜔) and a subset 𝐼 ⊂ {2, . . . ,Λ}, set

M★
𝐴,𝑔 (𝑋, 𝐽 ; 𝐹

•, (𝑓 •
𝜆
)𝜆∈𝐼 ) ≔ M★

𝐴,𝑔, |𝐼 |+1(𝑋, 𝐽 ) ev×𝐹 •×∏
𝜆∈𝐼 𝑓

•
𝜆
𝑊 • ×

∏
𝜆∈𝐼

𝑉 •
𝜆
.

De�nition 2.48. Let

J★
emb

(𝑋,𝜔 ; 𝐹, 𝑓2, . . . , 𝑓Λ) ⊂ J★
emb

(𝑋,𝜔 ; 𝑓 0
1
, 𝑓2, . . . , 𝑓Λ) ∩ J★

emb
(𝑋,𝜔 ; 𝑓 1

1
, 𝑓2, . . . , 𝑓Λ)

be the subset of those 𝐽 for which the following conditions hold for every 𝐴,𝐴1, 𝐴2 ∈ 𝐻2(𝑋,Z),
𝑔,𝑔1, 𝑔2 ∈ N0, and 𝐼 , 𝐼1, 𝐼2 ⊂ {2, . . . ,Λ} with 𝐼1 ∩ 𝐼2 = ∅:

(1) if vdimM★
𝐴,𝑔

(
𝑋, 𝐽 ; 𝐹 •, (𝑓 •

𝜆
)𝜆∈𝐼

)
< 2𝑛 − 4, then every 𝐽–holomorphic map underlying an

element of M★
𝐴,𝑔

(
𝑋, 𝐽 ; 𝐹 •, (𝑓 •

𝜆
)𝜆∈𝐼

)
is an embedding;

(2) if vdimM★
𝐴1,𝑔1

(
𝑋, 𝐽 ; 𝐹 •, (𝑓 •

𝜆
)𝜆∈𝐼1

)
+ vdimM★

𝐴2,𝑔2

(
𝑋, 𝐽 ; (𝑓 •

𝜆
)𝜆∈𝐼2

)
< 2𝑛 − 4, then every pair

of 𝐽–holomorphic maps underlying elements of

M★
𝐴1,𝑔1

(
𝑋, 𝐽 ; 𝐹 •, (𝑓 •

𝜆
)𝜆∈𝐼1

)
and M★

𝐴2,𝑔2

(
𝑋, 𝐽 ; 𝐹 •, (𝑓 •

𝜆
)𝜆∈𝐼2

)
either have disjoint images or are related by a reparametrization; and
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(3) for every 𝐴 ∈ 𝐻2(𝑋,Z), 𝑔 ∈ N, and 𝐼 ⊂ {2, . . . ,Λ}, the pseudo-cycle 𝐹 × ∏
𝜆∈𝐼 𝑓𝜆 is

transverse as pseudo-cycle with boundary to ev : M★
𝐴,𝑔, |𝐼 |+1(𝑋, 𝐽 ) → 𝑋 |𝐼 |+1

in the sense

of De�nition B.3. •

It follows from this de�nition that for every 𝐽 ∈ J★
emb

(𝑋,𝜔 ; 𝐹, 𝑓2, . . . , 𝑓Λ), 𝐹 × 𝑓2 × . . . × 𝑓Λ is

transverse as pseudo-cycle cobordism to ev : M★
𝐴,𝑔,Λ(𝑋, 𝐽 ) → 𝑋Λ

. In this case,M★
𝐴,𝑔

(𝑋, 𝐽 ; 𝐹, 𝑓2, . . . , 𝑓Λ)
is an oriented cobordism fromM★

𝐴,𝑔
(𝑋, 𝐽 ; 𝑓 0

1
, 𝑓2, . . . , 𝑓Λ) to M★

𝐴,𝑔
(𝑋, 𝐽 ; 𝑓 1

1
, 𝑓2, . . . , 𝑓Λ).

Proposition 2.49. J★
emb

(𝑋,𝜔 ; 𝐹, 𝑓2, . . . , 𝑓Λ) is residual in J(𝑋,𝜔).

The proof is almost identical to that of Proposition 2.47.

3 Gromov compactness

3.1 Deformations of nodal Riemann surfaces

De�nition 3.1. LetX and 𝐴 be complex manifolds and let 𝜋 : X → 𝐴 be a holomorphic map.

Set 𝑛 ≔ dimC𝐴 and suppose that dimCX = 𝑛 + 1. A critical point 𝑥 ∈ X of 𝜋 is called nodal if
there are holomorphic coordinates at 𝑥 and holomorphic coordinates at 𝜋 (𝑥) with respect to

which

𝜋 (𝑧,𝑤, 𝑡2, . . . , 𝑡𝑛) = (𝑧𝑤, 𝑡2, . . . , 𝑡𝑛) .

A nodal family is a surjective, proper, holomorphic map 𝜋 : X → 𝐴 between complex manifolds

of dimension dimCX = dimC𝐴 + 1 such that every critical point of 𝜋 is nodal. The �ber over
𝑎 ∈ 𝐴 is the nodal Riemann surface (Σ, 𝑗, 𝜈) associated with the nodal curve 𝜋−1(𝑎). Henceforth,
we engage in the abuse of notation of identifying 𝜋−1(𝑎) with (Σ, 𝑗, 𝜈). •

De�nition 3.2. Let (Σ, 𝑗, 𝜈) be a nodal Riemann surface. A deformation of (Σ, 𝑗, 𝜈) is a nodal
family 𝜋 : X → 𝐴, together with a base-point ★ ∈ 𝐴, and a nodal, biholomorphic map

𝜄 : (Σ, 𝑗, 𝜈) → 𝜋−1(★). •

De�nition 3.3. Let (Σ, 𝑗, 𝜈) be a nodal Riemann surface and let (𝜋 : X → 𝐴,★, 𝜄) and (𝜌 : Y →
𝐵, †, 𝜅) be two deformations of (Σ, 𝑗, 𝜈). A pair of holomorphic maps Φ : X →Y and𝜙 : 𝐴 → 𝐵

forms a morphism (Φ, 𝜙) : (𝜌,★, 𝜄) → (Y, †, 𝜅) of deformations if

𝜙 (★) = †, 𝜌 ◦ Φ = 𝜙 ◦ 𝜋, Φ ◦ 𝜄 = 𝜅

and for every 𝑎 ∈ 𝐴 the restriction Φ : 𝜋−1(𝑎) → 𝜌−1(𝜙 (𝑎)) induces a nodal, biholomorphic

map. •

De�nition 3.4. A deformation (𝜌 : Y → 𝐵, †, 𝜅) of (Σ, 𝑗, 𝜈) is (uni)versal if for every deforma-

tion (𝜋 : X → 𝐴,★, 𝜄) of (Σ, 𝑗, 𝜈) there exists an open neighborhood𝑈 of ★ ∈ 𝐴 and a (unique)

morphism of deformations (𝜋 : 𝜋−1(𝑈 ) → 𝑈 ,★, 𝜄) → (𝜌, †, 𝜅). •

A nodal Riemann surface (Σ, 𝑗, 𝜈) admits a universal deformation if and only if it is stable

[DM69; ACGH11, Chapter XI Theorem 4.3; RS06, Theorem A]. However, every nodal Riemann

surface (Σ, 𝑗, 𝜈) admits a versal deformation. This will be discussed in detail in Section 4.
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De�nition 3.5. Let (𝜋 : X → 𝐴,★, 𝜄) be a deformation of a nodal Riemann surface (Σ, 𝑗, 𝜈).
Denote by 𝑆 the nodal set of 𝜈 . A framing of (𝜋,★, 𝜄) is a smooth embedding Ψ : (Σ\𝑆) ×𝐴 → X

such that

𝜋 ◦ Ψ = pr𝐴 and Ψ(·,★) = 𝜄. •

3.2 The Gromov topology

Let 𝑋 be a manifold and denote byH(𝑋 ) the set of almost Hermitian structures (𝐽 , ℎ) on 𝑋
equipped with the 𝐶∞

topology. The following de�nes a topology on

M𝐴,𝑔 (𝑋 ) ≔
∐

( 𝐽 ,ℎ) ∈H (𝑋 )
M𝐴,𝑔 (𝑋, 𝐽 ).

De�nition 3.6. Let (𝑋, 𝐽 , ℎ) be an almost Hermitian manifold. Let (Σ, 𝑗, 𝜈) be a closed, nodal
Riemann surface. The energy of a nodal map 𝑢 : (Σ, 𝜈) → 𝑋 is

𝐸 (𝑢) ≔ 1

2

ˆ
Σ
|d𝑢 |2 vol.

Implicit in this de�nition is a choice of Riemannian metric in the conformal class determined by

𝑗 . The right-hand side, however, is independent of this choice. •

De�nition 3.7. Let (𝐽0, ℎ0) ∈ H(𝑋 ). Let [𝑢0 : (Σ0, 𝑗0, 𝜈0) → (𝑋, 𝐽0)] ∈ M𝐴,𝑔 (𝑋, 𝐽0), let
(𝜋 : X → 𝐴,★, 𝜄) be a versal deformation of (Σ0, 𝑗0, 𝜈0), let Ψ be a framing of (𝜋,★, 𝜄), let
𝜀 > 0. let 𝑈0 ⊂ 𝐶∞(Σ0\𝑆, 𝑋 ) be an open neighborhood of 𝑢∞ |Σ0\𝑆 in the 𝐶∞

loc
topology, and let

𝑈H be an open neighborhood of (𝐽0, ℎ0) inH(𝑋 ). De�ne

U(𝑢0, 𝜀,𝑈0,𝑈H) ⊂ M𝐴,𝑔 (𝑋 )

to be the subset of the equivalences classes of nodal 𝐽–holomorphic maps 𝑢 : (Σ, 𝑗, 𝜈) → (𝑋, 𝐽 )
satisfying the following:

(1) (𝐽 , ℎ) ∈ 𝑈H ,

(2) |𝐸 (𝑢) − 𝐸 (𝑢0) | < 𝜀,

(3) (Σ, 𝑗, 𝜈) = 𝜋−1(𝑎) for some 𝑎 ∈ 𝐴, and

(4) 𝑢̃ ≔ 𝑢 ◦ Ψ(·, 𝑎) ∈ 𝑈0,

The Gromov topology onM𝐴,𝑔 (𝑋 ) is the coarsest topology with respect to which every subset

of the form U(𝑢0, 𝜀,𝑈0,𝑈H) is open. •

In practice, it is more convenient to use the notion of Gromov convergence de�ned on the

level of nodal maps.

De�nition 3.8. Let (𝑋, 𝐽∞, ℎ∞) be an almost Hermitianmanifold and let (𝐽𝑘 , ℎ𝑘 )𝑘∈N be a sequence

of almost Hermitian structures on 𝑋 converging to (𝐽∞, ℎ∞) in the 𝐶∞
topology. For every

𝑘 ∈ N ∪ {∞} let 𝑢𝑘 : (Σ𝑘 , 𝑗𝑘 , 𝜈𝑘 ) → (𝑋, 𝐽𝑘 ) be a nodal 𝐽𝑘–holomorphic map. Denote by 𝑆 the

nodal set of (Σ∞, 𝜈∞). The sequence (𝑢𝑘 , 𝑗𝑘 )𝑘∈N Gromov converges to (𝑢∞, 𝑗∞) if
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(1) lim𝑘→∞ 𝐸 (𝑢𝑘 ) = 𝐸 (𝑢∞) and

(2) there are:

(a) a deformation (𝜋 : X → 𝐴, 𝑎∞, 𝜄∞) of (Σ∞, 𝑗∞, 𝜈∞) together with a framing Ψ,

(b) a sequence (𝑎𝑘 )𝑘∈N in 𝐴 converging to 𝑎∞, and

(c) a nodal, biholomorphic map 𝜄𝑘 : (Σ𝑘 , 𝑗𝑘 , 𝜈𝑘 ) → 𝜋−1(𝑎𝑘 ) for every su�ciently large

𝑘 ∈ N,

such that the sequence of maps

𝑢̃𝑘 ≔ 𝑢𝑘 ◦ 𝜄−1𝑘 ◦ Ψ(·, 𝑎𝑘 ) ◦ 𝜄∞ : Σ∞\𝑆 → 𝑋

converges to 𝑢∞ |Σ∞\𝑆 in the 𝐶∞
loc

topology. •

Remark 3.9. If (𝜋,★, 𝜄) is a versal deformation of (Σ∞, 𝑗∞, 𝜈∞) and Ψ is a framing of this deforma-

tion, then for every sequence (𝑢𝑘 , 𝑗𝑘 )𝑘∈N which Gromov converges to (𝑢∞, 𝑗∞) the deformation

in De�nition 3.8 can be assumed to be (𝜋,★, 𝜄) and the framing can be assumed to be Ψ. This is
an immediate consequence of the de�nition of a versal deformation. ♣

Theorem 3.10 (Gromov [Gro85]; see also [PW93; Ye94; Hum97; MS12, Chapters 4 and 5]). Let
(𝑋, 𝐽∞, ℎ∞) be a closed almost Hermitian manifold and let (𝐽𝑘 , ℎ𝑘 )𝑘∈N be a sequence of almost
Hermitian structures on 𝑋 converging to (𝐽∞, ℎ∞) in the 𝐶∞ topology. For every 𝑘 ∈ N let

𝑢𝑘 : (Σ𝑘 , 𝑗𝑘 , 𝜈𝑘 ) → (𝑋, 𝐽𝑘 )

be a stable nodal 𝐽–holomorphic map. Denote by #𝜋0(Σ𝑘 ) the number of connected components of
Σ𝑘 . If

lim sup

𝑘→∞
#𝜋0(Σ𝑘 ) < ∞, lim sup

𝑘→∞
𝑝𝑎 (Σ𝑘 , 𝜈𝑘 ) < ∞, and lim sup

𝑘→∞
𝐸 (𝑢𝑘 ) < ∞,

then there exists a stable nodal 𝐽∞–holomorphic map 𝑢∞ : (Σ∞, 𝑗∞, 𝜈∞) → (𝑋, 𝐽∞) and a subse-
quence of (𝑢𝑘 , 𝑗𝑘 )𝑘∈N which Gromov converges to (𝑢∞, 𝑗∞). The limit (𝑢∞, 𝑗∞, 𝜇∞) is unique up to
automorphism.

Remark 3.11. The Gromov topology on M𝐴,𝑔 (𝑋 ) is metrizable, which can be seen as follows.

Theorem 3.10 implies that it is Hausdor� and the projection map M𝐴,𝑔 (𝑋 ) → H(𝑋 ) × R is

is proper and closed. This implies, in particular, that M𝐴,𝑔 (𝑋 ) is a regular topological space.
(In general, if 𝐴 is a Hausdor� space, 𝐵 is a regular space, and 𝑓 : 𝐴 → 𝐵 is a proper, closed

map, then 𝐴 is a regular space.) Urysohn’s metrization theorem says that a second countable,

Hausdor�, regular space is metrizable. ♣
Henceforth, let (𝑋,𝜔) be a symplectic manifold. The set J(𝑋,𝜔) of almost complex struc-

tures compatible with 𝜔 injects intoH(𝑋 ).

22



Proposition 3.12 (Gromov [Gro85]; see also [MS12, Lemma 2.2.1]). Let (𝑋,𝜔) be a symplectic
manifold and 𝐽 ∈ J(𝑋,𝜔). Let (Σ, 𝜈, 𝑗) be a closed, nodal Riemann surface. For every nodal map
𝑢 : (Σ, 𝜈) → 𝑋

𝐸 (𝑢) > 〈𝑢∗ [𝜔], [Σ]〉,
and the equality holds if and only if 𝑢 is 𝐽–holomorphic. Here 𝐸 is to be understood with respect to
the Riemannian metric ℎ = 𝜔 (·, 𝐽 ·) on 𝑋 .

Set

M𝐴,𝑔 (𝑋,𝜔) ≔
∐

𝐽 ∈J (𝑋,𝜔)
M𝐴,𝑔 (𝑋, 𝐽 ) .

By the above energy identity, in the symplectic context, Theorem 3.10 is equivalent to the map

𝜋 : M𝐴,𝑔 (𝑋,𝜔) → J(𝑋,𝜔)

being proper.

3.3 Behavior near the vanishing cycles

The results of this subsection will be important for proving the surjectivity of the gluing

construction in Section 5.6. Assume the situation of De�nition 3.8. By condition (1) for every

𝛿 > 0 there are 𝐾 ∈ N0 and 𝑟 > 0 such that for every 𝑘 > 𝐾

𝐸
(
𝑢𝑘 |𝑁 𝑟

𝑘

)
6 𝛿

with

(3.13) 𝑁 𝑟
𝑘
≔ Σ𝑘\{Ψ(𝑧, 𝑎𝑘 ) : 𝑧 ∈ Σ0 with 𝑑 (𝑧, 𝑆) > 𝑟 }.

The subset 𝑁 𝑟
𝑘
can be partitioned into regions 𝑁 𝑟

𝑘,𝑛
corresponding to the nodes 𝑛 ∈ 𝑆 . If 𝑛 is not

smoothed out in Σ𝑘 , then the corresponding region is biholomorphic to

𝐵1(0) q 𝐵1(0)

with 𝜈𝑘 identifying the origins. If 𝑛 is smoothed out in Σ𝑘 , then the corresponding region is

biholomorphic to

𝑆1 × (−𝐿𝑘 , 𝐿𝑘 )
with lim𝑘→∞ 𝐿𝑘 = ∞.

The behavior of 𝐽–holomorphic maps from such domains and with small energy can be

understood through the following two results.

Lemma 3.14 ([MS12, Lemma 4.3.1]). Let (𝑋, 𝐽 , ℎ) be an almost Hermitian manifold. There is
a constant 𝛿 = 𝛿 (𝑋, 𝐽 , ℎ) > 0, depending continuously on (𝐽 , ℎ), such that for every 𝑟 > 0 the
following holds. If 𝑢 : (𝐵2𝑟 (0), 𝑖) → (𝑋, 𝐽 ) is a 𝐽–holomorphic map with

𝐸 (𝑢) 6 𝛿,

then
‖d𝑢‖𝐿∞ (𝐵𝑟 (0)) 6 𝑐𝑟

−1𝐸 (𝑢)1/2.
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Lemma 3.15 ([MS12, Lemma 4.7.3]). Let (𝑋, 𝐽 , ℎ) be an almost Hermitian manifold. For every
𝜇 ∈ (0, 1) there are constants: 𝛿 = 𝛿 (𝑋, 𝐽 , ℎ, 𝜇) > 0, depending continuously on (𝐽 , ℎ), and
𝑐 = 𝑐 (𝜇) > 0 such that for every 𝐿 > 0 the following holds. If 𝑢 : (𝑆1 × (−𝐿, 𝐿), 𝑗cyl) → (𝑋, 𝐽 ) is a
𝐽–holomorphic map with

𝐸 (𝑢) 6 𝛿,

then for every ℓ ∈ (0, 𝐿)
𝐸
(
𝑢 |𝑆1×(𝐿+ℓ,𝐿−ℓ)

)
6 𝑐𝑒−2𝜇 (𝐿−ℓ)𝐸 (𝑢) .

and for every 𝜃 ∈ 𝑆1 and ℓ ∈ [−𝐿 + 1, 𝐿 − 1]

|d𝑢 | (𝜃, ℓ) 6 𝑐𝑒−𝜇 (𝐿−|ℓ |)𝐸 (𝑢)1/2.

Proof. The �rst assertion is [MS12, Lemma 4.7.3]. The second assertion follows from the �rst by

Lemma 3.14. �

The following is an important consequence of the previous two lemmas.

Proposition 3.16. Let (𝑢𝑘 : (Σ𝑘 , 𝑗𝑘 , 𝜈𝑘 ) → (𝑋, 𝐽𝑘 ))𝑘∈N be a sequence of nodal pseudo-holomorphic
maps which Gromov converges to 𝑢∞ : (Σ∞, 𝑗∞, 𝜈∞) → (𝑋, 𝐽∞). Denote by 𝑆 the nodal set of
(Σ∞, 𝜈∞) and let 𝑁 𝑟𝑘 be as in (3.13). For every 𝛿 > 0 there are 𝑟 > 0 and 𝐾 ∈ N such that for every
𝑘 > 𝐾 and 𝑛 ∈ 𝑆

𝑢𝑘 (𝑁 𝑟𝑘,𝑛) ⊂ 𝐵𝛿 (𝑢∞(𝑛));

in particular, provided 𝛿 is su�ciently small,

(𝑢𝑘 )∗ [Σ𝑘 ] = (𝑢∞)∗ [Σ∞] .

4 Versal deformations of nodal Riemann surfaces

The purpose of this section is to construct a versal deformation of a nodal Riemann surface in a

rather explicit manner.

4.1 Deformations of nodal curves

Let us brie�y review parts of the deformation theory of nodal curves in the complex analytic

category. For further details and proofs we refer the reader to [ACGH11, Chapter XI Section 3].

A thorough discussion of deformation theory in the algebraic category can be found in [Har10].

De�nition 4.1. Let 𝐶 be a nodal curve. A deformation of 𝐶 consists of

(1) a proper �at1 morphism 𝜋 : X → 𝐴 between analytic spaces such that every �ber of 𝜋 is

a nodal curve,

(2) a base-point ★ ∈ 𝐴, and

1A morphism 𝑓 : 𝐴 → 𝐵 between two analytic spaces is �at if it makes the stalk O𝐴,𝑎 into a �at O𝐵,𝑓 (𝑎)–module

for every 𝑎, that is: tensoring by O𝐴,𝑎 preserves short exact sequences of O𝐵,𝑓 (𝑎)–modules.
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(3) an isomorphism 𝜄 : 𝐶 → 𝜋−1(★). •

Proposition 4.2. Every nodal family 𝜋 : X → 𝐴 is �at. In particular, a deformation of a nodal
Riemann surface (Σ, 𝑗, 𝜈) is also a deformation of the associated nodal curve 𝐶 .

De�nition 4.3. Let𝐶 be a nodal Riemann surface and let (𝜋 : X → 𝐴,★, 𝜄) and (𝜌 : Y → 𝐵, †, 𝜅)
be two deformations of𝐶 . A pair of analytic mapsΦ : X →Y and𝜙 : 𝐴 → 𝐵 forms amorphism
(Φ, 𝜙) : (𝜌,★, 𝜄) → (Y, †, 𝜅) of deformations if

𝜙 (★) = †, 𝜌 ◦ Φ = 𝜙 ◦ 𝜋, Φ ◦ 𝜄 = 𝜅,

and for every 𝑎 ∈ 𝐴 the restriction Φ : 𝜋−1(𝑎) → 𝜌−1(𝜙 (𝑎)) induces an analytic isomorphism.

•

De�nition 4.4. A deformation (𝜌 : Y → 𝐵, †, 𝜅) of 𝐶 is (uni)versal if for every deformation

(𝜋 : X → 𝐴,★, 𝜄) of (Σ, 𝑗, 𝜈) there exists an open neighborhood 𝑈 of ★ ∈ 𝐴 and a (unique)

morphism of deformations (𝜋 : 𝜋−1(𝑈 ) → 𝐴,★, 𝜄) → (𝜌, †, 𝜅). •

De�nition 4.5. Denote by C[𝜀]/𝜀2 the ring of dual numbers and set 𝐷 ≔ Spec

(
C[𝜀]/𝜀2

)
. A �rst

order deformation is a deformation over 𝐷 . •

Let𝐶 be a nodal curve. Every �rst order deformation (𝜋 : X → 𝐷, 0, 𝜄) of𝐶 induces a short

exact sequence

0 → O𝐶 � 𝜋
∗Ω1

𝐷 → Ω1

X ⊗ O𝐶
𝜄∗−→ Ω1

𝐶 → 0.

The map 𝜋∗Ω1

𝐷
→ Ω1

X
⊗ O𝐶 is given by pulling-back forms from 𝐷 to X and Ω1

X
⊗ O𝐶 → Ω1

𝐶

is given by restricting forms on X to 𝐶 . The extension class 𝛿 ∈ Ext
1(Ω1

𝐶
,O𝐶 ) of this sequence

depends on the �rst order deformation only up to isomorphism of deformations. Indeed, two

�rst order deformation of 𝐶 are isomorphic if and only if they yield the same extension class 𝛿 .

De�nition 4.6. Let 𝐶 be a nodal curve and let (𝜋 : X → 𝐴,★, 𝜄) be a deformation of 𝐶 . Every

𝑣 ∈ 𝑇★𝐴 corresponds to an analytic map 𝜙 : 𝐷 → 𝐴 mapping 0 to ★. The pullback of (𝜋,★, 𝜄)
via 𝜙 is a �rst order deformation. Denote by 𝛿 (𝑣) ∈ Ext

1(Ω1

𝐶
,O𝐶 ) the corresponding extension

class. The map 𝛿 : 𝑇★𝐴 → Ext
1(Ω1

𝐶
,O𝐶 ) thus de�ned is called the Kodaira–Spencer map. •

It is instructive to analyze Ext
1(Ω1

𝐶
,O𝐶 ) more closely. The local-to-global Ext spectral

sequence yields a short exact sequence

0 → 𝐻 1(𝐶,Hom(Ω1

𝐶 ,O𝐶 )) → Ext
1(Ω1

𝐶 ,O𝐶 ) → 𝐻 0(𝐶,Ext1(Ω1

𝐶 ,O𝐶 )) → 0.

This can be interpreted in terms of the normalization 𝜋 : ˜𝐶 → 𝐶 as follows. Denote by 𝑆 the set

of nodes of 𝐶 and set 𝑆 ≔ 𝜋−1(𝑆). It can be shown that

Hom(Ω1

𝐶 ,O𝐶 ) = 𝜋∗T𝐶̃ (− ˜𝑆); hence: 𝐻 1(𝐶,Hom(Ω1

𝐶 ,O𝐶 )) = 𝐻 1( ˜𝐶,T𝐶̃ (− ˜𝑆)) .

The space 𝐻 1( ˜𝐶,T𝐶̃ (− ˜𝑆)) parametrizes the deformations of the marked curve ( ˜𝐶, ˜𝑆); that is:
deformations of

˜𝐶 which �x
˜𝑆 point-wise. The sheafExt1(Ω1

𝐶
,O𝐶 ) is supported on the nodes of

𝐶:

Ext1(Ω1

𝐶 ,O𝐶 ) =
⊕
𝑛∈𝑆

Ext
1(Ω1

𝐶,𝑛,O𝐶,𝑛) .
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For every 𝑛 ∈ ˜𝑆 and {𝑛1, 𝑛2} = 𝜋−1(𝑛)

Ext
1(Ω1

𝐶,𝑛,O𝐶,𝑛) = 𝑇𝑛1 ˜𝐶 ⊗ 𝑇𝑛2 ˜𝐶.

By considering the deformation {𝑧𝑤 = 𝜀} of the node {𝑧𝑤 = 0}, the space Ext
1(Ω1

𝐶,𝑛
,O𝐶,𝑛)

can be seen to parametrize smoothings of the node 𝑛. The above discussion show that to �rst

order all deformations of 𝐶 arise from smoothing nodes and deforming its normalization while

�xing the points mapping to the nodes. In the following we construct a deformation of𝐶 which

induces all of these deformations to �rst order.

4.2 Smoothing nodal Riemann surfaces

Let (Σ0, 𝑗0, 𝜈0) be a closed, nodal Riemann surface with nodal set 𝑆 . Let 𝑔0 be a Riemannian

metric on Σ0 in the conformal class determined by 𝑗0 and such that there is a constant 𝑅0 > 0

such that for every 𝑛 ∈ 𝑆 the restriction of 𝑔0 to 𝐵4𝑅0 (𝑛) is �at and for every 𝑛1, 𝑛2 ∈ 𝑆

the balls 𝐵4𝑅0 (𝑛1) and 𝐵4𝑅0 (𝑛2) are disjoint. For every 𝑛 ∈ 𝑆 de�ne the holomorphic charts

𝜙𝑛 : 𝐵4𝑅0 (𝑛) ⊂ 𝑇𝑛Σ0 → Σ0 by

𝜙𝑛 (𝑣) ≔ exp𝑛 (𝑣)
and de�ne 𝑟𝑛 : Σ0 → [0,∞) by

𝑟𝑛 (𝑧) ≔ max{𝑑 (𝑛, 𝑧), 4𝑅0}.

Given a pair of complex vector spaces 𝑉 and𝑊 , denote by 𝜎 : 𝑉 ⊗𝑊 → 𝑊 ⊗ 𝑉 the

isomorphism de�ned by 𝜎 (𝑣 ⊗𝑤) ≔ 𝑤 ⊗ 𝑣 .

De�nition 4.7. A smoothing parameter for (Σ0, 𝑗0, 𝜈0) is an element

𝜏 = (𝜏𝑛)𝑛∈𝑆 ∈
∏
𝑛∈𝑆

𝑇𝑛Σ0 ⊗C 𝑇𝜈 (𝑛)Σ0

such that for every 𝑛 ∈ 𝑆
𝜏𝜈 (𝑛) = 𝜎 (𝜏𝑛) and |𝜏𝑛 | < 𝑅20 .

Given a smoothing parameter 𝜏 , for every 𝑛 ∈ 𝑆 set

𝜀𝑛 ≔ |𝜏𝑛 | and 𝜏𝑛 ≔ 𝜏𝑛/|𝜏𝑛 | if 𝜏𝑛 ≠ 0;

furthermore, set

𝜀 ≔ max{𝜀𝑛 : 𝑛 ∈ 𝑆}. •

Henceforth, let 𝜏 = (𝜏𝑛)𝑛∈𝑆 be a smoothing parameter for (Σ0, 𝑗0, 𝜈0).

De�nition 4.8. Set

𝐴𝜏 ≔ {𝑤 ∈ Σ0 : 𝜀𝑛/𝑅0 < 𝑟𝑛 (𝑤) < 𝑅0 for some 𝑛 ∈ 𝑆 with 𝜀𝑛 ≠ 0}

and denote by 𝜄𝜏 : 𝐴𝜏 → 𝐴𝜏 the biholomorphic map characterized by

𝜙−1
𝜈 (𝑛) ◦ 𝜄𝜏 ◦ 𝜙𝑛 (𝑣) ⊗ 𝑣 = 𝜏𝑛

for every 𝑛 ∈ 𝑆 and 𝑣 ∈ 𝑇𝑛Σ0 with 𝜀𝑛/𝑅0 < |𝑣 | < 𝑅0. •
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De�nition 4.9. Consider the Riemann surface with boundary

Σ◦
𝜏 ≔

{
𝑧 ∈ Σ0 : 𝑟𝑛 (𝑧) > 𝜀1/2𝑛 for every 𝑛 ∈ 𝑆

}
.

Denote by ∼𝜏 the equivalence relation on Σ◦
𝜏 generated by identifying the boundary components

via 𝜄𝜏 . The quotient

Σ𝜏 ≔ Σ◦
𝜏/∼𝜏

is a closed surface. The restrictions of the complex structure 𝑗0 and the nodal structure 𝜈0 to Σ◦
𝜏

descends to a complex structure 𝑗𝜏 and a nodal structure 𝜈𝜏 on Σ𝜏 . The nodal Riemann surface

(Σ𝜏 , 𝑗𝜏 , 𝜈𝜏 ) is called the partial smoothing of (Σ0, 𝑗0, 𝜈0) associated with 𝜏 . •

Remark 4.10. The above construction smooths out every node with 𝜀𝑛 > 0. In particular, if all

of the 𝜀𝑛 are positive, then 𝜈𝜏 is the trivial nodal structure and (Σ𝜏 , 𝑗𝜏 , 𝜈𝜏 ) is simply the Riemann

surface (Σ𝜏 , 𝑗𝜏 ). ♣

De�nition 4.11. Denote by Δ the space of smoothing parameters for (Σ0, 𝑗0, 𝜈0). Set

X ≔
{
(𝑧, 𝜏) ∈ Σ0 × Δ : 𝑧 ∈ Σ◦

𝜏

}
/∼

with (𝑧1, 𝜏1) ∼ (𝑧2, 𝜏2) if and only if 𝜏1 = 𝜏2 and 𝑧1 ∼𝜏1 𝑧2 or 𝑧1, 𝑧2 ∈ 𝑆 , 𝜈 (𝑧1) = 𝑧2, and

𝜀𝑧1 = 𝜀𝑧2 = 0. Denote by 𝜋 : X → Δ the canonical projection. •

The following example will be important in the proof of Theorem 1.1 in Section 5.8.

Example 4.12. Let (Σ1, 𝑗1, 𝜈1) and (Σ2, 𝑗2, 𝜈2) be two nodal Riemann surfaces with nodal sets

𝑆1 and 𝑆2. Given 𝑥𝑖 ∈ Σ𝑖\𝑆𝑖 for 𝑖 = 1, 2, we de�ne a new nodal Riemann surface (Σ♣, 𝑗♣, 𝜈♣) by
setting Σ♣ = Σ1 q Σ2 and 𝜈♣(𝑥1) = 𝑥2 (and otherwise agreeing with 𝜈1 and 𝜈2). The nodal set of

(Σ♣, 𝑗♣, 𝜈♣) is
𝑆♣ = {𝑥1, 𝑥2} q 𝑆1 q 𝑆2.

Accordingly, the space of smoothing parameters for (Σ♣, 𝑗♣, 𝜈♣) is

Δ♣ = Δ0 × Δ1 × Δ2,

where Δ0 is an open neighborhood of zero in 𝑇𝑥1Σ1 ⊗C 𝑇𝑥2Σ2.

Suppose now that (Σ1, 𝑗1, 𝜈1) is a tree of spheres. It is easy to see that for every smoothing

parameter 𝜏♣ = (𝜏0, 𝜏1, 𝜏2) such that 𝜏0 ≠ 0 and 𝜏1,𝑛 ≠ 0 for every node 𝑛 ∈ 𝑆1, there is a

biholomorphism

(Σ♣,𝜏♣, 𝑗𝜏♣, 𝜈𝜏♣) � (Σ2,𝜏2, 𝑗𝜏2, 𝜈𝜏2) .

In particular, if 𝜏0 ≠ 0, 𝜏1,𝑛 ≠ 0 for every 𝑛 ∈ 𝑆1, and 𝜏2 = 0, there is a biholomorphism

(Σ♣,𝜏♣, 𝑗𝜏♣, 𝜈𝜏♣) � (Σ2, 𝑗2, 𝜈2) . ♠

Proposition 4.13. X is a smooth manifold and the complex structure on Σ0 × Δ induces a complex
structure on X such that 𝜋 is a nodal family and for every 𝜏 ∈ Δ the canonical map Σ𝜏 → 𝜋−1(𝜏)
induces a nodal, biholomorphic map 𝜄𝜏 : (Σ𝜏 , 𝑗𝜏 , 𝜈𝜏 ) → 𝜋−1(𝜏).
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Proof. It su�ces to consider the local model of a node 𝐶0 ≔ {(𝑧,𝑤) ∈ C2
: 𝑧𝑤 = 0}. ˜X ≔

{(𝑧,𝑤, 𝜏) ∈ C2 × C : 𝑧𝑤 = 𝜏} is a complex manifold. The map 𝜋̃ : ˜X → C de�ned by

𝜋̃ (𝑧,𝑤, 𝜏) ≔ 𝑡 has only nodal critical points and its �ber over 0 is 𝐶0. The nodal Riemann

surface associated with 𝐶0 is Σ0 = C q C with the complex structure 𝑖 on both components and

the nodal structure which interchanges the origins of the components. The partial smoothing

de�ned in De�nition 4.9 is

Σ𝜏 =
({
𝑧 ∈ C : |𝑧 | > |𝜏 |1/2

}
q

{
𝑤 ∈ C : |𝑤 | > |𝜏 |1/2

})/
∼𝜏 .

The map Φ : X → ˜X de�ned by Φ( [𝑧], 𝜏) ≔ (𝑧, 𝜏/𝑧, 𝜏) and Φ( [𝑤], 𝜏) ≔ (𝜏/𝑧, 𝑧, 𝜏) is biholo-
morphic. This implies the assertion. �

4.3 Construction of a versal deformation

Let (Σ0, 𝑗0, 𝜈0) be a nodal Riemann surface with nodal set 𝑆 . Denote by J(Σ0) the space of
almost complex structures on Σ0 and by Di�0(Σ0, 𝜈0) the group of di�eomorphism of Σ0 which

are isotopic to the identity and commute with 𝜈0. Denote by

T ≔ J(Σ0)/Di�0(Σ0, 𝜈0)

the corresponding Teichmüller space. This is a complex manifold and there is an open neigh-

borhood Δ1 of 0 ∈ CdimC T
together with a map 𝚥 : Δ1 → J(Σ0) such that:

(1) 𝚥 (0) = 𝑗0,

(2) for every 𝜎 ∈ Δ1 the almost complex structure 𝚥 (𝜎) agrees with 𝑗0 in some neighborhood

𝑈 of 𝑆 , and

(3) the map [ 𝚥] : Δ1 → T is an embedding.

For every 𝜎 ∈ Δ1 set

Σ𝜎,0 ≔ Σ0, 𝑗𝜎,0 ≔ 𝚥 (𝜎), and 𝜈𝜎,0 ≔ 𝜈0.

Choose a family of metrics (𝑔𝜎,0)𝜎 ∈Δ1
whose restriction to the neighborhood𝑈 of 𝑆 is indepen-

dent of 𝜎 and such that 𝑔𝜎,0 is in the conformal class determined by 𝑗𝜎,0 for every 𝜎 ∈ Δ1. Let

𝑅0 > 0 be such that the conditions at the beginning of Section 4.2 hold for every 𝜎 ∈ Δ1 and

𝐵4𝑅0 (𝑆) ⊂ 𝑈 .

Denote by Δ2 the space of elements

𝜏 = (𝜏𝑛)𝑛∈𝑆 ∈
∏
𝑛∈𝑆

𝑇𝑛Σ0 ⊗C 𝑇𝜈 (𝑛)Σ0

such that for every 𝑛 ∈ 𝑆
𝜏𝜈 (𝑛) = 𝜎 (𝜏𝑛) and |𝜏𝑛 | < 𝑅20 .
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De�nition 4.14. Set Δ ≔ Δ1 × Δ2. Set

X ≔
{
(𝑧;𝜎, 𝜏) ∈ Σ0 × Δ1 × Δ2 : 𝑧 ∈ Σ◦

𝜎,𝜏

}
/∼

with (𝑧1;𝜎1, 𝜏1) ∼ (𝑧2;𝜎2, 𝜏2) if and only if 𝜎1 = 𝜎2, 𝜏1 = 𝜏2 and 𝑧1 ∼𝜏1 𝑧2 or 𝜏1 = 𝜏2 and 𝑧1 ∼𝜏1 𝑧2
or 𝑧1, 𝑧2 ∈ 𝑆 , 𝜈 (𝑧1) = 𝑧2, and 𝜀𝑧1 = 𝜀𝑧2 = 0. Denote by 𝜋 : X → Δ the canonical projection. •

Proposition 4.15. X is a smooth manifold and the complex structure on Σ0 × Δ induces a complex
structure onX such that 𝜋 is a nodal family and for every (𝜎, 𝜏) ∈ Δ the canonical map Σ𝜎,𝜏 →
𝜋−1(𝜎, 𝜏) induces a nodal, biholomorphic map 𝜄𝜎,𝜏 : (Σ𝜎,𝜏 , 𝑗𝜎,𝜏 , 𝜈𝜎,𝜏 ) → 𝜋−1(𝜎, 𝜏).

Theorem 4.16 (cf. [ACGH11, Chapter XI Theorem 3.17 and Section 4]). Set★≔ (0, 0) and 𝜄 ≔ 𝜄0,0.
The deformation (𝜋,★, 𝜄) of (Σ0, 𝑗0, 𝜈0) is versal.

Proof. Denote by 𝐶 the nodal curve associated with (Σ0, 𝑗0, 𝜈0). It is proved in [ACGH11, Chap-

ter XI Theorem 3.17] that the Kodaira–Spencer map 𝛿 : 𝑇0Δ1 × 𝑇0Δ2 → Ext
1(Ω1

𝐶
,O𝐶 ) is an

isomorphism. This implies that the deformation is versal. Indeed, 𝐶 has some versal family

(𝜌 : Y → 𝐵, †, 𝜅) for which the Kodaira–Spencer map is an isomorphism. Therefore, after

possibly shrinking Δ, there exists a morphism of deformations (Φ, 𝜙) : (𝜋,★, 𝜄) → (𝜌, †, 𝜅).
Since both Kodaira–Spencer maps are isomorphism, after possibly shrinking Δ, 𝜙 is a holomor-

phic embedding. Therefore, after possibly shrinking both Δ and 𝐴, both deformations become

isomorphic. �

To de�ne a framing of the deformation (𝜋,★, 𝜄), choose an increasing, smooth function

𝜂 : [0, 2] → [1, 2] such that

𝜂 (0) = 1 and 𝜂 (𝑟 ) = 𝑟 for every 3/2 6 𝑟 6 2.

De�nition 4.17. De�ne the framing Ψ : Σ0\𝑆 × Δ → X of (𝜋,★, 𝜄) by

Ψ(𝑧;𝜎, 𝜏) ≔
{
𝜓𝑛 (𝑧) if 𝑟𝑛 (𝑧) 6 2𝜀

1/2
𝑛 for some 𝑛 ∈ 𝑆

(𝑧;𝜎, 𝜏) otherwise,

with𝜓𝑛 (𝑧) de�ned by

𝜓𝑛 (𝑧) = 𝜙𝑛

(
𝜂

(
𝑟𝑛 (𝑧)/𝜀1/2𝑛

)
· 𝜙−1

𝑛 (𝑧)
𝑟𝑛 (𝑧)/𝜀1/2𝑛

)
.

Observe that𝜓𝑛 is de�ned so that:

(1) 𝑟𝑛 (𝜓𝑛 (𝑧)) > 𝜀1/2𝑛 , so that indeed𝜓𝑛 (𝑧) corresponds to a point inX,

(2) 𝜓𝑛 de�nes an embedding from a punctured neighborhood of 𝑛 in Σ0 to X,

(3) 𝜓𝑛 (𝑧) = 𝑧 when 𝑟𝑛 (𝑧) > 3/2𝜀1/2𝑛 , so that Ψ is continuous. •
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Remark 4.18. Let (𝜎, 𝜏) ∈ Δ and 𝑟 ∈ (2𝜀1/2, 𝑅0). Set

Σ𝑟
0
≔ {𝑧 ∈ Σ0 : 𝑟𝑛 (𝑧) > 𝑟 for every 𝑛 ∈ 𝑆}.

Denote by

𝑁 𝑟𝜎,𝜏 ≔ Σ𝜎,𝜏\Ψ
(
Σ𝑟
0
× {(𝜎, 𝜏)}

)
the part of Σ𝜎,𝜏 not covered by Σ𝑟

0
under the framing Ψ, cf. Section 3.3. By construction,

𝑁 𝑟𝜎,𝜏 =
⋃
𝑛∈𝑆

𝑁 𝑟𝜎,𝜏 ;𝑛

with

𝑁 𝑟𝜎,𝜏 ;𝑛 = 𝑁 𝑟
𝜎,𝜏 ;𝜈 (𝑛) ≔

{
𝑧 ∈ Σ◦

𝜎,𝜏 : 𝑟𝑛 (𝑧) < 𝑟 or 𝑟𝜈 (𝑛) (𝑧) < 𝑟
}
/∼𝜏 .

If 𝜀𝑛 = 0, then 𝑁 𝑟𝜎,𝜏 ;𝑛 is biholomorphic to

𝐵𝑟 (0) q 𝐵𝑟 (0)

and the nodal structure 𝜈𝜎,𝜏 identi�es the two origins. If 𝜀𝑛 ≠ 0, then 𝑁 𝑟𝜎,𝜏 ;𝑛 is biholomorphic to

{𝑧 ∈ C : 𝜀𝑛/𝑟 < |𝑧 | < 𝑟 } � 𝑆1 ×
(
− log(𝑟𝜀−1/2𝑛 ), log(𝑟𝜀−1/2𝑛 )

)
. ♣

5 Smoothing nodal 𝐽–holomorphic maps

The purpose of this section is to prove Theorem 1.1. The strategy is to construct a Kuranishi

model for a Gromov neighborhood of 𝑢∞ and analyze the obstruction map. This idea goes

back to Ionel [Ion98] and has been used by Zinger [Zin09] and Niu [Niu16] to give a sharp

compactness results for genus one and two pseudo-holomorphic maps.

Throughout this section, �x a smooth function 𝜒 : [0,∞) → [0, 1] with

(5.1) 𝜒 | [0,1] = 1 and 𝜒 | [2,∞) = 0

and, moreover, �x 𝑝 ∈ (2,∞).

5.1 Riemannian metrics on smoothings

Let (Σ0, 𝑗0, 𝜈0) be a nodal Riemann surface with nodal set 𝑆 . Denote by 𝑔0 a Riemannian metric

on Σ0 as at the beginning of Section 4.2. In Section 4.2 we discussed the construction of a

smoothing Σ𝜏 of Σ0 for every smoothing parameter 𝜏 . In this section we construct a Riemannian

metric 𝑔𝜏 on Σ𝜏 which is uniformly equivalent to the metric 𝑔0 on Σ0 in the smoothing region.

This property will be useful for proving estimates in the construction of a smoothing of a nodal

pseudo-holomorphic map from Σ0.

De�nition 5.2. Given a smoothing parameter 𝜏 , let Σ◦
𝜏 be as in De�nition 4.9. Recall that for

every node 𝑛 ∈ 𝑆 we have the corresponding number 𝜀𝑛 = |𝜏𝑛 |, the size of the smoothing

parameter at 𝑛, and local radial coordinate 𝑟𝑛 : Σ0 → [0,∞).
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De�ne the Riemannian metric 𝑔◦𝜏 on Σ◦
𝜏 by

𝑔◦𝜏 ≔ 𝑔0 +
∑︁
𝑛∈𝑆

𝜒

(
𝑟𝑛

2𝜀
1/2
𝑛

)
·
(
𝜀𝑛 · (𝜙𝑛)∗

(
𝑟−2d𝑟 ⊗ d𝑟 + 𝜃 ⊗ 𝜃

)
− 𝑔0

)
with 𝑟 denoting the distance from origin in 𝑇𝑛Σ0 � C and 𝜃 = −d𝑟 ◦ 𝑗0. Since the Riemannian

metric 𝑟−2d𝑟 ⊗ d𝑟 + 𝜃 ⊗ 𝜃 on C∗
is invariant under the involution 𝑧 ↦→ 𝜀/𝑧, 𝑔◦𝜏 descends to a

Riemannian metric 𝑔𝜏 on Σ𝜏 . •

Proposition 5.3. There is a constant 𝑐 > 1 such that for every nodal Riemann surface and every
smoothing parameter 𝜏

𝑐−1𝑔0 < 𝑔
◦
𝜏 < 𝑐𝑔0.

Proof. Let 𝑛 ∈ 𝑆 and let 𝑟 and 𝜃 be as in De�nition 5.2. On the annulus

{
𝑧 ∈ Σ0 : 𝜀

1/2
𝑛 6 𝑟𝑛 (𝑧) 6

4𝜀
1/2
𝑛

}
,

𝜙∗
𝑛𝑔0 = d𝑟 ⊗ d𝑟 + 𝑟 2𝜃 ⊗ 𝜃

and, therefore,

𝑔◦𝜏 =
(
𝐹𝜀𝑛 ◦ 𝑟𝑛

)
· 𝑔0 with 𝐹𝜀𝑛 (𝑟 ) ≔ 1 + 𝜒

(
𝑟

2𝜀
1/2
𝑛

)
·
(
𝜀𝑛𝑟

−2 − 1

)
.

This implies the assertion because 𝑐−1 < 𝐹𝜀𝑛 (𝑟 ) < 𝑐 for 𝜀
1/2
𝑛 6 𝑟 6 4𝜀

1/2
𝑛 . �

Henceforth, the 𝐿𝑝 and𝑊 1,𝑝
norms of all sections and di�erential forms on Σ𝜏 are understood

with respect to the metric 𝑔𝜏 . The above proposition will often be implicitly used to bound these

norms by estimating various expressions with respect to 𝑔0 over the corresponding region in

Σ0.

5.2 Approximate smoothing of nodal 𝐽–holomorphic maps

Throughout the next four sections, let (𝑋, 𝐽 , ℎ) be an almost Hermitian manifold, let 𝑐𝑢 > 0,

let 𝑢0 : (Σ0, 𝑗0, 𝜈0) → (𝑋, 𝐽 ) be a nodal map, and let 𝜏 be a smoothing parameter. Furthermore,

choose 𝑔0 and 𝑅0 as at the beginning of Section 4.2.

De�nition 5.4. For every point 𝑥 ∈ 𝑋 , denote by ˜𝑈𝑥 ⊂ 𝑇𝑥𝑋 the segment/injectivity domain and

set𝑈𝑥 ≔ exp𝑥 ( ˜𝑈𝑥 ) and 1

2
𝑈𝑥 ≔ exp𝑥 ( 12 ˜𝑈𝑥 ). The map exp𝑥 :

˜𝑈𝑥 → 𝑈𝑥 is a di�eomorphism and

its inverse is denoted by exp
−1
𝑥 : 𝑈𝑥 → ˜𝑈𝑥 . •

Furthermore, we assume the following.

Hypothesis 5.5. The map 𝑢0 and 𝑅0 > 0 satisfy

‖𝑢0‖𝐶2 6 𝑐𝑢 and 𝑢0(𝐵4𝑅0 (𝑛)) ⊂ 𝑈𝑢0 (𝑛) for every 𝑛 ∈ 𝑆.
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Convention 5.6. Henceforth, constants may depend on 𝑝 , (Σ0, 𝑗0, 𝜈0), (𝑋, 𝐽 , ℎ), 𝑐𝑢 , and 𝑅0, but
not on 𝜏 .

De�nition 5.7. For 𝑛 ∈ 𝑆 de�ne 𝜒𝑛𝜏 : Σ𝜏 → [0, 1] by

𝜒𝑛𝜏 (𝑧) ≔ 𝜒

(
𝑟𝑛 (𝑧)
𝑅0

)
.

Let 𝜄𝜏 be the map de�ned in De�nition 4.8. De�ne 𝑢̃◦𝜏 : Σ◦
𝜏 → 𝑋 by

𝑢̃◦𝜏 (𝑧) ≔
{
exp𝑢0 (𝑛)

(
exp

−1
𝑢0 (𝑛) ◦ 𝑢0(𝑧) + 𝜒

𝑛
𝜏 (𝑧) · exp−1𝑢0 (𝑛) ◦ 𝑢0(𝜄𝜏 (𝑧))

)
if 𝑟𝑛 (𝑧) 6 2𝑅0

𝑢0(𝑧) otherwise.

Since 𝑢0(𝜈0(𝑛)) = 𝑢0(𝑛), the restriction of 𝑢̃◦𝜏 to{
𝑧 ∈ Σ◦

𝜏 : 𝑟𝑛 (𝑧) 6 𝑅 for some 𝑛 ∈ 𝑆
}

is invariant under 𝜄𝜏 . Therefore, 𝑢̃
◦
𝜏 descends to a smooth map

𝑢̃𝜏 : Σ𝜏 → 𝑋 .

This map is called the approximate smoothing of 𝑢 associated with 𝜏 . •

Remark 5.8. This construction di�ers from that found, for example, in [MS12, Section 10.2; Par16,

Section B.3] in which the approximate smoothing is constant in the middle of the neck region.

The above construction is very similar to that in [Gou09, Section 2.1]. It leads to a smaller error

term and signi�cantly simpli�es the discussions in Section 5.7. Morally, this section analyzes

how the interaction between the di�erent components of 𝑢0 a�ects whether 𝑢0 can be smoothed

or not. The constructions in [MS12, Section 10.2; Par16, Section B.3] make it di�cult to see such

interactions. ♣

Proposition 5.9. For every nodal map 𝑢0 : Σ0 → 𝑋 (not necessarily 𝐽–holomorphic) the map 𝑢̃𝜏
satis�es

(5.10) ‖𝜕𝐽 (𝑢̃𝜏 , 𝑗𝜏 )‖𝐿𝑝 6 𝑐 ‖𝜕𝐽 (𝑢0, 𝑗0)‖𝐿𝑝 + 𝑐𝜀
1

2
+ 1

𝑝 ,

with 𝜀 = max{𝜀𝑛 : 𝑛 ∈ 𝑆} as in De�nition 4.7.

For the proof of this result and for future reference let us observe that for every 𝑘 > 1

(5.11)

(ˆ
𝜀
1/2
𝑛 6𝑟𝑛62𝑅0

𝑟
−𝑘𝑝
𝑛

) 1

𝑝

6

(
2𝜋

𝑘𝑝 − 2

) 1

𝑝

𝜀
1

𝑝
−𝑘

2

𝑛 .

Proof of Proposition 5.9. The map 𝑢̃◦𝜏 agrees with 𝑢0 in the region where 𝑟𝑛 > 2𝑅0 for every

𝑛 ∈ 𝑆 . Therefore, it su�ces to consider the regions where 𝑟𝑛 6 2𝑅0 for some 𝑛 ∈ 𝑆 . To simplify

notation, identify 𝑈𝑥 with ˜𝑈𝑥 via exp𝑥 for 𝑥 ≔ 𝑢 (𝑛). Here 𝑈𝑥 and ˜𝑈𝑥 are as in De�nition 5.4.

Having made this identi�cation, in such a region, 𝑢̃◦𝜏 is given by

𝑢̃◦𝜏 = 𝑢0 + 𝜒𝑛𝜏 · 𝑢0 ◦ 𝜄𝜏 .
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Note that addition is well-de�ned since, with respect to the above identi�cation, 𝑢0 takes values

in an su�ciently small open subset of 𝑇𝑥𝑋 . Therefore,

𝜕𝐽 (𝑢̃◦𝜏 , 𝑗𝜏 ) =
1

2

(
d𝑢̃◦𝜏 + 𝐽 (𝑢̃◦𝜏 ) ◦ d𝑢̃◦𝜏 ◦ 𝑗

)
= 𝜕𝐽 (𝑢0, 𝑗0) + 𝜒𝑛𝜏 · 𝜕𝐽 (𝑢0 ◦ 𝜄𝜏 , 𝑗0)︸                                ︷︷                                ︸

≕I

+ 1

2

(
𝐽 (𝑢̃◦𝜏 ) − 𝐽 (𝑢0)

)
◦ d𝑢0 ◦ 𝑗0︸                              ︷︷                              ︸

≕II1

+ 𝜒𝑛𝜏 · 1
2

(
𝐽 (𝑢̃◦𝜏 ) − 𝐽 (𝑢0 ◦ 𝜄𝜏 )

)
◦ d(𝑢0 ◦ 𝜄𝜏 ) ◦ 𝑗0︸                                                  ︷︷                                                  ︸

≕II2

+ 𝜕𝜒𝑛𝜏 · 𝑢0 ◦ 𝜄𝜏︸        ︷︷        ︸
≕III

.

The 𝐿𝑝 norm of the term I is controlled by the 𝐿𝑝 norm of 𝜕𝐽 (𝑢0, 𝑗0) over the regions of Σ0

where 𝜀𝑛/2𝑅0 6 𝑟𝑛 6 2𝑅0 for some 𝑛 ∈ 𝑆 . By Taylor expansion

|II1 | 6 𝑐 ‖ 𝐽 ‖𝐶1 · |𝑢0 ◦ 𝜄𝜏 | · |d𝑢0 | 6 𝑐𝜀𝑛/𝑟𝑛

and

|II2 | 6 𝑐 ‖ 𝐽 ‖𝐶1 ·
(
|𝑢0 | + (1 − 𝜒𝑛𝜏 ) · |𝑢0 ◦ 𝜄 |

)
· |d(𝑢0 ◦ 𝜄𝜏 ) |

6 𝑐 ·
(
𝑟𝑛 + (1 − 𝜒𝑛𝜏 )𝜀𝑛/𝑟𝑛

)
· 𝜀𝑛/𝑟 2𝑛 6 𝑐𝜀𝑛/𝑟𝑛 .

On Σ◦
𝜏 , by de�nition, 𝑟𝑛 > 𝜀

1/2
𝑛 . Therefore and by (5.11),

‖II1 + II2‖𝐿𝑝 6 𝑐𝜀
1

2
+ 1

𝑝

𝑛 .

The term III is supported in the region where 𝑅0 6 𝑟𝑛 6 2𝑅0, whose area is independent of

𝜀𝑛 , and satis�es

|III| 6 𝑐 |d𝜒𝑛𝜏 | |𝑢0 ◦ 𝜄𝜏 | 6 𝑐𝑟𝑛 · (𝜀𝑛/𝑟𝑛) = 𝑐𝜀𝑛,
where in the last inequality we use that, with respect to the identi�cations introduced earlier,

𝑢0(0) = 0 so |𝑢0(𝑧) | 6 𝑐 |𝑧 | in a neighborhood of 0. Therefore,

‖III‖𝐿𝑝 6 𝑐𝜀𝑛 . �

5.3 Fusing nodal vector �elds

The purpose of this section is to introduce the fusing operator. This operator assigns to every

vector �eld 𝜉 along 𝑢0 a vector �eld fuse𝜏 (𝜉) along 𝑢̃𝜏 , which agrees with 𝜉 outside the gluing

region. The construction of the fusing operator makes use of the following local trivializations

of 𝑇𝑋 .

De�nition 5.12. For every 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑈𝑥 de�ne an isomorphism Φ𝑦 = Φ𝑥𝑦 : 𝑇𝑥𝑋 → 𝑇𝑦𝑋 by

Φ𝑥𝑦 (𝑣) ≔ d
exp

−1
𝑥 (𝑦) exp𝑥 (𝑣)

As 𝑦 varies in𝑈𝑥 , these maps de�ne a trivialization Φ = Φ𝑥 : 𝑈𝑥 ×𝑇𝑥𝑋 → 𝑇𝑋 |𝑈𝑥
. •
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The de�nition of the fusing operator uses a di�erent cuto� function than the de�nition of

the approximate smoothing 𝑢𝜏 .

De�nition 5.13. For 𝑛 ∈ 𝑆 de�ne 𝜌𝑛𝜏 : Σ𝜏 → [0, 1] by

𝜌𝑛𝜏 (𝑧) ≔ 𝜒

(
𝑟𝑛 (𝑧)
𝜀
1/4
𝑛

)
.

Here 𝜒 is the cuto� function (5.1); that is: 𝜌𝑛𝜏 = 1 in the region where 𝑟𝑛 6 𝜀
1/4
𝑛 and 𝜌𝑛𝜏 = 0 in

the region where 𝑟𝑛 > 2𝜀
1/4
𝑛 . •

De�nition 5.14. De�ne fuse◦𝜏 : 𝑊 1,𝑝Γ(Σ0, 𝜈0;𝑢
∗
0
𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ◦

𝜏 , 𝜈0; (𝑢̃◦𝜏 )∗𝑇𝑋 ) by

fuse
◦
𝜏 (𝜉) (𝑧) ≔

{
Φ𝑢̃𝜏 ( [𝑧 ])

(
Φ−1
𝑢0 (𝑧)𝜉 (𝑧) + 𝜌

𝑛
𝜏 (𝑧) · (Φ−1

𝑢0◦𝜄𝜏 (𝑧)𝜉 (𝜄𝜏 (𝑧)) − Φ−1
𝑢0
𝜉 (𝑛))

)
if 𝑟𝑛 (𝑧) 6 2𝜀

1/4
𝑛

𝜉 (𝑧) otherwise.

In the above formula, Φ = Φ𝑥 with 𝑥 = 𝑢0(𝑛). For every 𝑛 ∈ 𝑆 the restriction of fuse
◦
𝜏 (𝜉) to{

𝑧 ∈ Σ◦
𝜏 : 𝑟𝑛 (𝑧) 6 𝜀

1/4
𝑛 for some 𝑛 ∈ 𝑆

}
is invariant under 𝜄𝜏 . Therefore, fuse

◦
𝜏 induces a map

fuse𝜏 : 𝑊
1,𝑝Γ(Σ0, 𝜈0;𝑢

∗
0
𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) . •

The following is a counterpart of Proposition 5.9.

Proposition 5.15. For every 𝜉 ∈𝑊 1,𝑝Γ(Σ0, 𝜈0;𝑢
∗
0
𝑇𝑋 )

‖𝔡𝑢̃𝜏 fuse𝜏 (𝜉)‖𝐿𝑝 6 𝑐 ‖𝔡𝑢0𝜉 ‖𝐿𝑝 + 𝑐
∑︁
𝑛∈𝑆

(
𝜀

1

2𝑝

𝑛 + 𝜀
1

2
− 1

𝑝

𝑛

)
‖𝜉 ‖𝑊 1,𝑝 .

The proof requires the following results as a preparation.

Proposition 5.16. For every 𝑛 ∈ 𝑆 and 𝜉 ∈𝑊 1,𝑝Γ(Σ0, 𝜈 ;𝑢
∗
0
𝑇𝑋 )

‖d𝜌𝑛𝜏 · (𝜉 ◦ 𝜄𝜏 − 𝜉 (𝑛))‖𝐿𝑝 6 𝑐𝜀
1

2
− 1

𝑝

𝑛 ‖𝜉 ‖𝑊 1,𝑝 .

Proof. Morrey’s embedding theorem asserts that𝑊 1,𝑝 ↩→ 𝐶0,1−2/𝑝
. Hence,

|𝜉 ◦ 𝜄𝜏 (𝑧) − 𝜉 (𝑛) | 6 𝑐 (𝜀𝑛/𝑟𝑛 (𝑧))1−2/𝑝 ‖𝜉 ‖𝑊 1,𝑝 .

The term d𝜌𝑛𝜏 is supported in the annulus 𝑃𝑛𝜏 = {𝜀1/4𝑛 6 𝑟𝑛 6 2𝜀
1/4
𝑛 } and satis�es

|d𝜌𝑛𝜏 | 6 𝑐𝜀
−1/4
𝑛 .

Since the area of 𝑃𝑛𝜏 is proportional to 𝜀
1/2
𝑛 ,

‖d𝜌𝑛𝜏 · (𝜉 ◦ 𝜄𝜏 − 𝜉 (𝑛))‖𝐿𝑝 6 𝑐𝜀−1/4𝑛 𝜀
3/4(1−2/𝑝)
𝑛 𝜀

1/2𝑝
𝑛 ‖𝜉 ‖𝑊 1,𝑝 = 𝑐𝜀

1

2
− 1

𝑝

𝑛 ‖𝜉 ‖𝑊 1,𝑝 . �
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Proposition 5.17. Let𝑈 ⊂ Σ0 be an open subset. Let 𝑢1, 𝑢2 : 𝑈 → 𝑈𝑥 and set

𝑣 ≔ exp
−1
𝑥 ◦ 𝑢2 − exp

−1
𝑥 ◦ 𝑢1.

For every 𝜉 ∈ 𝐶∞(𝑈 ,𝑇𝑥𝑋 )�� (Φ𝑢1 ◦ 𝔡𝑢1 ◦ Φ−1
𝑢1

− Φ𝑢2 ◦ 𝔡𝑢2 ◦ Φ−1
𝑢2

)
𝜉
�� 6 𝑐 ( |𝑣 | |d𝜉 | + |d𝑣 | |𝜉 | + |d𝑢1 | |𝜉 | |𝑣 |) .

Proof. To simplify notation, identify𝑈𝑥 with 𝑈̃𝑥 via exp𝑥 . Having made this identi�cation, Φ
becomes the identity map and 𝑣 = 𝑢2 − 𝑢1. Therefore,

𝔡𝑢1𝜉 − 𝔡𝑢2𝜉 =
1

2

(𝐽 (𝑢1) − 𝐽 (𝑢2)) ◦ ∇𝜉 ◦ 𝑗

+ 1

2

(
(∇𝜉 𝐽 ) (𝑢1) − (∇𝜉 𝐽 ) (𝑢2)

)
◦ d𝑢1 ◦ 𝑗

+ 1

2

(∇𝜉 𝐽 ) (𝑢2) ◦ (d𝑢1 − d𝑢2) ◦ 𝑗 .

This implies the asserted inequality. �

Proof of Proposition 5.15. Outside the regions where 𝑟𝑛 6 2𝑅0 for some 𝑛 ∈ 𝑆 the operators 𝔡𝑢0
and 𝔡𝑢̃𝜏 agree. Within such a region and with the usual identi�cations

𝔡𝑢̃◦𝜏 fuse
◦
𝜏 (𝜉) = 𝔡𝑢0𝜉 + (𝔡𝑢̃◦𝜏 − 𝔡𝑢0)𝜉︸        ︷︷        ︸

≕I

+ 𝜕𝜌𝑛𝜏 · (𝜉 ◦ 𝜄𝜏 − 𝜉 (𝑛))︸                   ︷︷                   ︸
≕II

+ 𝜌𝑛𝜏 · 𝔡𝑢̃◦𝜏 (𝜉 ◦ 𝜄𝜏 )︸            ︷︷            ︸
≕III

− 𝜌𝑛𝜏 · 𝔡𝑢̃◦𝜏 𝜉 (𝑛)︸        ︷︷        ︸
≕IV

.

The di�erence 𝑣 ≔ 𝑢̃◦𝜏 − 𝑢0 = 𝜒𝑛𝜏 · 𝑢0 ◦ 𝜄𝜏 satis�es

|𝑣 | 6 𝑐𝜀𝑛/𝑟𝑛 6 𝑐𝜀1/2𝑛 and

|d𝑣 | 6 |d𝜒𝑛𝜏 · 𝑢0 ◦ 𝜄𝜏 | + |𝜒𝑛𝜏 d(𝑢0 ◦ 𝜄𝜏 ) | 6 𝑐𝜀𝑛/𝑟 2𝑛 .

Therefore, by Proposition 5.17 and (5.11),

‖I‖𝐿𝑝 6 𝑐𝜀
1

𝑝

𝑛 ‖𝜉 ‖𝑊 1,𝑝 .

By Proposition 5.16,

‖II‖𝐿𝑝 6 𝑐𝜀
1

2
− 1

𝑝

𝑛 ‖𝜉 ‖𝑊 1,𝑝 .

The term III can be written as

III = 𝜌𝑛𝜏 ·
(
𝔡𝑢̃◦𝜏 𝜉

)
◦ 𝜄𝜏 + 𝜌𝑛𝜏 ·

(
𝔡𝑢̃◦𝜏 − 𝔡𝑢̃◦𝜏◦𝜄𝜏

)
(𝜉 ◦ 𝜄𝜏 ) .

The �rst term in this sum satis�es

‖𝜌𝑛𝜏 ·
(
𝔡𝑢̃◦𝜏 𝜉

)
◦ 𝜄𝜏 ‖𝐿𝑝 6 ‖𝔡𝑢0𝜉 ‖𝐿𝑝 + ‖I‖𝐿𝑝 .

To estimate the second term, consider the di�erence

𝑤 ≔ 𝑢̃◦𝜏 − 𝑢̃◦𝜏 ◦ 𝜄𝜏 = (1 − 𝜒𝑛𝜏 ) (𝑢0 − 𝑢0 ◦ 𝜄𝜏 ) .
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It satis�es

|𝑤 | 6 𝑐𝑟𝑛 and

|d𝑤 | 6 𝑐.

Since 𝜌𝑛𝜏 is supported in the region where 𝜀
1/4
𝑛 6 𝑟𝑛 6 2𝜀

1/4
𝑛 , Proposition 5.17 implies that

‖𝜌𝑛𝜏 ·
(
𝔡𝑢̃◦𝜏 − 𝔡𝑢̃◦𝜏◦𝜄𝜏

)
(𝜉 ◦ 𝜄𝜏 )‖𝐿𝑝 6 𝑐𝜀1/2𝑝𝑛 ‖𝜉 ‖𝑊 1,𝑝 .

Therefore,

‖III‖𝐿𝑝 6 ‖𝔡𝑢0𝜉 ‖𝐿𝑝 + 𝑐𝜀
1/2𝑝
𝑛 ‖𝜉 ‖𝑊 1,𝑝 .

To estimate the term IV, write it in the form

IV = 𝜌𝑛𝜏 ·
(
𝔡𝑢̃◦𝜏 − 𝔡𝑢 (𝑛)

)
𝜉 (𝑛),

with 𝔡𝑢 (𝑛) denoting the operator associated with the constant map with value 𝑢 (𝑛). Since the
di�erence 𝑢◦𝜏 − 𝑢 (𝑛) and its derivative are bounded, again from Proposition 5.17 we conclude

that

‖IV‖𝐿𝑝 6 𝑐𝜀1/2𝑝𝑛 ‖𝜉 ‖𝑊 1,𝑝 . �

5.4 Construction of right inverses

Throughout this subsection, let O ⊂ 𝐿𝑝Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ) be a �nite dimensional subspace such

that

(5.18) im𝔡𝑢0 +O = 𝐿𝑝Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ) .

In particular, O surjects onto coker𝔡𝑢0 .

De�nition 5.19. De�ne pull𝜏 : 𝐿
𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) by

pull𝜏 (𝜂) ( [𝑧]) ≔
{
Φ𝑢̃𝜏 ( [𝑧 ])Φ

−1
𝑢0 (𝑧)𝜂 (𝑧) if 𝜀

1/2
𝑛 6 𝑟𝑛 (𝑧) 6 2𝑅0

𝜂 (𝑧) otherwise.
•

Recall that Σ𝜏 is de�ned in De�nition 4.9 by identifying the boundary components of

{𝑟𝑛 > 𝜀1/2𝑛 } and {𝑟𝜈 (𝑛) > 𝜀1/2𝑛 } using 𝜄𝜏 . The operator pull𝜏 is obtained by simply restricting

(0, 1)–forms to these regions. The resulting (0, 1)–form on Σ𝜏 is typically not continuous but it

is still in 𝐿𝑝 . In particular, the ambiguity at 𝑟𝑛 = 𝜀
1/2
𝑛 in De�nition 5.19 is immaterial. The reader

should contrast De�nition 5.19 with the de�nition of fuse𝜏 , cf. De�nition 5.14, which produces

sections of class𝑊 1,𝑝
, and therefore continuous.

De�nition 5.20. De�ne 𝔡𝑢0 : 𝑊
1,𝑝Γ(Σ0, 𝜈0;𝑢

∗
0
𝑇𝑋 ) ⊕ O → 𝐿𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) by

𝔡𝑢0 (𝜉, 𝑜) ≔ 𝔡𝑢0𝜉 + 𝑜.

De�ne 𝔡𝑢̃𝜏 : 𝑊
1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) ⊕ O → 𝐿𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) by

𝔡𝑢̃𝜏 (𝜉, 𝑜) ≔ 𝔡𝑢̃𝜏 𝜉 + pull𝜏 (𝑜). •
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By construction, 𝔡𝑢0 is surjective and, hence, has a right inverse 𝔯𝑢0 : 𝐿
𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) →

𝑊 1,𝑝Γ(Σ0, 𝜈0;𝑢
∗
0
𝑇𝑋 ) ⊕ O of 𝔡𝑢0 . Henceforth, �x a choice of 𝔯𝑢0 . The purpose of this subsection

is to construct a right inverse 𝔯𝑢̃𝜏 to 𝔡𝑢̃𝜏 for su�ciently small 𝜀.

De�nition 5.21. De�ne push𝜏 : 𝐿
𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) by

push𝜏 (𝜂) (𝑧) ≔


0 if 𝑟𝑛 (𝑧) < 𝜀1/2𝑛

Φ𝑢0 (𝑧)Φ
−1
𝑢̃𝜏 ( [𝑧 ])𝜂 ( [𝑧]) if 𝜀

1/2
𝑛 6 𝑟𝑛 (𝑧) 6 2𝑅0

𝜂 ( [𝑧]) otherwise.

•

De�nition 5.22. De�ne 𝔯̃𝑢̃𝜏 : 𝐿
𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) ⊕ O by

𝔯̃𝑢̃𝜏 ≔ (fuse𝜏 ⊕ idO) ◦ 𝔯𝑢0 ◦ push𝜏 . •

Proposition 5.23. The linear operator 𝔯̃𝑢̃𝜏 satis�es

𝔡𝑢̃𝜏 ◦ 𝔯̃𝑢̃𝜏 − id



 6 𝑐∑︁
𝑛∈𝑆

(
𝜀

1

2𝑝

𝑛 + 𝜀
1

2
− 1

𝑝

𝑛

)
‖𝔯𝑢0 ‖ and(5.24)

‖𝔯̃𝑢̃𝜏 ‖ 6 𝑐 ‖𝔯𝑢0 ‖.

Proof. The map push𝜏 is bounded by a constant independent of 𝜏 and, by Proposition 5.16, so is

fuse𝜏 . This implies the estimate on ‖𝔯̃𝑢̃𝜏 ‖.
Let 𝜂 ∈ 𝐿𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ). To prove (5.24), we estimate



𝔡𝑢̃𝜏 𝔯̃𝑢̃𝜏𝜂 − 𝜂

𝐿𝑝 as follows. Set

(𝜉, 𝑜) ≔ 𝔯𝑢0 ◦ push𝜏 (𝜂),

so that

𝔡𝑢0𝜉 + 𝑜 = push𝜏 (𝜂).

By Proposition 5.17 applied to 𝑢̃◦𝜏 and 𝑢0 and using (5.11) and the fact that on Σ◦
𝜏 we have

pull𝜏 (𝑜) = 𝑜 ,

‖𝔡𝑢̃◦𝜏 𝜉 + pull𝜏 (𝑜) − 𝜂‖𝐿𝑝 6 𝑐𝜀
1

𝑝 ‖𝜉 ‖𝑊 1,𝑝

6 𝑐𝜀
1

𝑝 ‖𝔯𝑢0 ‖‖𝜂‖𝐿𝑝 .

Therefore, it remains to estimate

(5.25) 𝔡𝑢̃◦𝜏
(
𝜌𝑛𝜏 · (𝜉 ◦ 𝜄𝜏 − 𝜉 (𝑛))

)
= 𝜕𝜌𝑛𝜏 · (𝜉 ◦ 𝜄𝜏 − 𝜉 (𝑛))︸                   ︷︷                   ︸

≕I

+ 𝜌𝑛𝜏 · 𝔡𝑢̃◦𝜏 (𝜉 ◦ 𝜄𝜏 )︸            ︷︷            ︸
≕II

− 𝜌𝑛𝜏 · 𝔡𝑢̃◦𝜏 𝜉 (𝑛)︸        ︷︷        ︸
≕III

.

By Proposition 5.16,

‖I‖𝐿𝑝 6 𝑐𝜀
1

2
− 1

𝑝 ‖𝜉 ‖𝑊 1,𝑝 6 𝑐𝜀
1

2
− 1

𝑝 ‖𝔯𝑢0 ‖‖𝜂‖𝐿𝑝 .

To estimate the second term, observe that in the region where 𝑟𝑛 > 𝜀
1/2
𝑛 ,

𝔡𝑢0◦𝜄𝜏 (𝜉 ◦ 𝜄𝜏 ) = 𝜄∗𝜏 (𝔡𝑢0𝜉) = 𝜄∗𝜏 (push𝜏 (𝜂)) = 0.
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To understand the last identity, observe that 𝑟𝑛 (𝜄𝜏 (𝑧)) = 𝜀𝑛𝑟−1𝜈 (𝑛) (𝑧) and push𝜏 (𝜂) is de�ned to

vanish in the region of Σ0 where 𝑟𝜈 (𝑛) 6 𝜀
1/2
𝑛 . Thus, by Proposition 5.17 applied to 𝑢̃𝜏 and 𝑢0 ◦ 𝜄𝜏 ,

and using the fact that 𝜌𝑛𝜏 is supported in the region where 𝜀
1/4
𝑛 6 𝑟𝑛 6 2𝜀

1/4
𝑛 whose area is

proportional to 𝜀
1/2
𝑛 ,

‖II‖𝐿𝑝 6 𝑐𝜀
1

2𝑝 ‖𝜉 ‖𝑊 1,𝑝 6 𝑐𝜀
1

2𝑝 ‖𝔯𝑢0 ‖‖𝜂‖𝐿𝑝 .
The vector �eld 𝜉 (𝑛) is constant with respect the chosen trivialization. Since the operator 𝔡𝑢0 (𝑛)
associated with the constant map agrees with the standard 𝜕–operator,

𝔡𝑢0 (𝑛)𝜉 (𝑛) = 0.

Therefore, using Proposition 5.17 applied to 𝑢̃𝜏 and the constant map 𝑢 (𝑛), and the estimate on

the area of the support of 𝜌𝑛𝜏 , we arrive at

‖III‖𝐿𝑝 6 𝑐𝜀
1

2𝑝 ‖𝔯𝑢0 ‖‖𝜂‖𝐿𝑝 . �

Throughout the remainder of this subsection, suppose the following.

Hypothesis 5.26. The smoothing parameter 𝜏 is such that the right-hand side of (5.24) is at most
1/2.

De�nition 5.27. De�ne the right inverse 𝔯𝑢̃𝜏 : 𝐿
𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) ⊕ O

associated with 𝔯𝑢0 by

𝔯𝑢̃𝜏 ≔ 𝔯̃𝑢̃𝜏

(
𝔡𝑢̃𝜏 𝔯̃𝑢̃𝜏

)−1
= 𝔯̃𝑢̃𝜏

∞∑︁
𝑘=0

(
id − 𝔡𝑢̃𝜏 𝔯̃𝑢̃𝜏

)𝑘
. •

The following is an immediate consequence of the de�nition.

Proposition 5.28. The right inverse 𝔯𝑢̃𝜏 : 𝐿
𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) ⊕ O satis�es

𝔡𝑢𝜏 𝔯𝑢̃𝜏 = id and

‖𝔯𝑢̃𝜏 ‖ 6 𝑐 ‖𝔯𝑢0 ‖;

furthermore,
im 𝔯𝑢̃𝜏 = im 𝔯̃𝑢̃𝜏 .

5.5 Complements of the image of 𝔯𝑢̃𝜏
Proposition 5.29. Given 𝑐 𝑓 > 0 there is a constant 𝛿 = 𝛿 (𝑐 𝑓 ) > 0 such that the following holds. If
𝜏 satis�es 𝜀 < 𝛿 and 𝐾 ⊂𝑊 1,𝑝Γ(Σ0, 𝜈0;𝑢

∗
0
𝑇𝑋 ) is a subspace with dim𝐾 = dim ker𝔡𝑢0 and such

that for every 𝜅 ∈ 𝐾

‖𝔡𝑢0𝜅‖𝐿𝑝 6 𝛿 ‖𝜅‖𝑊 1,𝑝 and ‖𝜅‖𝑊 1,𝑝 6 𝑐 𝑓 ‖fuse𝜏 (𝜅)‖𝑊 1,𝑝 ,

then every (𝜉, 𝑜) ∈𝑊 1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) ⊕ O can be uniquely written as

(𝜉, 𝑜) = 𝔯𝑢̃𝜏𝜂 + (𝜅, 0)
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with 𝜂 ∈ 𝐿𝑝Ω0,1(Σ𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) and 𝜅 ∈ 𝐾 ; moreover,

‖𝜂‖𝐿𝑝 + ‖𝜅‖𝑊 1,𝑝 6 𝑐 (𝑐 𝑓 ) (‖𝜉 ‖𝑊 1,𝑝 + |𝑜 |).

Here |𝑜 | = ‖𝑜 ‖𝐿𝑝 is the norm of 𝑜 induced by the inclusion O ⊂ 𝐿𝑝Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ).

Proof. Because 𝔯𝑢̃𝜏 and fuse𝜏 |𝐾 are injective and given the hypothesis on fuse𝜏 |𝐾 , it su�ces to

show that𝑊 1,𝑝Γ(Σ𝜏 , 𝜈𝜏 ; 𝑢̃∗𝜏𝑇𝑋 ) ⊕ O is the direct sum of im(𝔯𝑢̃𝜏 ) and im(fuse𝜏 |𝐾 ) ⊕ 0.

By the index formula (2.29), Remark 2.11, and Proposition 3.16,

index𝔡𝑢0 = 2〈(𝑢∗
0
𝑐1(𝑋, 𝐽 ), [Σ0]〉 + 2𝑛(1 − 𝑝𝑎 (Σ0, 𝜈0))

= 2〈(𝑢̃𝜏 )∗𝑐1(𝑋, 𝐽 ), [Σ𝜏 ]〉 + 2𝑛(1 − 𝑝𝑎 (Σ𝜏 , 𝜈𝜏 ))
= index𝔡𝑢̃𝜏 .

Therefore and because 𝔡𝑢0 is surjective and 𝔯𝑢̃𝜏 is injective,

codim im(𝔯𝑢̃𝜏 ) = index𝔡𝑢̃𝜏 = index𝔡𝑢0 = dim ker𝔡𝑢0 .

Hence, it remains to prove that im(𝔯𝑢̃𝜏 ) and im(fuse𝜏 |𝐾 ) ⊕ 0 intersect trivially.

Suppose that 𝜂 ∈ 𝐿𝑝Ω0,1(Σ𝜎,𝜏 , 𝑢̃∗𝜏𝑇𝑋 ) and 𝜅 ∈ 𝐾 satisfy

𝔯𝑢̃𝜏 (𝜂) = (fuse𝜏 (𝜅), 0) .

By Proposition 5.15 as well as the hypothesis on fuse𝜏 and for su�ciently small 𝛿 ,

‖𝜂‖𝐿𝑝 = ‖𝔡𝑢̃𝜏 fuse𝜏 (𝜅)‖𝐿𝑝

6 𝑐
[
𝛿 + #𝑆 ·

(
𝛿

1

2𝑝 + 𝛿
1

2
− 1

𝑝

)]
‖𝜅‖𝑊 1,𝑝

6 𝑐𝑐 𝑓
[
𝛿 + #𝑆 ·

(
𝛿

1

2𝑝 + 𝛿
1

2
− 1

𝑝

)]
‖𝜂‖𝐿𝑝

6
1

2

‖𝜂‖𝐿𝑝 .

Therefore, 𝜂 vanishes. �

5.6 Kuranishi model for a neighborhood of nodal maps

Throughout, let (Σ0, 𝑗0, 𝜈0) be a nodal Riemann surface with nodal set 𝑆 , let (𝑋, 𝐽0, ℎ) be an
almost Hermitian manifold, and let 𝑢0 : (Σ0, 𝑗0, 𝜈0) → (𝑋, 𝐽0) be a nodal 𝐽0–holomorphic map.

Let (𝜋 : X → Δ,★ = (0, 0), 𝜄) be the versal deformation of (Σ0, 𝑗0, 𝜈0) constructed in Section 4.3

with �bers

(Σ𝜎,𝜏 , 𝑗𝜎,𝜏 , 𝜈𝜎,𝜏 ) = 𝜋−1(𝜎, 𝜏) .

Let 𝛿J > 0 and let

U ⊂
{
𝐽 ∈ J(𝑋 ) : ‖ 𝐽 − 𝐽0‖𝐶1 < 𝛿J

}
be such that for every 𝑘 ∈ N

sup

𝐽 ∈U
‖ 𝐽 − 𝐽0‖𝐶𝑘 < ∞.
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In the upcoming discussion we may implicitly shrink Δ and 𝛿J , in order to ensure that Hypoth-

esis 5.5 and Hypothesis 5.26 hold and various expressions involving |𝜎 |, 𝜀 ≔ max{𝜀𝑛 : 𝑛 ∈ 𝑆}
with 𝜀𝑛 ≔ |𝜏𝑛 |, and ‖ 𝐽 − 𝐽0‖𝐶1 are su�ciently small.

The purpose of this subsection is to analyze whether 𝑢0 can be slightly deformed to a

𝐽–holomorphic map 𝑢𝜎,𝜏 : (Σ𝜎,𝜏 , 𝑗𝜎,𝜏 , 𝜈𝜎,𝜏 ) → (𝑋, 𝐽 ) with 𝐽 ∈ U. More precisely, we show

that a Gromov neighborhood of 𝑢0 in the space of nodal 𝐽–holomorphic maps with 𝐽 ∈ U is

homeomorphic to the zero set of a continuous map

ob : Δ ×U ×I → O,

whereI an open subset of the deformation space ker𝔡𝑢0,𝐽0 andO � coker𝔡𝑢0,𝐽0 is the obstruction

space. This is a local Kuranishi model at𝑢0 for the universal moduli space of pseudo-holomorphic

nodal maps.

Remark 5.30. Since we are not interested here in the global properties of the universal moduli

space, we do not require that 𝑢0 is a stable map. A local Kuranishi model can be constructed

around any pseudo-holomorphic map. However, the Gromov limit, as de�ned in De�nition 3.8,

is not necessarily unique for unstable maps, so the universal moduli space of all nodal pseudo-

holomorphic maps is not a Hausdor� space. ♣
To facilitate the discussion in Section 5.7 (and although it makes the present discussion

somewhat more awkward than it needs to be) the construction of the Kuranishi model proceeds

in two steps. Choose a partition

𝑆 = 𝑆1 q 𝑆2 with 𝜈0(𝑆1) = 𝑆1 and 𝜈0(𝑆2) = 𝑆2

and write every smoothing parameter 𝜏 as

𝜏 = (𝜏1, 𝜏2) with 𝜏1 = (𝜏1,𝑛)𝑛∈𝑆1 and 𝜏2 = (𝜏2,𝑛)𝑛∈𝑆2 .

The �rst step of our construction varies 𝜎 and 𝜏1 but 𝜏2 = 0 is �xed. The second step holds 𝜎

and 𝜏1 �xed and varies 𝜏2.

Denote by 𝑢𝜎,0 : Σ𝜎,0 → 𝑋 the smooth map underlying 𝑢0. Denote by

𝔡𝑢0;𝐽0 : 𝑊
1,𝑝Γ(Σ0, 𝜈0;𝑢

∗
0
𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 )

the linear operator associated with 𝑢0 de�ned in De�nition 2.26. Let

O ⊂ Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ) ⊂ 𝐿𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 )

be a lift of coker𝔡𝑢0;𝐽0 ; that is: dimO = dim coker𝔡𝑢0 and (5.18) holds. We will assume that all

1–forms in O are smooth on each component of Σ0. (The canonical choice is O = ker𝔡∗
𝑢0;𝐽0

,

but this choice is not always the most convenient.) Let Δ1 parametrize complex structures on

(Σ0, 𝜈0) as at the beginning of Section 4.3, and letU be an open neighborhood of 𝐽0 as above.

Trivialize the bundle over Δ1×U whose �ber over (𝜎, 𝐽 ) ∈ Δ1×U is Ω0,1(Σ𝜎,0, 𝑢∗𝜎,0𝑇𝑋 ) with the

(0, 1)–part taken with respect to 𝑗𝜎,0 and 𝐽 . This identi�es Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ) and Ω0,1(Σ𝜎,0, 𝑢∗𝜎,0𝑇𝑋 )
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and thus exhibits O as a subset of 𝐿𝑝Ω0,1(Σ𝜎,0, 𝑢∗𝜎,0𝑇𝑋 ) for which (5.18) holds for 𝔡𝑢̃𝜎,0;𝐽 instead

of 𝔡𝑢0 . De�ne

𝔡𝑢̃𝜎,𝜏
1
,0;𝐽 : 𝑊

1,𝑝Γ(Σ𝜎,𝜏1,0, 𝜈𝜎,0; 𝑢̃∗𝜎,𝜏1,0𝑇𝑋 ) ⊕ O → 𝐿𝑝Ω0,1(Σ𝜎,𝜏1,0, 𝑢̃∗𝜎,𝜏1,0𝑇𝑋 )

as in De�nition 5.20. The construction in Section 5.4 yields a right inverse

𝔯𝑢̃𝜎,𝜏
1
,0;𝐽 : 𝐿

𝑝Ω0,1(Σ𝜎,𝜏1,0, 𝑢̃∗𝜎,𝜏1,0𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ𝜎,𝜏1,0, 𝜈𝜎,𝜏1,0; 𝑢̃∗𝜎,𝜏1,0𝑇𝑋 ) ⊕ O.

of 𝔡𝑢̃𝜎,𝜏
1
,0;𝐽 .

The next two propositions build a Kuranishi model for a neighborhood of 𝑢0 in the Gromov

compacti�cation of the moduli space of pseudo-holomorphic maps. In essence, they assert that

for every smoothing parameter 𝜏 and an in�nitesimal deformation 𝜅 the pseudo-holomorphic

map equation can be solved modulo obstructions. The construction of the Kuranishi model

proceeds in two steps, described by Proposition 5.31 and Proposition 5.35, in order to obtain

better control of the obstruction map. The �rst step is to smooth the nodes in 𝑆1.

Proposition 5.31. There are constants 𝛿𝜅,Λ > 0 such that for every (𝜎, 𝜏1, 0) ∈ Δ and 𝜅 ∈ ker𝔡𝑢0
with |𝜅 | < 𝛿𝜅 there exists a unique pair

(𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅), 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅)) ∈ im 𝔯𝑢̃𝜎,𝜏
1
,0;𝐽 ⊂𝑊 1,𝑝Γ(Σ𝜎,𝜏1,0, 𝜈𝜎,𝜏1,0; 𝑢̃∗𝜎,𝜏1,0𝑇𝑋 ) ⊕ O

with
‖𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅)‖𝑊 1,𝑝 + |𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) | 6 Λ

satisfying

(5.32) 𝔉𝑢̃𝜎,𝜏
1
,0;𝐽 (fuse𝜏1,0𝜅 + 𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅)) + pull𝜏1,0

(𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅)) = 0,

with𝔉 as in De�nition 2.25. Furthermore,

(5.33) ‖𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅)‖𝑊 1,𝑝 + |𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) | 6 𝑐
(
|𝜎 | + |𝜏1 |

1

2
+ 1

𝑝 + ‖ 𝐽 − 𝐽0‖𝐶0 + |𝜅 |
)
.

Proof. Since 𝔯𝑢̃𝜎,𝜏
1
,0;𝐽 is injective, (5.32) is equivalent to the �xed-point equation

𝜂 = F(𝜂) ≔ 𝜂 −𝔉𝑢̃𝜎,𝜏
1
,0;𝐽

(
fuse𝜏1,0𝜅 + pr

1
𝔯𝑢̃𝜎,𝜏

1
,0;𝐽 𝜂

)
− pull𝜏1,0

(pr
2
𝔯𝑢̃𝜎,𝜏

1
,0;𝐽 𝜂).

Here pr
1
and pr

2
denote the projections to the �rst and second summand of

𝑊 1,𝑝Γ(Σ𝜎,𝜏1,0, 𝜈𝜎,𝜏1,0; 𝑢̃∗𝜎,𝜏1,0𝑇𝑋 ) ⊕ O

respectively. By Proposition 2.32,

F(𝜂) = −𝜕𝐽 (𝑢̃𝜎,𝜏1,0, 𝑗𝜎,𝜏1,0) − 𝔡𝑢̃𝜎,𝜏
1
,0;𝐽 fuse𝜏1,0𝜅 − 𝔫𝑢̃𝜎,𝜏

1
,0;𝐽

(
fuse𝜏1,0𝜅 + pr

1
◦ 𝔯𝑢̃𝜎,𝜏

1
,0;𝐽 𝜂

)
.

By Proposition 5.9 and Proposition 2.32,

‖F(0)‖𝐿𝑝 6 𝑐
(
|𝜎 | + ‖ 𝐽 − 𝐽0‖𝐶0 + |𝜏1 |

1

2
+ 1

𝑝 + |𝜅 | + |𝜅 |2
)
.
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Moreover, by Proposition 5.28 and Proposition 2.32,

‖F(𝜂1) − F(𝜂2)‖𝐿𝑝 6 𝑐 ( |𝜅 | + ‖𝜂1‖𝐿𝑝 + ‖𝜂2‖𝐿𝑝 )‖𝜂1 − 𝜂2‖𝐿𝑝 .

Therefore, provided 𝛿𝜅 is su�ciently small, there is an 𝑅 > 0 such that ‖F(0)‖𝐿𝑝 6 𝑅/2 and for

every 𝜂1, 𝜂2 ∈ ¯𝐵𝑅 (0) ⊂ 𝐿𝑃Ω0,1(Σ𝜎,𝜏 , 𝑢̃∗𝜎,𝜏𝑇𝑋 )

‖F(𝜂1) − F(𝜂2)‖𝐿𝑝 6
1

2

‖𝜂1 − 𝜂2‖𝐿𝑝 .

This shows that F maps
¯𝐵𝑅 (0) into ¯𝐵𝑅 (0) and F : ¯𝐵𝑅 (0) → ¯𝐵𝑅 (0) is a contraction. Thus, the

�rst assertion follows from Banach’s �xed-point theorem. The second follows from the above

and Proposition 5.9. �

This completes the �rst step. In the second step, we smooth the nodes in 𝑆2. This step is

analogous to the �rst one, with 𝑢0 being replaced by the maps obtained from Proposition 5.31.

For (𝜎, 𝜏) ∈ Δ and 𝜅 ∈ ker𝔡𝑢0 with ‖𝜅‖𝑊 1,𝑝 < 𝛿𝜅 set

𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ≔ exp𝑢̃𝜎,𝜏
1
,0
(fuse𝜏1,0𝜅 + 𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅)) and 𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ≔ �(𝑢𝜎,𝜏1,0;𝐽 ;𝜅 )𝜏 ;

that is: 𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 is obtained from 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 by the construction in De�nition 5.7.

De�nition 5.34. De�ne pull𝜎,𝜏1,0;𝐽 ;𝜅 : 𝐿
𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ𝜎,𝜏1,0, 𝑢∗𝜎,𝜏1,0;𝐽 ;𝜅𝑇𝑋 ) to be the

composition of pull𝜏1,0
with the map induced by parallel transport along the geodesics

𝑡 ↦→ exp𝑢̃𝜎,𝜏
1
,0

(
𝑡 (fuse𝜏1,0𝜅 + 𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅))

)
.

Furthermore, denote by pull𝜎,𝜏 ;𝐽 ;𝜅 : 𝐿
𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ𝜎,𝜏 , 𝑢̃∗𝜎,𝜏 ;𝐽 ;𝜅𝑇𝑋 ) the composi-

tion of pull𝜎,𝜏1,0;𝐽 ;𝜅
with pull𝜏2

: 𝐿𝑝Ω0,1(Σ𝜎,𝜏1,0, 𝑢∗𝜎,𝜏1,0;𝐽 ;𝜅𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ𝜎,𝜏 , 𝑢̃∗𝜎,𝜏 ;𝐽 ;𝜅𝑇𝑋 ) de�ned
in De�nition 5.19. •

The subspace pull𝜎,𝜏1,0;𝐽 ;𝜅
(O) satis�es (5.18) for 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 instead of 𝑢0. De�ne

𝔡𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 : 𝑊
1,𝑝Γ(Σ𝜎,𝜏 , 𝜈𝜎,𝜏 ; 𝑢̃∗𝜎,𝜏 ;𝐽 ;𝜅𝑇𝑋 ) ⊕ O → 𝐿𝑝Ω0,1(Σ𝜎,𝜏 , 𝑢̃∗𝜎,𝜏 ;𝐽 ;𝜅𝑇𝑋 )

as in De�nition 5.20. The construction in Section 5.4 yields a right inverse

𝔯𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 : 𝐿
𝑝Ω0,1(Σ𝜎,𝜏 , 𝑢̃∗𝜎,𝜏 ;𝐽 ;𝜅𝑇𝑋 ) →𝑊 1,𝑝Γ(Σ𝜎,𝜏 , 𝜈𝜎,𝜏 ; 𝑢̃∗𝜎,𝜏 ;𝐽 ;𝜅𝑇𝑋 ) ⊕ O

of 𝔡𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 .

Proposition 5.35. There are constants 𝛿𝜅,Λ > 0 such that for every (𝜎, 𝜏 ; 𝐽 ) ∈ Δ × U and
𝜅 ∈ ker𝔡𝑢0 with ‖𝜅‖𝑊 1,𝑝 < 𝛿𝜅 there exists a unique pair

( ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅), 𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅)) ∈ im 𝔯𝑢̃𝜎,𝜏 ;𝜅 ;𝐽 ⊂𝑊 1,𝑝Γ(Σ𝜎,𝜏 , 𝜈𝜎,𝜏 ; 𝑢̃∗𝜎,𝜏 ;𝜅𝑇𝑋 ) ⊕ O

with
‖ ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)‖𝑊 1,𝑝 + |𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅) | 6 Λ
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satisfying

(5.36) 𝔉𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ( ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)) + pull𝜎,𝜏 ;𝐽 ;𝜅 (𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) + 𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅)) = 0.

Furthermore,

(5.37) ‖ ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)‖𝑊 1,𝑝 + |𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅) | 6 𝑐 ‖𝜕𝐽 (𝑢̃𝜎,𝜏 ;𝐽 ;𝜅, 𝑗𝜎,𝜏 ) + pull𝜎,𝜏 ;𝐽 ;𝜅 (𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅))‖𝐿𝑝 .

Proof. This is similar to the proof of Proposition 5.31. �

De�nition 5.38. SetI ≔ 𝐵𝛿𝜅 (0) ⊂ ker𝔡𝑢0 . The Kuranishi map ob : Δ×U×I → O is de�ned

by

ob(𝜎, 𝜏 ; 𝐽 ;𝜅) ≔ 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) + 𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅),

with 𝑜 and 𝑜 as in Proposition 5.31 and Proposition 5.35. •

The upshot of the preceding discussion is that𝑢0 can be slightly deformed to a 𝐽–holomorphic

map 𝑢𝜎,𝜏 : (Σ𝜎,𝜏 , 𝑗𝜎,𝜏 , 𝜈𝜎,𝜏 ) → (𝑋, 𝐽 ); if and only if there is a 𝜅 ∈ I with ob(𝜎, 𝜏 ; 𝐽 ;𝜅) = 0.

The following shows that this Kuranishi model indeed describes a Gromov neighborhood of

𝑢0 : (Σ0, 𝑗0, 𝜈0) → (𝑋, 𝐽0).

Proposition 5.39. Let (𝜎𝑘 , 𝜏𝑘 )𝑘∈N be a sequence in Δ converging to (0, 0) and let (𝐽𝑘 )𝑘∈N be a
sequence in U converging to 𝐽0. If(

𝑢𝑘 : (Σ𝜎𝑘 ,𝜏𝑘 , 𝑗𝜎𝑘 ,𝜏𝑘 , 𝜈𝜎𝑘 ,𝜏𝑘 ) → (𝑋, 𝐽𝑘 )
)
𝑘∈N

is a sequence of nodal pseudo-holomorphic maps which Gromov converges to 𝑢0 : (Σ0, 𝑗0, 𝜈0) →
(𝑋, 𝐽0) then there is a 𝐾 ∈ N such that for every 𝑘 > 𝐾 there are 𝜅𝑘 ∈ ker𝔡𝑢0 and (𝜉𝑘 , 0) ∈
im 𝔯𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝜅𝑘

;𝐽𝑘 with
𝑢𝑘 = exp𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝜅𝑘

(𝜉𝑘 );

moreover,

lim

𝑘→∞
|𝜅𝑘 | = 0 and lim

𝑘→∞
‖𝜉𝑘 ‖𝑊 1,𝑝 = 0.

In particular,
ob(𝜎𝑘 , 𝜏𝑘 ; 𝐽𝑘 ;𝜅𝑘 ) = 0.

The proof of this proposition relies on the following result.

Proposition 5.40. Assume the situation of Proposition 5.39. There are𝐾 ∈ N, 𝛿𝜅 > 0, and 𝑐 > 0 such
that for every 𝑘 > 𝐾 and 𝜅 ∈ ker𝔡𝑢0 with ‖𝜅‖𝑊 1,𝑝 < 𝛿𝜅 there is a 𝜁𝑘 ;𝜅 ∈ Γ(Σ𝜎𝑘 ,𝜏𝑘 , 𝑢̃∗𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝜅𝑇𝑋 )
with

𝑢𝑘 = exp𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝐽𝑘 ;𝜅
(𝜁𝑘 ;𝜅);

moreover,

lim sup

𝑘→∞
‖𝜁𝑘 ;𝜅 ‖𝑊 1,𝑝 6 𝑐 |𝜅 |.
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Proof. The proof has two steps: the construction of 𝜁𝑘 ;𝜅 and the proof of the estimate. Recall

the de�nition of𝑈𝑥 from De�nition 5.4.

Step 1. There are 𝐾 ∈ N and 𝛿𝜅 > 0 such that for every 𝑘 > 𝐾 , 𝜅 ∈ ker𝔡𝑢0 with ‖𝜅‖𝑊 1,𝑝 < 𝛿𝜅 ,
and 𝑧 ∈ Σ𝜎𝑘 ,𝜏𝑘

𝑢𝑘 (𝑧) ∈ 𝑈𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝜅 (𝑧) ;

in particular, there is a section 𝜁𝑘 ;𝜅 ∈ Γ(Σ𝜎𝑘 ,𝜏𝑘 , 𝑢̃∗𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘𝑇𝑋 ) given by

𝜁𝑘 ;𝜅 ≔ exp
−1
𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝜅

◦ 𝑢𝑘 .

By (5.33), (5.37), and Proposition 5.9,

(5.41) 𝑑 (𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝜅, 𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0) 6 𝑐
(
|𝜎𝑘 | + 𝜀

1

2
+ 1

𝑝

𝑘
+ ‖ 𝐽𝑘 − 𝐽0‖𝐶0 + |𝜅 |

)
.

Therefore, it su�ces to consider 𝜅 = 0 and prove that there exists a 𝐾 ∈ N such that for every

𝑘 > 𝐾

𝑢𝑘 (𝑧) ∈
1

2

𝑈𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0 (𝑧) .

Using the framing Ψ from De�nition 4.17, de�ne 𝑣𝑘 : Σ0\𝑆 → 𝑋 and 𝑣𝜅,𝑘 : Σ0\𝑆 → 𝑋 by

𝑣𝑘 ≔ 𝑢𝑘 ◦ 𝜄−1𝑘 ◦ Ψ( · ;𝜎𝑘 , 𝜏𝑘 ) ◦ 𝜄0 and

𝑣𝑘 ≔ 𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0 ◦ 𝜄−1𝑘 ◦ Ψ( · ;𝜎𝑘 , 𝜏𝑘 ) ◦ 𝜄0,

cf. De�nition 3.8. Both of the sequences (𝑣𝑘 )𝑘∈N and (𝑣𝑘 )𝑘∈N converge to 𝑢0 : Σ0\𝑆 → 𝑋 in the

𝐶∞
loc

topology—the former by De�nition 3.8 and the latter by construction.

With the notation of Remark 4.18 for 𝑟 > 0 and 𝑛 ∈ 𝑆 set

𝑁 𝑟
𝑘,𝑛

≔ 𝑁 𝑟𝜎𝑘 ,𝜏𝑘 ;𝑛 .

Choose 𝑟 > 0 as in Proposition 3.16 with 𝛿 ≔ 1

8
inj𝑔 (𝑋 ). By the preceding paragraph, the

assertion holds for su�ciently large 𝑘 and 𝑧 ∉ 𝑁 𝑟
𝑘,𝑛

. By Proposition 3.16 and by construction of

𝑢̃𝜎,𝜏 , for su�ciently large 𝑘

𝑢𝑘 (𝑁 𝑟𝑘,𝑛) ⊂ 𝐵𝛿 (𝑢0(𝑛)) and 𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0(𝑁 𝑟𝑘,𝑛) ⊂ 𝐵𝛿 (𝑢0(𝑛));

hence, for every 𝑧 ∈ 𝑁 𝑟
𝑘,𝑛

𝑢𝑘 (𝑧) ∈
1

2

𝑈𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0 (𝑧) .

Step 2. There is a constant 𝑐 > 0 such that the sections 𝜁𝑘 ;𝜅 de�ned in the preceding step satisfy

lim sup

𝑘→∞
‖𝜁𝑘 ;𝜅 ‖𝑊 1,𝑝 6 𝑐 |𝜅 |.
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By (5.33), (5.37), and Proposition 5.9, we can restrict to 𝜅 = 0. Furthermore, it su�ces to

prove that for every 𝑛 ∈ 𝑆

(5.42) lim

𝑠↓0
lim sup

𝑘→∞
‖𝜁𝑘 ;0‖𝑊 1,𝑝 (𝑁 𝑠

𝑘,𝑛
) = 0.

The case when 𝑛 is not smoothed is straightforward. The framing extends to identify a neigh-

borhood of 𝑛 in Σ𝜎𝑘 ,𝜏𝑘 with a neighborhood of 𝑛 in Σ0. It follows from Lemma 3.14 and elliptic

regularity that, on this subset, the maps 𝑢𝑘 converge to 𝑢0 in the 𝐶∞
loc

topology. Let us therefore

assume that 𝑛 is smoothed out; that is: 𝜀𝑘 ;𝑛 ≠ 0 for su�ciently large 𝑘 .

De�ne 𝜌𝑘 ∈ 𝐶∞(𝑁 𝑟
𝑘 ;𝑛
,𝑇𝑢0 (𝑛)𝑋 ) and 𝜌𝑘 ∈ 𝐶∞(𝑁 𝑟

𝑘 ;𝑛
,𝑇𝑢0 (𝑛)𝑋 ) by

𝜌𝑘 ≔ exp
−1
𝑢0 (𝑛) ◦ 𝑢𝑘 and 𝜌𝑘 ≔ exp

−1
𝑢0 (𝑛) ◦ 𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0.

By construction,

lim

𝑘→∞
‖𝜌𝑘 ‖𝑊 1,𝑝 = 0.

Therefore, it su�ces to prove that

lim

𝑠↓0
lim sup

𝑘→∞
‖𝜌𝑘 ‖𝑊 1,𝑝 (𝑁 𝑠

𝑘,𝑛
) = 0

As explained in Remark 4.18, the subset 𝑁 𝑟
𝑘 ;𝑛

is biholomorphic to the cylinder

𝑆1 × (−𝐿𝑘 , 𝐿𝑘 ) with 𝐿𝑘 ≔ log(𝑟𝜀−1/2
𝑛;𝑘

) .

Hence, 𝜌𝑘 can be thought of as a map 𝜌
cyl

𝑘
: 𝑆1 × (−𝐿𝑘 , 𝐿𝑘 ) → 𝑇𝑢0 (𝑛)𝑋 . More concretely, the

canonical chart 𝜙𝑛 de�nes a holomorphic embedding

𝜙𝑛 :
{
𝑣 ∈ 𝑇𝑛Σ0 : 𝜀

1/2
𝑛;𝑘
6 |𝑣 | < 𝑟

}
→ 𝑁 𝑟

𝑘 ;𝑛

which glues via 𝜄𝜏 with the embedding 𝜙𝜈 (𝑛) to a biholomorphic map

𝐵𝑟 (0)\𝐵𝜀𝑛;𝑘/𝑟 (0) � 𝑁 𝑟𝑘 ;𝑛 .

Choose identi�cations 𝑇𝑛Σ0 � C � 𝑇𝜈 (𝑛)Σ0 such that 𝜄𝜏 (𝑧) = 𝜀𝑛/𝑧. The map 𝜌
cyl

𝑘
is then de�ned

by

𝜌
cyl

𝑘
(𝜃, ℓ) ≔

{
𝜌𝑘 ◦ 𝜙𝑛

(
𝜀
1/2
𝑛;𝑘
𝑒ℓ+𝑖𝜃

)
if 𝑡 > 0

𝜌𝑘 ◦ 𝜙𝜈 (𝑛)
(
𝜀
1/2
𝑛;𝑘
𝑒−ℓ−𝑖𝜃

)
if 𝑡 6 0.

Since 𝑢𝑘 is 𝐽𝑘–holomorphic, 𝜌
cyl

𝑘
is exp

∗
𝑢0 (𝑛) (𝐽𝑘 )–holomorphic. Since the energy is confor-

mally invariant,

𝐸
(
𝜌
cyl

𝑘

)
= 𝐸

(
𝑢𝑘 |𝑁 𝑟

𝑘 ;𝑛

)
.

Choose 𝜇 ∈ (1 − 2/𝑝, 1). By Lemma 3.15,

|∇𝜌cyl
𝑘

(𝜃, ℓ) | 6 𝑐𝑒−𝜇 (𝐿𝑘−|ℓ |)𝐸
(
𝑢𝑘 |𝑁 𝑟

𝑘 ;𝑛

)
1/2
.

45



By the above and Proposition 5.3, for 𝑧 ∈ Σ◦
𝜎,𝜏 with 𝑟𝑛 (𝑧) < 𝑟

|∇𝜌𝑘 (𝑧) | 6 𝑐𝑟−𝜇𝑟𝑛 (𝑧)𝜇−1𝐸
(
𝑢𝑘 |𝑁 𝑟

𝑘 ;𝑛

)
1/2
.

There is a corresponding estimate with 𝑛 replaced with 𝜈 (𝑛). Hence,

‖∇𝜌𝑘 (𝑧)‖𝑝𝐿𝑝 (𝑁 𝑠
𝑘 ;𝑛

) 6
𝑐𝑟−𝜇𝑝

(𝜇 − 1)𝑝 + 2

𝑠 (𝜇−1)𝑝+2𝐸
(
𝑢𝑘 |𝑁 𝑟

𝑘 ;𝑛

)𝑝/2
.

Since (𝜇 − 1)𝑝 + 2 > 0, the right-hand converges to zero as 𝑠 converges to zero. �

Proof of Proposition 5.39. Let 𝑘 > 𝐾 and 𝜅 ∈ ker𝔡𝑢0 with |𝜅 | < 𝛿𝜅 . Let 𝜁𝑘 ;𝜅 be as in Proposi-

tion 5.40. By Proposition 5.29 the latter can be uniquely written as

𝜁𝑘,𝜅 = fuse𝜏𝑘 (𝜆𝑘 ;𝜅) + pr
1
◦ 𝔯𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝜅

𝜂𝑘 ;𝜅 with 𝜆𝑘 ;𝜅 ∈ ker𝔡𝑢0 .

It remains to be proved that after possibly increasing𝐾 for every 𝑘 > 𝐾 there exists a 𝜅 ∈ ker𝔡𝑢0
with |𝜅 | < 𝛿𝜅 and 𝜆𝑘 ;𝜅 = 0. The following statement is a consequence of (5.41), (5.42), and the

fact that 𝔯𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;𝜅
depends smoothly on 𝜅 when interpreted as a family of operators on a �xed

Banach space 𝐿𝑝Ω0,1(Σ𝜎𝑘 ,𝜏𝑘 , 𝑢̃∗𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0𝑇𝑋 ) ⊕ O using parallel transport along geodesics. If 𝛿𝜅 is

su�ciently small, then for every 𝜅, 𝑢𝑘 can be written in the form

𝑢𝑘 = exp𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ,0

(
fuse𝜏𝑘 (𝜅 + 𝜆𝑘 ;𝜅) + 𝔯𝑢̃𝜎𝑘 ,𝜏𝑘 ;𝐽𝑘 ;0

𝜂𝑘 ;𝜅 + 𝔢𝑘 ;𝜅
)
,

with 𝔢𝑘 ;𝜅 satisfying lim sup𝑘→∞‖𝔢𝑘 ;0‖𝑊 1,𝑝 = 0 and a quadratic estimate

(5.43) ‖𝔢𝑘 ;𝜅1 − 𝔢𝑘 ;𝜅2 ‖𝑊 1,𝑝 6 𝑐 ( |𝜅1 | + |𝜅2 |) |𝜅1 − 𝜅2 |

It follows from Proposition 5.29 that for |𝜅 | 6 𝛿𝜅 ,

𝜅 + 𝜆𝑘 ;𝜅 + 𝜋 (𝔢𝑘 ;𝜅) = 0,

where 𝜋 denotes the projection on fuse𝜏𝑘 (ker𝔡𝑢0) precomposed fuse
−1
𝜏𝑘
; the latter is de�ned

because fuse𝜏𝑘 is injective on ker𝔡𝑢0 provided 𝑘 is su�ciently large. Thus, the existence of a

unique small 𝜅 such that 𝜆𝑘 ;𝜅 = 0 is a consequence of (5.43) and the Banach �xed point theorem

applied to the map 𝜅 ↦→ −𝜋 (𝔢𝑘 ;𝜅). �

5.7 The leading order term of the obstruction on ghost components

Assume the situation of Section 5.6. The purpose of this subsection is to analyze the leading

order term of part of the obstruction map ob constructed in Section 5.6. This construction

requires a choice of partition of 𝑆 and a choice of lift O ⊂ 𝐿𝑝Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ) of coker𝔡𝑢0 . The

following paragraphs introduce a particular choice tailored to the upcoming discussion.

Let 𝐶 ⊂ Σ0 be a ghost component of 𝑢0; see Section 2.4 for the de�nitions of a ghost

component and related notation. Denote by

𝑥0 ∈ 𝑋

the constant value which 𝑢0 takes on 𝐶 .

To simplify the upcoming discussion, we will make the following assumption, which will

be satis�ed in the situation considered in the proof of Theorem 1.1.
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Hypothesis 5.44. 𝑆ext
𝐶

consists of one point, that is: 𝐶 and Σ0\𝐶 meet at one node.

Denote by 𝐵 ⊂ 𝐶 the base-locus of the dualizing sheaf of
ˇ𝐶 , cf. Proposition 2.19. If 𝐵 does

not contain the node at which 𝐶 and Σ0\𝐶 meet, then set 𝐵0 ≔ ∅; otherwise, denote by 𝐵0 the
connected component of 𝐵 containing the node. Set

𝐶• ≔ 𝐶\𝐵0 and Σ♣ ≔ Σ0\𝐶•

and abbreviate

𝜈• ≔ 𝜈𝐶• and 𝜈♣ ≔ 𝜈Σ♣ .

The signi�cance of this construction is as follows. By Proposition 2.19, every connected com-

ponent of 𝐶• attaches to Σ♣ at a unique node; moreover: these nodes are not contained in the

base-locus of the dualizing sheaf of 𝐶•.
The partition of the set of nodes we choose is, with the notation from Section 2.4,

(5.45) 𝑆 = 𝑆1 q 𝑆2 with 𝑆1 ≔ 𝑆 intΣ♣
q 𝑆 int𝐶•

and 𝑆2 ≔ 𝑆extΣ♣
q 𝑆ext𝐶•

,

that is: �rst, we will smooth the interior nodes of Σ♣ and 𝐶• and then the exterior nodes

connecting them.

Next we discuss the choice of the obstruction space O. Set 𝔡𝑢0,♣ ≔ 𝔡𝑢0 |Σ♣ and let

O♣ ⊂ Ω0,1(Σ♣, 𝑢
∗
0
𝑇𝑋 ) ⊂ 𝐿𝑝Ω0,1(Σ♣, 𝑢

∗
0
𝑇𝑋 )

be a lift of coker𝔡𝑢0,♣ such that every 𝑜 ∈ O♣ vanishes in a neighborhood of 𝑆extΣ♣
if 𝐵0 is empty,

and over all of 𝐵0 if 𝐵0 is non-empty. Furthermore, let

O• ⊂ Ω0,1(𝐶•,C) ⊗C 𝑇𝑥0𝑋 ⊂ 𝐿𝑝Ω0,1(𝐶•, 𝑢
∗
0
𝑇𝑋 )

be a lift of coker(𝜕 ⊗C 1).
Every 𝜉 ∈𝑊 1,𝑝Γ(Σ♣, 𝜈♣;𝑢∗0𝑇𝑋 ) can be extended to Σ0 in the following way. Given 𝑛 ∈ 𝑆extΣ♣

,

extend 𝜉 to a constant section taking value 𝜉 (𝑛) over the connected component of the nodal

curve (𝐶•, 𝜈•) containing 𝜈 (𝑛). This de�nes an inclusion

(5.46) 𝑊 1,𝑝Γ(Σ♣, 𝜈♣;𝑢
∗
0
𝑇𝑋 ) ⊂𝑊 1,𝑝Γ(Σ0, 𝜈0;𝑢

∗
0
𝑇𝑋 ) .

Furthermore, extension by zero de�nes inclusions

𝐿𝑝Ω0,1(Σ♣, 𝑢
∗
0
𝑇𝑋 ) ⊂ 𝐿𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) and 𝐿𝑝Ω0,1(𝐶•, 𝑢

∗
0
𝑇𝑋 ) ⊂ 𝐿𝑝Ω0,1(Σ0, 𝑢

∗
0
𝑇𝑋 ) .

Set

O ≔ O♣ ⊕ O•.

Proposition 5.47. The map (5.46) induces an isomorphism ker𝔡𝑢0,♣ � ker𝔡𝑢0 and O is a lift of
coker𝔡𝑢0 .
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Proof. Denote by 𝜈q the nodal structure on Σ0 which agrees with 𝜈0 on the complement of 𝑆2
and is the identity on 𝑆2. This nodal structure disconnects Σ♣ and 𝐶•. Denote by

𝔡𝑢0,q : 𝑊 1,𝑝Γ(Σ0, 𝜈q;𝑢
∗
0
𝑇𝑋 ) → 𝐿𝑝Ω0,1(Σ0, 𝑢

∗𝑇𝑋 )

the operator induced by 𝔡𝑢0 . De�ne 𝑉− and di� : ker𝔡𝑢0,q → 𝑉− as in Remark 2.30 with 𝑆2
instead of 𝑆 . As is explained in Remark 2.30,

ker𝔡𝑢0 = ker di�

and there is a short exact sequence

0 coker di� coker𝔡𝑢0 coker𝔡𝑢0,q 0.

The domain and codomain of 𝔡𝑢0,q decompose as

𝑊 1,𝑝Γ(Σ0, 𝜈q;𝑢
∗
0
𝑇𝑋 ) =𝑊 1,𝑝Γ(Σ♣, 𝜈♣;𝑢

∗
0
𝑇𝑋 ) ⊕𝑊 1,𝑝Γ(𝐶•, 𝜈•;C) ⊗C 𝑇𝑥0𝑋 and

𝐿𝑝Ω0,1(Σ0, 𝑢
∗
0
𝑇𝑋 ) = 𝐿𝑝Ω0,1(Σ♣, 𝑢

∗
0
𝑇𝑋 ) ⊕ 𝐿𝑝Ω0,1(𝐶•,C) ⊗C 𝑇𝑥0𝑋 .

With respect to these decompositions

𝔡𝑢0,q =

(
𝔡𝑢0,♣ 0

0 𝜕 ⊗C 1

)
with 𝔡𝑢0,♣ = 𝔡𝑢0 |Σ♣ and 𝜕 ⊗C 1 = 𝔡𝑢0 |𝐶• is the standard Cauchy–Riemann operator since 𝑢0 is

constant on 𝐶•. Therefore,

ker𝔡𝑢0,q = ker𝔡𝑢0,♣ ⊕ ker(𝜕 ⊗C 1) and coker𝔡𝑢0,q = coker𝔡𝑢0,♣ ⊕ coker(𝜕 ⊗C 1) .

The task at hand is to understand ker𝔡𝑢0 and coker𝔡𝑢0 in terms of the above.

Since elements of ker(𝜕 ⊗C 1) are locally constant, ker(𝜕 ⊗C 1) has a direct summand 𝑇𝑥0𝑋

for every connected component of (𝐶•, 𝜈•). Hypothesis 5.44 and Proposition 2.19 imply that

there is one connected component for each node in 𝑆extΣ♣
. Therefore,

ker(𝜕 ⊗C 1) = 𝑉− = Map(𝑆extΣ♣
,𝑇𝑥0𝑋 ).

With respect to this identi�cation the map di� : ker𝔡𝑢0,♣ ⊕ ker(𝜕 ⊗C 1) → 𝑉− is given by

di� (𝜅, 𝑣) (𝑛) = 𝜅 (𝑛) − 𝑣 (𝑛) .

Therefore, ker di� � ker𝔡𝑢0,♣ and coker di� = {0}, which, by Remark 2.30, completes the proof

of the proposition. �

Construct the Kuranishi model as in Section 5.6 for the above choices of 𝑆 = 𝑆1 q 𝑆2 and O.

As a �nal piece of preparation, let us make the following observation, which by Remark 2.30,

in particular, gives an explicit description of O∗
• = coker(𝜕 ⊗C 1)∗.
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Proposition 5.48. Let (𝐶, 𝜈) be a nodal Riemann surface with nodal set 𝑆 . Denote the corresponding
nodal curve by ˇ𝐶 and its dualizing sheaf by 𝜔𝐶 . Let 𝑞 ∈ (1, 2) be such that 1/𝑝 + 1/𝑞 = 1. De�ne

H ⊂ 𝐿𝑞Ω0,1(𝐶,C)

to be the subspace of solutions ¯𝜁 of the distributional equation

(5.49) 𝜕∗ ¯𝜁 =
∑︁
𝑛∈𝑆

𝑓 (𝑛)𝛿 (𝑛)

for some weight function 𝑓 : 𝑆 → C with 𝑓 ◦ 𝜈 = −𝑓 . Here 𝛿 (𝑛) is the Dirac delta distribution at
𝑛. The subspaceH satis�es

H = 𝐻 0( ˇ𝐶,𝜔 ˇ𝐶 ) .

Proof. If ˇ𝐶 is smooth, then
ˇ𝐶 = 𝐶 and the dualizing sheaf 𝜔𝐶 is simply the canonical sheaf 𝐾𝐶 .

By the Kähler identities,

H = ker

(
𝜕∗ : Ω0,1(𝐶,C) → Ω0(𝐶,C)

)
= ker

(
𝜕 : Ω0,1(𝐶,C) → Ω1,1(𝐶,C)

)
� ker

(
𝜕 : Ω1,0(𝐶,C) → Ω1,1(𝐶,C)

)
� 𝐻 0(𝐶,𝐾𝐶 ).

Recall from the proof of Proposition 2.19, that the dualizing sheaf of
ˇ𝐶 is constructed as follows;

Denote by 𝜋 : 𝐶 → ˇ𝐶 the normalization map. Denote by 𝜔̃𝐶 the subsheaf of 𝐾𝐶 (𝑆) whose
sections 𝜁 satisfy

Res𝑛 𝜁 + Res𝜈 (𝑛) 𝜁 = 0

for every 𝑛 ∈ 𝑆 , with Res𝑛 𝜂 being the residue of the meromorphic 1–form 𝜂 at 𝑛. The dualizing

sheaf 𝜔𝐶 then is

𝜔𝐶 = 𝜋∗𝜔̃𝐶 .

Therefore, 𝐻 0(𝐶,𝜔𝐶 ) = 𝐻 0(𝐶, 𝜔̃𝐶 ). By de�nition every 𝜁 ∈ 𝐻 0(𝐶, 𝜔̃𝐶 ) is smooth away from

𝑆 and blows-up at most like 1/dist(𝑛, ·) at 𝑛 for 𝑛 ∈ 𝑆 ; hence: 𝜁 ∈ 𝐿𝑞Ω0,1(𝐶,C). The residue
condition amounts to (5.49). This shows that 𝐻 0( ˇ𝐶,𝜔𝐶 ) ⊂ H. Conversely, by elliptic regularity

every 𝜁 ∈ H de�nes an element of 𝐻 0( ˇ𝐶,𝜔𝐶 ). �

The following is the technical backbone of the proof of Theorem 1.1. The reader is advised to

recall De�nition 5.38 and Proposition 5.39 because these are the main ingredients of the proof.

Lemma 5.50. Denote by𝐶• the nodal curve corresponding to (𝐶•, 𝜈•). There is a constant 𝑐 > 0 such
that the obstruction map de�ned in De�nition 5.38 satis�es the following. For every (𝜎, 𝜏 ; 𝐽 ;𝜅) ∈
Δ ×U ×I, 𝜁 ∈ 𝐻 0( ˇ𝐶•, 𝜔𝐶•

), and 𝑣 ∈ 𝑇𝑥0𝑋〈
pull𝜎,𝜏 ;𝐽 ;𝜅 (ob(𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)

〉
𝐿2

=
∑︁
𝑛∈𝑆ext

𝐶•

𝜋
〈(
𝜁 (𝑛) ⊗C d𝜈0 (𝑛)𝑢𝜎,𝜏1,0;𝐽 ;𝜅

)
(𝜏𝑛), 𝑣

〉
+ 𝔢
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with

|𝔢| 6 𝑐 |𝜁 | |𝑣 |𝜀
1

2

•
∑︁
𝑛∈𝑆ext

𝐶•

𝜀𝑛

and

𝜀• ≔ max

{
𝜀𝑛 : 𝑛 ∈ 𝑆 int𝐶•

∪ 𝑆ext𝐶•

}
.

Example 5.51. To understand better the signi�cance of Lemma 5.50, it is helpful to consider

the following example. Suppose that (Σ0, 𝑗0, 𝜈0) consists of two components: the higher genus

ghost 𝐶 = 𝐶• and a spherical bubble Σ♣ = C𝑃1 meeting at points

𝑛 ∈ 𝐶 and 𝜈 (𝑛) ∈ C𝑃1.

(In that case, 𝐵 = 𝐵0 = ∅.) In that case, there is only one smoothing parameter 𝜏 , which, after

trivializing the tangent spaces of𝐶 and Σ♣ at the nodes, can be thought of as a complex number,

and 𝜀 = |𝜏 |. By Lemma 5.50, for every holomorphic 1-form 𝜁 ∈ 𝐻 0(𝐶,𝜔𝐶 ),

(5.52)

〈
pull𝜎,𝜏 ;𝐽 ;𝜅 (ob(𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)

〉
𝐿2

= 𝜋
〈(
𝜁 (𝑛) ⊗C d𝜈0 (𝑛)𝑢𝜎,0;𝐽 ;𝜅

)
(𝜏), 𝑣

〉
+ 𝔢

with

|𝔢| 6 𝑐 |𝜁 | |𝑣 |𝜀3/2.

Since 𝐶 has positive genus, there exists 𝜁 ∈ 𝐻 0(𝐶,𝜔𝑐) such that 𝜁 (𝑛) ≠ 0. If the restriction of

𝑢0 to the bubble C𝑃1 is unobstructed, then 𝑢𝜎,0;𝐽 ;𝜅 = 𝑢0 on C𝑃1 for all 𝜎 and 𝜅. If, moreover,

d𝜈 (𝑛)𝑢0 ≠ 0, it follows that the right-hand side of (5.52) is never zero unless 𝜀 = 0, and so

ob(𝜎, 𝜏, 𝐽 ;𝜅) ≠ 0 for 𝜏 ≠ 0. We conclude that in that case 𝑢0 cannot be smoothed. ♠

Proof of Lemma 5.50. The proof is based on analyzing the expression

0 = 〈𝔉𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ( ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)) + pull𝜎,𝜏 ;𝐽 ;𝜅 (𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) + 𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2

and the identity

ob(𝜎, 𝜏 ; 𝐽 ;𝜅) ≔ 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) + 𝑜 (𝜎, 𝜏 ; 𝐽 ;𝜅) .

Step 1. The vector �eld 𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅) is constant on 𝐶• and 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) is supported on Σ♣; in
particular,

〈pull𝜎,𝜏 ;𝐽 ;𝜅 (𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2 = 0.

The construction in Proposition 5.31 can be carried out for 𝑢0 |Σ♣ with the choice of O = O♣
and 𝑆2 = ∅. For every (𝜎, 𝜏1, 0; 𝐽 ) ∈ Δ×U and 𝜅 ∈ ker𝔡𝑢0,★ with |𝜅 | < 𝛿𝜅 denote by 𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅)
and 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) the solution of (5.32) obtained in this way.

Henceforth, regard 𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅) as an element of𝑊 1,𝑝Γ(Σ0𝜈0;𝑢
∗
0
𝑇𝑋 ) and 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) as

an element of O. By construction these satisfy (5.32) for 𝑢0 and with the choices of O and

𝑆 = 𝑆1q𝑆2 made in the discussion preceding Lemma 5.50. Therefore and since ker𝔡𝑢0,★ = ker𝔡𝑢0 ,

𝜉 (𝜎, 𝜏1; 𝐽 ;𝜅) and 𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅) are precisely the output produced by Proposition 5.31. The �rst

part of the assertion thus holds by construction.
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Step 2. The term
𝜕𝐽 (𝑢̃𝜎,𝜏 ;𝐽 ;𝜅, 𝑗𝜎,𝜏 ) + pull𝜎,𝜏 ;𝐽 ;𝜅 (𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅))

is supported in the regions where 𝑟𝑛 6 2𝑅0 for some 𝑛 ∈ 𝑆ext
𝐶•

. Set 𝑥𝑛 ≔ 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 (𝑛). Identifying
𝑈𝑥𝑛 with 𝑈̃𝑥𝑛 via exp𝑥𝑛 in the region where 𝑟𝑛 6 2𝑅0 the error term can be written as

𝜕𝜒𝑛𝜏2 · 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2 + 𝔮

with

(5.53) |𝜕𝜒𝑛𝜏2 · 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2 | 6 𝑐𝜀𝑛 and |𝔮 | 6 𝑐𝜀2𝑛 .

The proof is a re�nement of that of Proposition 5.9. A priori, the error term 𝜕𝐽 (𝑢̃𝜎,𝜏 ;𝐽 ;𝜅, 𝑗𝜎,𝜏 ) +
pull𝜎,𝜏 ;𝐽 ;𝜅 (𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅)) is supported in the in the regions where 𝑟𝑛 6 2𝑅0 for some 𝑛 ∈ 𝑆2.

If 𝑛 ∈ 𝑆extΣ♣
, then it is immediate from De�nition 5.7 that 𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 agrees with 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 in the

region under consideration; hence, the error term vanishes. For 𝑛 ∈ 𝑆ext
𝐶•

, in the region under

consideration and with the identi�cations having been made,

𝑢̃◦𝜎,𝜏 ;𝐽 ;𝜅 = 𝜒𝑛𝜏2 · 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2 .

Therefore,

𝜕𝐽 (𝑢̃◦𝜎,𝜏 ;𝐽 ;𝜅, 𝑗𝜎,𝜏 ) = 𝜕𝜒𝑛𝜏2 · 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2

+ 𝜒𝑛𝜏2 ·
1

2

(
𝐽 (𝑢̃◦𝜎,𝜏 ;𝐽 ;𝜅) − 𝐽 (𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2)

)
◦ d(𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2) ◦ 𝑗𝜎,𝜏1,0︸                                                                                ︷︷                                                                                ︸

≕I

+ 𝜒𝑛𝜏2 · 𝜕𝐽 (𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2, 𝑗𝜎,𝜏1,0)︸                               ︷︷                               ︸
≕II

.

(Observe that by elliptic regularity and (5.32), the map𝑢𝜎,𝜏 ;𝐽 ;𝜅 is smooth in the region in question,

so we can take its derivative. We will use this fact in the remaining part of the proof.) The term

I is supported in the region where 𝑅0 6 𝑟𝑛 6 2𝑅0. By Taylor expansion at 𝜈0(𝑛), in this region

|𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2 | 6 𝑐𝜀𝑛/𝑟𝑛 and

|d(𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2) | 6 𝑐𝜀𝑛/𝑟 2𝑛 .

Therefore,

|I| 6 𝑐𝜀2𝑛 and |𝜕𝜒𝑛𝜏2 · 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2 | 6 𝑐𝜀𝑛 .

Since 𝜄𝜏2 is holomorphic and 𝑜 (𝜎, 𝜏1;𝜅) is de�ned by (5.32),

II = 𝜒𝑛𝜏2 · 𝜄
∗
𝜏2
𝜕𝐽 (𝑢𝜎,𝜏1,0;𝐽 ;𝜅, 𝑗𝜎,𝜏1,0) = −𝜒𝑛𝜏2 · 𝜄

∗
𝜏2
𝑜 (𝜎, 𝜏1; 𝐽 ;𝜅),

and thus II vanishes by our choice of O.
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Step 3. For every 𝑛 ∈ 𝑆ext
𝐶•

〈𝜕𝜒𝑛𝜏2 · 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 ◦ 𝜄𝜏2, pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2 = −𝜋
〈(
𝜁 ⊗C d𝜈0 (𝑛)𝑢𝜎,𝜏1,0;𝐽 ;𝜅

)
(𝜏𝑛), 𝑣

〉
+ 𝔢2

with
|𝔢2 | 6 𝑐𝜀2𝑛 |𝜁 | |𝑣 |.

To simplify the notation, we choose an identi�cation 𝑇𝑛𝐶 = C and work in the canonical

holomorphic coordinate 𝑧 on 𝐶 at 𝑛 and the coordinate system at 𝜈0(𝑛) with respect to which

𝑤 = 𝜄𝜏2 (𝑧) = 𝜀𝑛/𝑧. In particular, with respect to the induced identi�cation𝑇𝜈0 (𝑛)𝐶 = C the gluing

parameter is simply 𝜏𝑛 = 𝜀𝑛 · 1 ⊗C 1.

Since 𝑢𝜎,𝜏1,0;𝐽 ;𝜅 is 𝐽–holomorphic, by Taylor expansion,

𝑢𝜎,𝜏1,0;𝐽 ;𝜅 (𝜀𝑛/𝑧) = 𝜕𝑤𝑢𝜎,𝜏1,0;𝐽 ;𝜅 (0) · 𝜀𝑛/𝑧 + 𝔯 with |𝔯 | 6 𝑐𝜀2𝑛/|𝑧 |2.

The term

𝔢′
2
≔ 〈𝜕𝜒𝑛𝜏2 · 𝔯, pull𝜎,𝜏 ;𝐽 ;𝜅 (𝜁 ⊗C 𝑣)〉𝐿2

satis�es ��𝔢′
2

�� 6 𝑐𝜀2𝑛 |𝜁 | |𝑣 |.
Since 𝜁 is holomorphic, ˆ

𝑆1
𝜁 (𝑟𝑒𝑖𝛼 ) d𝛼 = 2𝜋 · 𝜁 (0) .

Therefore,

〈𝜕𝜒𝑛𝜏2 · 𝑧
−1, ¯𝜁 〉𝐿2 =

ˆ
𝑅06 |𝑧 |62𝑅0

1

2

𝜒 ′
(
|𝑧 |
𝑅0

)
𝜁 (𝑧)
𝑅0 |𝑧 |

vol

=

ˆ
2𝑅0

𝑅0

1

2

𝜒 ′
(
𝑟

𝑅0

)
1

𝑅0
·
(ˆ
𝑆1
𝜁 (𝑟𝑒𝑖𝛼 ) d𝛼

)
d𝑟

=

ˆ
2𝑅0

𝑅0

𝜒 ′
(
𝑟

𝑅0

)
1

𝑅0
d𝑟 · 𝜋𝜁 (𝑟𝑒𝑖𝛼 ).

The integral evaluates to−1. Thus the assertion follows because the term 〈𝜁 (0)·𝜕𝑤𝑢𝜎,𝜏1,0;𝐽 ;𝜅 (0), 𝑣〉
can be written in coordinate-free form as

𝜋
〈(
𝜁 ⊗C d𝜈0 (𝑛)𝑢𝜎,𝜏1,0;𝐽 ;𝜅

)
(𝜏𝑛), 𝑣

〉
.

Step 4. The term

𝔢3 ≔ 〈𝔡𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) + 𝔫𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ( ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2

satis�es

|𝔢3 | 6 𝑐𝜀
1

2

•
∑︁
𝑛∈𝑆ext

𝐶•

𝜀𝑛 |𝜁 | |𝑣 |
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By Step 2 and Proposition 5.35,

‖ ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)‖𝑊 1,𝑝 6 𝑐𝜀𝑛 .

This immediately implies that

𝔢′
3
≔ 〈𝔫𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ( ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2

satis�es

|𝔢′
3
| 6 𝑐

∑︁
𝑛∈𝑆ext

𝐶•

𝜀2𝑛 |𝜁 | |𝑣 |.

It remains to estimate

𝔢′′
3
≔ 〈𝔡𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2 .

Set

𝐶◦
𝜎,𝜏 ≔ 𝐶• ∩ Σ◦

𝜎,𝜏 .

Since 𝜅 and 𝜉 (𝜎, 𝜏1;𝜅) are constant on 𝐶 , Proposition 5.17 implies that the term

𝔡𝑢̃𝜎,𝜏 ;𝐽 ;𝜅
ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) − 𝜕 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅),

de�ned over 𝐶◦
𝜎,𝜏 , is supported in the regions where 𝜀

1/2
𝑛 6 𝑟𝑛 6 2𝑅0 for some 𝑛 ∈ 𝑆ext

𝐶•
and

satis�es ∑︁
𝑛∈𝑆ext

𝐶•

ˆ
𝜀
1/2
𝑛 6𝑟𝑛62𝑅0

|𝔡𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) − 𝜕 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) |

6 𝑐
∑︁
𝑛∈𝑆ext

𝐶•

ˆ
𝜀
1/2
𝑛 6𝑟𝑛62𝑅0

| ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) | |∇ ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) | + | ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅) |2

6 𝑐 ‖ ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)‖2
𝑊 1,𝑝

6 𝑐
∑︁
𝑛∈𝑆ext

𝐶•

𝜀2𝑛 .

Therefore,

|𝔢′′
3
| 6 𝑐

∑︁
𝑛∈𝑆ext

𝐶•

𝜀2𝑛 +
��〈𝜕 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅), ¯𝜁 ⊗C 𝑣

〉
𝐿2 (𝐶◦

𝜎,𝜏 )
��.

Since 𝜕∗𝜁 = 0 on 𝐶◦
𝜎,𝜏 , integration by parts yields��〈𝜕 ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅), ¯𝜁 ⊗C 𝑣

〉
𝐿2 (𝐶◦

𝜎,𝜏 )
�� 6 𝑐𝜀 1

2

•
∑︁
𝑛∈𝑆ext

𝐶•

‖ ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)‖𝑊 1,𝑝 |𝜁 | |𝑣 |

6 𝑐𝜀
1

2

•
∑︁
𝑛∈𝑆ext

𝐶•

𝜀𝑛 .

Combining the above estimates yields the asserted estimate on 𝔢3.
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Step 5. Conclusion of the proof.

By Step 1, Step 2, Step 3, and Step 4 the term

𝔬 ≔ 〈pull𝜎,𝜏 ;𝐽 ;𝜅 (ob(𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2

satis�es

𝔬 = −〈𝔉𝑢̃𝜎,𝜏 ;𝐽 ;𝜅 ( ˆ𝜉 (𝜎, 𝜏 ; 𝐽 ;𝜅)), pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣)〉𝐿2

=
∑︁
𝑛∈𝑆ext

𝐶•

𝜋
〈(
𝜁 ⊗C d𝜈0 (𝑛)𝑢𝜎,𝜏1,0;𝐽 ;𝜅

)
(𝜏𝑛), 𝑣

〉
+ 𝔢1 + 𝔢2 + 𝔢3

with the error terms arising from the corresponding terms in the preceding steps. The term 𝔢1

arises from the 𝐿2 inner product of the sum, over all nodes 𝑛 ∈ 𝑆ext
𝐶•

, of error terms from Step 2

and pull𝜎,𝜏 ;𝐽 ;𝜅 ( ¯𝜁 ⊗C 𝑣), which multiplies the estimate (5.53) by |𝜉 | |𝑣 |. The preceding steps thus
yield the asserted estimate on 𝔢 = 𝔢1 + 𝔢2 + 𝔢3. �

5.8 Proof of Theorem 1.1

Without loss of generality, suppose that

(Σ𝑘 , 𝑗𝑘 ) = (Σ𝜎𝑘 ,𝜏𝑘 , 𝑗𝜎𝑘 ,𝜏𝑘 )

with 𝜏𝑘 ;𝑛 ≠ 0 for every 𝑘 ∈ N and 𝑛 ∈ 𝑆 ; that is: all nodes are smoothed and 𝜈𝜎𝑘 ,𝜏𝑘 is the trivial

nodal structure. By Proposition 5.40 there is a sequence (𝜅𝑘 )𝜅∈N inI corresponding to (𝑢𝑘 )𝑘∈N.
Again, without loss of generality, 𝑢∞ : (Σ∞, 𝑗∞, 𝜈∞) → (𝑋, 𝐽∞) has at least one ghost

component 𝐶 with one non-ghost component

Σbubble = Σ∞\𝐶

attached at a single node, so that Hypothesis 5.44 is satis�ed. Denote by
ˇ𝐶 the nodal curve

corresponding to 𝐶 and let 𝐵 be the base-locus of the dualizing sheaf of 𝐶 . De�ne 𝐵0 ⊂ 𝐵 and

𝐶• ≔ 𝐶\𝐵0 and Σ♣ ≔ Σ0\𝐶•

as at the beginning of Section 5.7. Observe that

Σ♣ = 𝐵0 q Σbubble

so that Σ∞ decomposes into

Σ∞ = 𝐶• q 𝐵0 q Σbubble︸        ︷︷        ︸
Σ♣

.

Write 𝜏𝑘 = (𝜏𝑘,1, 𝜏𝑘,2) with 𝜏𝑘,1 and 𝜏𝑘,2 denoting the smoothing parameters corresponding to

the sets of nodes 𝑆1 and 𝑆2 de�ned in (5.45). Since 𝐵0 is a tree of spheres, the partial smoothing

Σ𝜎𝑘 ,𝜏𝑘,1,0 contains a component biholomorphic to Σbubble, as discussed in Example 4.12. Let

𝑏𝑘 : Σbubble → 𝑋
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be the restriction of 𝑢𝜎,𝜏𝑘,1,0;𝜅𝑘 to this component. After reparametrizing 𝑏𝑘 by biholomorphisms

of Σbubble we can guarantee that 𝑏𝑘 converges to 𝑢0 |Σbubble in the𝐶∞
topology. Let 𝑥 be any node

in 𝑆ext
𝐶•

; the point 𝜈𝑘 (𝑥) under the above biholomorphisms it is mapped to a point 𝑥𝑘 ∈ Σbubble

and the sequence (𝑥𝑘 ) satis�es
lim

𝑘→∞
𝑥𝑘 = 𝜈∞(𝑛) .

Let
ˇ𝐶• be the nodal curve corresponding to 𝐶•. By the construction of 𝐶•, for every node

𝑛 ∈ 𝐶• such that 𝜈 (𝑛) ∈ Σ♣, there is exists a holomorphic section 𝜁 ∈ 𝐻 0( ˇ𝐶•, 𝜔𝐶•
) with 𝜁 (𝑛) ≠ 0.

Since ob(𝜎𝑘 , 𝜏𝑘 ; 𝐽𝑘 ;𝜅𝑘 ) = 0, it follows from Lemma 5.50 that

|d𝑥𝑘𝑏𝑘 | 6 𝜀
1/2
𝑘 ;ghost

.

(Observe that reparametrizing 𝑏𝑘 by biholomorphisms of Σbubble does not a�ect the estimate in

Lemma 5.50, which is independent of the choice of a Riemannian metric in the given conformal

class.) Passing to the limit 𝑘 → ∞ yields that d𝜈∞ (𝑛)𝑢0 = 0.

6 Calabi–Yau classes in symplectic 6–manifolds

6.1 Proof of Theorem 1.3

Denote by 𝐶1, . . . ,𝐶𝐼 the connected components of Σ∞ on which 𝑢∞ is non-constant and set

𝑢𝑖∞ ≔ 𝑢∞ |𝐶𝑖
and 𝐴𝑖 ≔ (𝑢𝑖∞)∗ [𝐶𝑖]. By the index formula (2.29),

𝐼∑︁
𝑖=1

index(𝑢𝑖∞) =
𝐼∑︁
𝑖=1

2〈𝑐1(𝑋,𝜔), 𝐴𝑖〉 = 2〈𝑐1(𝑋,𝜔), 𝐴〉 = 0

Since 𝐽∞ ∈ Jemb(𝑋,𝜔), for every 𝑖 = 1, . . . , 𝐼 , index(𝑢𝑖∞) > 0 and thus index(𝑢𝑖∞) = 0. Con-

sequently, the images of the simple maps underlying 𝑢𝑖∞ and 𝑢
𝑗
∞ either agree or are disjoint.

However,

im𝑢∞ =

𝐼⋃
𝑖=1

im𝑢𝑖∞

is connected. Therefore and since𝐴 is primitive, 𝐼 = 1 and𝑢1∞ is simple and, hence, an embedding

because 𝐽 ∈ Jemb(𝑋,𝜔). Given the above, it follows from Theorem 1.1 that (Σ∞, 𝑗∞, 𝜈∞) is
smooth.

6.2 Proof of Theorem 1.5

The proof of Theorem 1.5(1) is completely standard and straightforward. Nevertheless, let us

spell it out. Let 𝐽 ∈ J★
emb

(𝑋,𝜔). By Proposition 2.38 and Theorem 1.3, M★
𝐴,𝑔

(𝑋, 𝐽 ) is a compact

oriented zero-dimensional manifold; that is: a �nite set of points with signs. The signed count

#M★
𝐴,𝑔 (𝑋, 𝐽 )
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is independent of the choice of 𝐽 . To see this, let 𝐽0, 𝐽1 ∈ J★
emb

(𝑋,𝜔) and (𝐽𝑡 )𝑡 ∈[0,1] ∈ J★
emb

(𝑋,𝜔 ; 𝐽0, 𝐽1).
By Proposition 2.38 and Theorem 1.3, M★

𝐴,𝑔

(
𝑋, (𝐽𝑡 )𝑡 ∈[0,1]

)
is a compact oriented manifold with

boundary

M★
𝐴,𝑔 (𝑋, 𝐽1) q −M★

𝐴,𝑔 (𝑋, 𝐽0) .

Therefore,

#M★
𝐴,𝑔 (𝑋, 𝐽1) = #M★

𝐴,𝑔 (𝑋, 𝐽0) .

Theorem 1.5(2) follows from [DW21, Theorem 1.6]. Indeed, the latter asserts that for every

𝐽 ∈ J★(𝑋,𝜔) the set
∞∐
𝑔=0

M★
𝐴,𝑔 (𝑋, 𝐽 )

is a �nite set. Therefore, there exists a 𝑔0 ∈ N0 such that for every 𝑔 > 𝑔0 the moduli space

M★
𝐴,𝑔

(𝑋,𝐴; 𝐽 ) is empty; in particular, 𝑛𝐴,𝑔 (𝑋,𝜔) = 0 for 𝑔 > 𝑔0. �

7 Fano classes in symplectic 6–manifolds

The proofs in this section make use of de�nitions and results from Section 2.8.

7.1 Proof of Theorem 1.4

Denote by
˜𝐶1, . . . , ˜𝐶𝐼 the connected components of Σ∞ on which 𝑢∞ is non-constant, set 𝑢̃𝑖∞ ≔

𝑢∞ |𝐶̃𝑖
, denote by 𝑢𝑖∞ : 𝐶𝑖 → 𝑋 the simple map underlying 𝑢̃𝑖∞, let 𝑑𝑖 ∈ N be the degree of

the covering map relating 𝑢̃𝑖∞ and 𝑢𝑖∞, set 𝐴𝑖 ≔ (𝑢𝑖∞)∗ [𝐶𝑖], and set 𝑔𝑖 ≔ 𝑔(𝐶𝑖). Since (𝑢𝑘 )𝑘∈N
Gromov converges to 𝑢∞,

(1) 𝑢𝑘 (Σ𝑘 ) converges to 𝑢∞(Σ∞) in the Hausdor� topology, and

(2)

∑𝐼
𝑖=1 𝑑𝑖𝐴𝑖 = 𝐴.

These are the only two consequences of Gromov convergence that will be used in the following

argument.

Denote by 𝐼0 the subset of those 𝑖 ∈ {1, . . . , 𝐼 } with 〈𝑐1(𝑋,𝜔), 𝐴𝑖〉 = 0 and set 𝐼+ ≔

{1, . . . , 𝐼 }\𝐼0. Without loss of generality all of the pseudo-cycles 𝑓𝜆 have codim(𝑓𝜆) > 4. For

every 𝑖 ∈ 𝐼+ denote by Λ𝑖 the subset of those 𝜆 ∈ {1, . . . ,Λ} such that

(7.1) im𝑢𝑖∞ ∩ im 𝑓𝜆 ≠ ∅.

Since 𝐽∞ ∈ Jemb(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ), for every 𝑖 ∈ 𝐼0 and 𝜆 ∈ {1, . . . ,Λ} we have im𝑢𝑖∞ ∩ im 𝑓𝜆 = ∅.
Therefore and since 𝑢𝑘 (Σ𝑘 ) converges to 𝑢∞(Σ∞) in the Hausdor� topology, for every 𝜆 ∈
{1, . . . ,Λ} there exists at least one 𝑖 ∈ 𝐼+ such that (7.1) holds. For every 𝑖 ∈ {1, . . . , 𝐼 } and 𝜆 ∈ Λ𝑖
set

𝑓 𝑖
𝜆
≔

{
𝑓𝜆 if im𝑢𝑖∞ ∩ im 𝑓𝜆 ≠ ∅
𝑓 𝜕
𝜆

otherwise
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with 𝑓 𝜕
𝜆
as in in Section 2.8; in particular: codim 𝑓𝜆 6 codim 𝑓 𝑖

𝜆
with equality if and only if

im𝑢𝑖∞ ∩ im 𝑓𝜆 ≠ ∅. By de�nition, 𝑢𝑖∞ represents an element ofM★
𝐴,𝑔

(𝑋, 𝐽 ; (𝑓 𝑖
𝜆
)𝜆∈Λ𝑖

). Therefore
and since 𝐽 ∈ Jemb(𝑋,𝜔, 𝑓1, . . . , 𝑓Λ),

2〈𝑐1(𝑋,𝜔), 𝐴𝑖〉 −
∑︁
𝜆∈Λ𝑖

(
codim(𝑓 𝑖

𝜆
) − 2

)
> 0.

On the one hand, multiplying by 𝑑𝑖 and summing yields∑︁
𝑖∈𝐼+

∑︁
𝜆∈Λ𝑖

(
codim(𝑓 𝑖

𝜆
) − 2

)
6

∑︁
𝑖∈𝐼+

∑︁
𝜆∈Λ𝑖

𝑑𝑖
(
codim(𝑓 𝑖

𝜆
) − 2

)
6

𝐼∑︁
𝑖=1

2〈𝑐1(𝑋,𝜔), 𝑑𝑖𝐴𝑖〉

= 2〈𝑐1(𝑋,𝜔), 𝐴〉

=

Λ∑︁
𝜆=1

(codim(𝑓𝜆) − 2) .

On the other hand, by the preceding discussion, the reverse inequality also holds. Therefore,

equality holds and this implies that

(1) 𝑑𝑖 = 1 for every 𝑖 ∈ 𝐼+,

(2) 2〈𝑐1(𝑋,𝜔), 𝐴𝑖〉 =
∑
𝜆∈Λ𝑖

(
codim(𝑓 𝑖

𝜆
) − 2

)
,

(3) 𝑓 𝑖
𝜆
= 𝑓𝜆 , and

(4) the subsets Λ𝑖 are non-empty and pairwise disjoint.

This implies that for every 𝑖 ∈ 𝐼+ the map 𝑢̃𝑖∞ agrees with 𝑢𝑖∞ and thus is simple; moreover,

this map has index zero (in the sense of (2.29)) and its image intersects 𝑓𝜆 for every 𝜆 ∈ Λ𝑖 .
Furthermore, every 𝑓𝜆 intersects the image of precisely one map 𝑢𝑖∞ with 𝑖 ∈ 𝐼+. Therefore, the
images of the maps 𝑢𝑖∞ with 𝑖 ∈ 𝐼+ are pairwise disjoint.

Since 2〈𝑐1(𝑋,𝜔), 𝐴〉 > 0, 𝐼+ is non-empty. For 𝑖 ∈ 𝐼+ and 𝑗 ∈ 𝐼0 the images of 𝑢𝑖∞ and 𝑢
𝑗
∞

must also be disjoint, because otherwise they would have to agree—contradicting 𝐴𝑖 ≠ 𝐴 𝑗 .

However,

im𝑢∞ =

𝐼⋃
𝑖=1

im𝑢𝑖∞

is connected. Therefore, if 𝐼0 ≠ ∅, then there is are 𝑖 ∈ 𝐼0 and 𝑗 ∈ 𝐼+ such that the images of 𝑢𝑖∞
and 𝑢

𝑗
∞ intersect. The preceding discussion shows this to be impossible; hence: 𝐼0 = ∅. Similarly,

if 𝐼+ were to contain more than one element, then there are 𝑖, 𝑗 ∈ 𝐼+ with such that the images

of 𝑢𝑖∞ and 𝑢
𝑗
∞ intersect—which is impossible. Therefore, 𝐼 = 1 and 𝑢̃1∞ = 𝑢1∞ is an embedding.

Given the above, it follows from Theorem 1.1 that (Σ∞, 𝑗∞, 𝜈∞) is smooth and im𝑢∞∩ im 𝑓𝜆 ≠

∅ every 𝜆 = 1, . . . ,Λ. �
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7.2 Proof of Theorem 1.8

GivenGromov compactness, Theorem 1.4, and Proposition 2.46, the proof that𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ)
is well-de�ned and independent of the choice of 𝐽 is identical to that of Theorem 1.5 up to

changes in notation.

To prove that 𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) is independent of the choice of pseudo-cycle representa-
tives, suppose that 𝑓 0

1
and 𝑓 1

1
are two representatives of PD[𝛾1] such that 𝑓 𝑖

1
, 𝑓2, . . . , 𝑓Λ are in

general position for 𝑖 = 0, 1. Let 𝐹 : 𝑊 → 𝑋 be a pseudo-cycle cobordism between 𝑓 0
1
and 𝑓 1

1
such

that 𝐹, 𝑓2, . . . , 𝑓Λ are in general position. Let 𝐽 be an element of the setJ★
emb

(𝑋,𝜔 ; 𝐹, 𝑓2, . . . , 𝑓Λ) de-
�ned inDe�nition 2.48, which is residual by Proposition 2.49. It follows thatM★

𝐴,𝑔
(𝑋, 𝐽 ; 𝑓 0

1
, . . . , 𝑓Λ)

andM★
𝐴,𝑔

(𝑋, 𝐽 ; 𝑓 1
1
, . . . , 𝑓Λ) are �nite sets of points with orientations andM★

𝐴,𝑔
(𝑋, 𝐽 ; 𝐹, 𝑓2, . . . , 𝑓Λ)

is an oriented 1–dimensional cobordism between them. This cobordism is compact by Gromov

compactness and the argument used in the proof in Theorem 1.4. Thus,

#M★
𝐴,𝑔 (𝑋, 𝐽 ; 𝑓

0

1
, . . . , 𝑓Λ) = #M★

𝐴,𝑔 (𝑋, 𝐽 ; 𝑓
1

1
, . . . , 𝑓Λ) .

The fact that 𝑛𝐴,𝑔 (𝑋,𝜔 ;𝛾1, . . . , 𝛾Λ) = 0 for 𝑔 � 1 is a consequence of the following analog

of [DW21, Theorem 1.6] for Fano classes.

Theorem 7.2. Let (𝑋,𝜔) be a compact symplectic 6–manifold, let 𝑓1, . . . , 𝑓Λ be a collection of
even-dimensional pseudo-cycles in general position, and let 𝐴 ∈ 𝐻2(𝑋,Z) be such that

2〈𝑐1(𝑋,𝜔), 𝐴〉 =
Λ∑︁
𝜆=1

(codim 𝑓𝜆 − 2) > 0.

For every 𝐽 ∈ J(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ) there are only �nitely many simple 𝐽–holomorphic maps repre-
senting 𝐴 and passing through im 𝑓𝜆 for every 𝜆 = 1, . . . ,Λ.

Proof. The proof is a minor variation of the proof of [DW21, Theorem 1.6]. Suppose, by contra-

diction, that there are in�nitely many distinct 𝐽–holomorphic curves 𝐶𝑘 representing 𝐴 and

passing through im 𝑓𝜆 for all 𝜆 = 1, . . . ,Λ. Here, by a 𝐽–holomorphic curve we mean the image

of a simple 𝐽–holomorphic map. Considering 𝐶𝑘 as 𝐽–holomorphic cycles, we can pass to a

subsequence which converges geometrically to a 𝐽–holomorphic cycle 𝐶∞ =
∑𝐼
𝑖=1 𝑑𝑖𝐶

𝑖
∞, see

[DW21, De�nition 4.1, De�nition 4.2, Lemma 1.9]. Here 𝑑𝑖 > 0 are integers and each 𝐶𝑖∞ is a

𝐽–holomorphic curve. Geometric convergence implies that

𝐼∑︁
𝑖=1

𝑑𝑖 [𝐶𝑖∞] = [𝐶∞] = 𝐴

and that (𝐶𝑘 )𝑘∈N converges to 𝐶∞ in the Hausdor� topology. Since these were the only two

conditions needed for the argument in the proof Theorem 1.4, the same argument shows that:

(1) 𝑑𝑖 = 1 for every 𝑖 ∈ 𝐼 ,

(2) 𝐶∞ has only one connected component,

(3) 𝐶∞ intersects every im 𝑓𝜆 , and consequently

58



(4) 𝐶∞ is embedded and unobstructed by the condition 𝐽 ∈ J★
emb

(𝑋,𝜔 ; 𝑓1, . . . , 𝑓Λ).

We will now adapt the rescaling argument from the proof of [DW21, Proposition 5.1]—

originally due to Taubes in the 4–dimensional setting [Tau96]—to the present situation. Let

𝑁 → 𝐶∞ be the normal bundle of𝐶∞ in 𝑋 . Identify a neighborhood of𝐶∞ with a neighborhood

of the zero section in 𝑁 using the exponential map. For su�ciently large 𝑘 , 𝐶𝑘 is contained

in that neighborhood and by abuse of notation we will consider 𝐶𝑘 as an exp
∗ 𝐽–holomorphic

curve in 𝑁 and 𝑓𝜆 as maps to 𝑁 .

Since the𝐶𝑘 are distinct,𝐶𝑘 ≠ 𝐶∞. For 𝜀 > 0 denote by 𝜎𝜀 : 𝑁 → 𝑁 the map which rescales

the �bers by 𝜀. Let (𝜀𝑘 )𝑘∈N be the sequence of positive numbers such that the rescaled sequence

˜𝐶𝑘 ≔ (𝜎𝜀𝑘 )−1(𝐶𝑘 )

satis�es

𝑑𝐻 ( ˜𝐶𝑘 ,𝐶∞) = 1,

where 𝑑𝐻 is the Hausdor� distance. The sequence (𝜀𝑘 )𝑘∈N converges to zero. The curves
˜𝐶𝑘 are

𝐽𝑘–holomorphic where 𝐽𝑘 ≔ 𝜎∗𝜀𝑘 exp
∗ 𝐽 . The sequence of rescaled almost complex structures

(𝐽𝑘 )𝑘∈N converges to an almost complex structure 𝐽∞ which is tamed by a symplectic form

[DW21, Proposition 3.10]. In the same way as in the proof of [DW21, Proposition 5.1] we

conclude that the sequence ( ˜𝐶𝑘 )𝑘∈N converges geometrically to a 𝐽∞–holomorphic cycle whose

support is a union of 𝐽∞–holomorphic curves
˜𝐶∞ ⊂ 𝑁 satisfying

𝑑𝐻 ( ˜𝐶∞,𝐶∞) = 1.

Since [𝐶𝑘 ] = [𝐶∞] = 𝐴 for all 𝑘 , and the bundle projection 𝜋 : 𝑁 → 𝐶∞ is 𝐽∞–holomorphic,

𝜋 induces an isomorphism
˜𝐶∞ � 𝐶∞. Let 𝜄 : 𝐶∞ → 𝑋 be the inclusion map and denote by

𝔡𝜄 the deformation operator corresponding to 𝜄, as in De�nition 2.26. By [DW21, Proposition

3.12],
˜𝐶∞ is the graph of a non-zero section 𝜉 ∈ Γ(𝐶∞, 𝑁 ) ⊂ Γ(𝐶∞, 𝜄∗𝑇𝑋 ) satisfying 𝔡𝜄𝜉 = 0. In

Proposition 7.3 below we show that there is an algebraic constraint for the values of 𝜉 at the

points of intersection of 𝐶∞ with each pseudocycle.

For every 𝜆 = 1, . . . ,Λ, denote by 𝑉𝜆 the domain of 𝑓𝜆 , and let 𝑧𝜆,𝑘 ∈ 𝐶𝑘 and 𝑥𝜆,𝑘 ∈ 𝑉𝜆 be
such that 𝑧𝜆,𝑘 = 𝑓𝜆 (𝑥𝜆,𝑘 ). After passing to a subsequence, we may assume that

lim

𝑘→∞
𝑧𝜆,𝑘 = 𝑧𝜆 ∈ 𝐶∞ and lim

𝑘→∞
𝑥𝜆,𝑘 = 𝑥𝜆 ∈ 𝑉𝜆,

and 𝑧𝜆 = 𝑓𝜆 (𝑥𝜆).

Proposition 7.3. For 𝜆 = 1, . . . ,Λ there exist 𝑣𝜆 ∈ 𝑇𝑧𝜆𝐶∞ and𝑤𝜆 ∈ 𝑇𝑥𝜆𝑉𝜆 such that

(7.4) 𝜉 (𝑧𝜆) + d𝑧𝜆 𝜄 · 𝑣𝜆 = d𝑥𝜆 𝑓𝜆 ·𝑤𝜆 .

Equation (7.4) can be understood as the limit as 𝑘 → ∞ of the condition that 𝐶𝑘 intersects

each of the im 𝑓𝜆 . The proof is deferred to the end of this section. We will now show that

Proposition 7.3 implies Theorem 7.2. Let𝑔 be the genus of𝐶∞, so that the embedding 𝜄 : 𝐶∞ → 𝑋

corresponds to an element inM★
𝐴,𝑔,Λ(𝑋, 𝐽 ). Since 𝐽 ∈ J★

emb
(𝑋,𝜔, 𝑓1, . . . , 𝑓Λ),
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(1) the derivative of evΛ : M
★
𝐴,𝑔,Λ(𝑋, 𝐽 ) → 𝑋Λ

at [𝜄, 𝑧1, . . . , 𝑧Λ], and

(2) the derivative of

∏Λ
𝜆=1

𝑓𝜆 :
∏Λ
𝜆=1

𝑉𝜆 → 𝑋Λ
at

∏Λ
𝜆=1

𝑥𝜆

are transverse to each other. Since

dimM★
𝐴,𝑔,Λ(𝑋, 𝐽 ) +

Λ∑︁
𝜆=1

dim𝑉𝜆 = Λ dim𝑋,

the images of these two maps intersect trivially. Since 𝜉 ≠ 0, this contradicts the existence of 𝑣𝜆
and𝑤𝜆 satisfying (7.4). The contradiction shows that the sequence (𝐶𝑘 ) cannot exist. �

Proof of Proposition 7.3. Set 𝑧𝜆,𝑘 ≔ 𝜎−1𝜀𝑘 (𝑧𝜆,𝑘 ). After possibly passing to a further subsequence,

(7.5) lim

𝑘→∞
𝑧𝜆,𝑘 = 𝜉 (𝑧𝜆) .

Let pr𝑁 d𝑥𝜆 𝑓𝜆 : 𝑇𝑥𝜆𝑉𝜆 → 𝑁𝑧𝜆 be the projection of the derivative of 𝑓𝜆 at 𝑥𝜆 on 𝑁𝑧𝜆 ⊂ 𝑇𝑧𝜆𝑋 . We

will show that for every 𝜆 there exists𝑤𝜆 ∈ 𝑇𝑥𝜆𝑉𝜆 such that lim𝑘→∞ 𝑧𝜆,𝑘 = pr𝑁 d𝑥𝜆 𝑓𝜆 ·𝑤𝜆 .
The fact that the images of the maps (1) and (2) introduced above intersect trivially implies

that pr𝑁 d𝑥𝜆 𝑓𝜆 is injective for every 𝜆. Indeed, otherwise there would exist 𝑣 ∈ 𝑇𝑧𝜆𝐶∞ and

𝑤 ∈ 𝑇𝑥𝜆𝑉𝜆 for some 𝜆 such that

d𝑧𝜆 𝜄 · 𝑣 = d𝑥𝜆 𝑓𝜆 ·𝑤,

violating the above transversality condition. Fix a trivialization of 𝑁 in a neighborhood of 𝑧𝜆
and a chart centered at 𝑥𝜆 in 𝑉𝜆 . Denoting by pr𝑁 the projection on the �ber 𝑁𝑧𝜆 in the given

trivialization, the Taylor expansion gives us

pr𝑁𝑧𝜆,𝑘 = pr𝑁 𝑓𝜆 (𝑥𝜆,𝑘 ) = pr𝑁 d𝑥𝜆 𝑓𝜆 (𝑥𝜆,𝑘 − 𝑥𝜆) +𝑂
(
|𝑥𝜆,𝑘 − 𝑥𝜆 |2

)
.

Since pr𝑁 d𝑥𝜆 𝑓𝜆 is injective, there is a constant 𝑐 > 0 such that

|𝑥𝜆,𝑘 − 𝑥𝜆 | 6 𝑐 |pr𝑁𝑧𝜆,𝑘 | 6 𝑐𝜀𝑘 .

Thus, after passing to a subsequence, we may assume that the sequence 𝜀−1
𝑘
(𝑥𝜆,𝑘 −𝑥𝜆) converges

to a limit𝑤𝜆 ∈ 𝑇𝑥𝜆𝑉𝜆 . By construction,

lim

𝑘→∞
𝑧𝜆,𝑘 = lim

𝑘→∞
pr𝑁𝑧𝜆,𝑘 = pr𝑁 d𝑥𝜆 𝑓𝜆 ·𝑤𝜆 .

Comparing this with (7.5), we see that for every 𝜆 there exists 𝑣𝜆 ∈ 𝑇𝑧𝜆𝐶∞ such that (7.4)

holds. �

A Transversality for evaluation maps

Throughout this section, (𝑋,𝜔) is a symplectic manifold of dimension dim𝑋 > 6 and J(𝑋,𝜔)
denotes the space of almost complex structures on 𝑋 compatible with 𝜔 .
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De�nition A.1. Let Λ ∈ N. Given a partition into nonempty pairwise disjoint subsets

{1, 2, . . . ,Λ} = 𝐼1 t . . . t 𝐼𝑘 with 𝑘 < Λ,

the generalized diagonal associated with the partition is the submanifold Δ ⊂ 𝑋Λ
consisting of

the points (𝑥1, . . . , 𝑥Λ) such that for every pair of indices 𝛼, 𝛽 ∈ 𝐼𝑖 we have 𝑥𝛼 = 𝑥𝛽 . •

Generalized diagonals are partially ordered by inclusion and each point of𝑋Λ
which belongs

to a generalized diagonal belongs to a unique one which is minimal with respect to the partial

order.

Proposition A.2. Let 𝑉 be a manifold and let 𝑓 : 𝑉 → 𝑋Λ be a map which is transverse to every
generalized diagonal. Denote by J★(𝑋,𝜔 ; 𝑓 ) the set of all 𝐽 ∈ J★(𝑋,𝜔) such that

(1) every simple 𝐽–holomorphic map is unobstructed, and

(2) for every 𝐴 ∈ 𝐻2(𝑋,Z) and 𝑔 ∈ N0, the evaluation map from the Λ–pointed moduli space
(cf. De�nition 2.41)

ev : M★
𝐴,𝑔,Λ(𝑋, 𝐽 ) → 𝑋Λ

is transverse to 𝑓 .

The set J★(𝑋,𝜔 ; 𝑓 ) is residual in 𝐽 ∈ J★(𝑋,𝜔).

Proof. The proof that condition (1) is generic is a standard application of the Sard–Smale theorem

[OZ09, Theorem 1.2], [IP18, Proposition A.4], [MS12, Sections 3.2 and 6.3]. Below we outline

this proof and adapt it to show that condition (2) is generic.

Let (Σ, 𝑗0) be a closed Riemann surface of genus 𝑔, and let 𝐴 ∈ 𝐻2(𝑋,Z). Denote by

𝑊
1,𝑝

inj
(Σ, 𝑋 ;𝐴) the subset of𝑊 1,𝑝 (Σ, 𝑋 ) consisting of functions 𝑢 : Σ → 𝑋 which represent 𝐴

and are somewhere injective in the sense that there exist 𝑧0 ∈ Σ and 𝛿 > 0 such that for all

𝑧 ∈ Σ
dist𝑋 (𝑢 (𝑧0), 𝑢 (𝑧)) > 𝛿distΣ (𝑧0, 𝑧) .

A 𝐽–holomorphic map is somewhere injective if and only if it is simple [MS12, Proposition 2.5.1].

Given a slice S ⊂ J(Σ) for the action of Di�0(Σ) on J(Σ) passing through 𝑗0, set

X =𝑊
1,𝑝

inj
(Σ, 𝑋 ;𝐴) ×S

and letE → X be a Banach vector bundle whose �ber over (𝑢, 𝑗) is the space 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑇𝑋 )
de�ned using the complex structure 𝑗 .

Let 𝑠 : J(𝑋,𝜔) ×X →E be a section given by 𝑠 (𝐽 ,𝑢, 𝑗) = 𝜕𝐽 (𝑢, 𝑗). The following hold; see,
for example, [MS12, Section 3.2]:

• this section is Fredholm,

• it is transverse to the zero section, therefore

• 𝑠−1(0) is a submanifold ofX; in particular, it is a Banach manifold, and
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• the universal moduli spaceM★
𝐴,𝑔

(𝑋,𝜔) can be covered by a countable number of subman-

ifolds of the form 𝑠−1(0), for di�erent choices of (Σ, 𝑗0).

The projection 𝜋 : 𝑠−1(0) → J(𝑋,𝜔) is a Fredholm map of index vdimM★
𝐴,𝑔

(𝑋, 𝐽 ); in fact, the

kernel and cokernel of d𝜋𝑢,𝑗 are isomorphic to the kernel and cokernel of d𝑢,𝑗 𝜕𝐽 , and therefore

�nite-dimensional. It follows from the implicit function theorem that if 𝐽 is a regular value of

this map, the preimage

𝜋−1(𝐽 ) = M★
𝐴,𝑔 (𝑋, 𝐽 )

is a manifold of dimension vdimM★
𝐴,𝑔

(𝑋, 𝐽 ) and every map inM★
𝐴,𝑔

(𝑋, 𝐽 ) is unobstructed. Since
𝜋 : 𝑠−1(0) → J(𝑋,𝜔) is a Fredholm map between separable Banach manifolds, the Sard–Smale

theorem implies that the set of regular values of 𝜋 is residual in J(𝑋,𝜔). This shows that
condition (1) holds for a generic 𝐽 .

Using a similar argument, we will show for a generic 𝐽 , the evaluation map

ev : M★
𝐴,𝑔,Λ(𝑋, 𝐽 ) → 𝑋Λ

is transverse to 𝑓 . With the notation introduced above, consider the Fredholm map

𝑆 : J(𝑋,𝜔) ×X × ΣΛ →E × 𝑋Λ

𝑆 (𝐽 , (𝑢, 𝑗), 𝑧1, . . . , 𝑧Λ) = (𝑠 (𝐽 ,𝑢, 𝑗), 𝑢 (𝑧1), . . . , 𝑢 (𝑧Λ)) .

We will show that 𝑆 is transverse to the map

(A.3) zero section × 𝑓 : X ×𝑉 →E × 𝑋Λ.

Since 𝑠 is transverse to the zero sectionX →E, it su�ces to show thatwhenever (𝐽 , (𝑢, 𝑗), 𝑧1, . . . , 𝑧Λ)
and 𝑥 ∈ 𝑉 satisfy

𝑠 (𝐽 ,𝑢, 𝑗) = 0 and (𝑢 (𝑧1), . . . , 𝑢 (𝑧Λ)) = 𝑓 (𝑥),

then

im d𝑆 + im d𝑥 𝑓 = 𝑇𝑓 (𝑥)𝑋
Λ =

Λ⊕
𝑖=1

𝑇𝑢 (𝑧𝑖 )𝑋 .

Here d𝑆 denotes the projection on𝑇𝑓 (𝑥)𝑋
Λ
of the derivative of 𝑆 at (𝐽 , (𝑢, 𝑗), 𝑧1, . . . , 𝑧Λ) and d𝑥 𝑓

is the derivative of 𝑓 at 𝑥 . The variation of 𝑆 in the direction of a vector �eld

𝜉 ∈𝑊 1,𝑝Γ(Σ, 𝑢∗𝑇𝑋 )

is

(A.4) d𝑆 (𝜉) = (𝜉 (𝑧1), . . . , 𝜉 (𝑧Λ)) .

If (𝑢 (𝑧1), . . . , 𝑢 (𝑧Λ)) does not lie on any generalized diagonal in 𝑋Λ
, we can �nd 𝜉 with any

prescribed values at 𝑧1, . . . , 𝑧Λ, and

im d𝑆 = 𝑇𝑓 (𝑥)𝑋
Λ.
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Suppose, on the other hand, that (𝑢 (𝑧1), . . . , 𝑢 (𝑧Λ)) belongs to a generalized diagonal Δ ⊂ 𝑋Λ
,

and let Δ be the minimal such diagonal. In that case, (A.4) implies that

im d𝑆 = 𝑇𝑓 (𝑥)Δ.

Since 𝑓 is transverse to Δ, we have

im d𝑆 + im d𝑥 𝑓 = 𝑇𝑓 (𝑥)Δ + im d𝑥 𝑓 = 𝑇𝑓 (𝑥)𝑋
Λ

as desired. This shows that 𝑆 is transverse to the map (A.3). It follows from the Sard–Smale

theorem that the set of 𝐽 such that 𝑆 (𝐽 , ·) is transverse to (A.3) is residual in J(𝑋,𝜔). This
completes the proof that condition (2) is generic. �

B Pseudo-Cycles

Given a collection of homology classes, we are interested in counting 𝐽–holomorphic maps

passing through cycles representing these classes. Since not every homology class is represented

by a map from a manifold, it is convenient to use the language of pseudo-cycles. We brie�y

review the theory of pseudo-cycles below; for details, see [MS12, Section 6.5; Sch99; Kah01;

Zin08].

De�nition B.1.

(1) A subset of a smooth manifold 𝑋 is said to have dimension at most 𝑘 if it is contained in

the image of a smooth map from a smooth 𝑘–dimensional manifold.

(2) A 𝑘–pseudo-cycle is a smooth map 𝑓 : 𝑉 → 𝑋 from an oriented 𝑘–dimensional manifold

𝑉 such that the closure 𝑓 (𝑉 ) is compact and the boundary of 𝑓 , de�ned by

bd(𝑓 ) ≔
⋂

𝐾⊂𝑉 compact

𝑓 (𝑉 − 𝐾),

has dimension at most 𝑘 − 2. We will use notation

codim(𝑓 ) ≔ dim(𝑋 ) − dim(𝑉 ).

(3) Two 𝑘–pseudo-cycles 𝑓𝑖 : 𝑉𝑖 → 𝑋 , for 𝑖 = 0, 1, are cobordant if there exists a smooth,

oriented (𝑘 + 1)–dimensional manifold with boundary𝑊 and a smooth map 𝐹 : 𝑊 → 𝑋

such that 𝐹 (𝑊 ) is compact, bd(𝐹 ) has dimension at most 𝑘 − 1, and

𝜕𝑊 = 𝑉1 q −𝑉0 and 𝐹 |𝑉1 = 𝑓1, 𝐹 |𝑉0 = 𝑓0.

(4) Denote by 𝐻
pseudo

𝑘
(𝑋 ) the set of equivalence classes of 𝑘–pseudo-cycles up to cobordism.

The disjoint union operation endows 𝐻
pseudo

𝑘
(𝑋 ) with the structure of an abelian group.

•
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A smooth map 𝑔 : 𝑋 → 𝑌 between two smooth manifolds induces a group homomorphism

𝑔∗ : 𝐻
pseudo

∗ (𝑋 ) → 𝐻
pseudo

∗ (𝑌 ) by composing pseudo-cycles with 𝑔. Thus, 𝐻
pseudo

∗ (·) is a functor
from the category of smooth manifolds to the category of Z–graded abelian groups.

Theorem B.2 ([Sch99; Kah01; Zin08]). There exists a natural isomorphism 𝐻
pseudo

∗ (·) � 𝐻∗(·,Z)
as functors from the category of smooth manifolds to the category of Z–graded abelian groups.

In what follows we will use this isomorphism to identify these two homology theories and

represent any class in 𝐻∗(𝑋,Z) by a pseudo-cycle.

De�nition B.3. Let𝑀 be a smooth manifold and let 𝑔 : 𝑀 → 𝑋 be a smooth map. We say that

a 𝑘–pseudo-cycle 𝑓 : 𝑉 → 𝑋 is transverse as a pseudo-cycle to 𝑔2 if

(1) there exists a smooth manifold 𝑉 𝜕 of dimension dim𝑉 𝜕 6 dim𝑉 − 2 and a smooth map

𝑓 𝜕 : 𝑉 𝜕 → 𝑋 such that bd(𝑓 ) ⊂ im 𝑓 𝜕 , and

(2) 𝑓 and 𝑓 𝜕 are transverse to 𝑔 as smooth maps from manifolds.

If𝑊 is a manifold with boundary 𝜕𝑊 , we require additionally that 𝑓 is transverse as a pseudo-

cycle to 𝑔|𝜕𝑊 : 𝜕𝑊 → 𝑋 .

Similarly, if𝑀 is a manifold without boundary and 𝐹 : 𝑊 → 𝑋 is a cobordism between two

pseudo-cycles 𝑓0 and 𝑓1, we say that 𝐹 is transverse as a pseudo-cycle cobordism to 𝑔 if

(1) there exists a smooth manifold with boundary𝑊 𝜕
of dimension dim𝑊 𝜕 6 dim𝑊 − 2

and a smooth map 𝐹 𝜕 : 𝑊 𝜕 → 𝑋 such that bd(𝐹 ) ⊂ im 𝐹 𝜕 and bd(𝑓𝑖) ⊂ im 𝐹 𝜕 |𝜕𝑊 𝜕 for

𝑖 = 0, 1,

(2) 𝐹 and 𝐹 𝜕 are transverse to 𝑔 as smooth maps from manifolds with boundary. •

Note that if 𝑓 : 𝑉 → 𝑋 be a 𝑘–pseudo-cycle and 𝑔 : 𝑊 → 𝑋 is an ℓ–pseudo-cycle, then

𝑓 × 𝑔 : 𝑉 ×𝑊 → 𝑋 2
is a (𝑘 + ℓ)–pseudo-cycle.

De�nition B.4. Let (𝑓𝜆 : 𝑉𝜆 → 𝑋 ) be a collection of pseudo-cycles indexed by a �nite set 𝐼 . We

say that (𝑓𝜆)𝜆∈𝐼 are in general position if the pseudo-cycle∏
𝜆∈𝐼

𝑓𝜆 :
∏
𝜆∈𝐼

𝑉𝜆 → 𝑋 |𝐼 |

is transverse as a pseudo-cycle to all generalized diagonals in 𝑋 |𝐼 |
; see De�nition A.1 for the

de�nition of a generalized diagonal. This is equivalent to the following condition: for every

subset 𝑆 ⊂ 𝐼 , the pseudo-cycle
∏
𝜆∈𝑆 𝑓𝜆 is transverse as a pseudo-cycle to the diagonal𝑋 ↩→ 𝑋 |𝑆 |

.

Similarly, if one of 𝑓𝜆 is a cobordism between two pseudo-cycles, then so is

∏
𝜆∈𝐼 𝑓𝜆 and we

require that it is transverse to all generalized diagonals as a pseudo-cycle cobordism. •
2McDu� and Salamon [MS12, De�nition 6.5.10] use the term weakly transverse, which we prefer to avoid,

regarding that this notion of transversality is stronger than the transversality of 𝑓 and 𝑔 as smooth maps in the

usual sense.
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Proposition B.5. Given a �nite collection of pseudo-cycles (𝑓𝜆 : 𝑉𝜆 → 𝑋 )𝜆∈𝐼 , the set{
(𝜙𝜆)𝜆∈𝐼 ∈ Di� (𝑋 ) |𝐼 | : (𝜙𝜆 ◦ 𝑓𝜆)𝜆∈𝐼 are in general position

}
is residual in Di� (𝑋 ) |𝐼 | .

Proof. The proof is similar to that of [MS12, Lemma 6.5.5]. Let us work with the group Di�𝑘 (𝑋 )
of 𝐶𝑘 di�eomorphism for any integer 𝑘 > 1; the corresponding statement for Di� (𝑋 ) follows
then using standard arguments [MS12, pp. 52–54, Remark 3.2.7]. A countable intersection

of residual sets is residual; therefore, without loss of generality, consider the case 𝑆 = 𝐼 in

De�nition B.4. De�ne the mapF : Di�𝑘 (𝑋 ) |𝐼 | ×
∏
𝜆∈𝐼 𝑉𝜆 → 𝑋 |𝐼 |

by

F((𝜙𝜆)𝜆∈𝐼 , (𝑥𝜆)𝜆∈𝐼 ) ≔ (𝜙𝜆 ◦ 𝑓𝜆 (𝑥𝜆))𝜆∈𝐼 .

Let Δ ⊂ 𝑋 |𝐼 |
be the diagonal. If we show that F is transverse to Δ, then it follows from the

Sard–Smale theorem that for all (𝜙𝜆)𝜆∈𝐼 from a residual subset of Di�𝑘 (𝑋 ) the maps

∏
𝜙𝜆 ◦ 𝑓𝜆

is transverse to Δ. (The same argument can be applied to 𝑓 𝜕
𝜆
to conclude transversality as

pseudo-cycles.) In fact, the derivative of F is surjective at every point x = ((𝜙𝜆)𝜆∈𝐼 , (𝑥𝜆)𝜆∈𝐼 ).
Without loss of generality suppose that 𝜙𝜆 = id for all 𝜆 ∈ 𝐼 . Let Vect𝑘 (𝑋 ) denote the space of
𝐶𝑘 vector �elds on 𝑋 . Given

𝝃 = (𝜉𝜆)𝜆∈𝐼 ∈
∏
𝜆∈𝐼

𝑇id Di�𝑘 (𝑋 ) =
∏
𝜆∈𝐼

Vect𝑘 (𝑋 ),

we have

dxF(𝝃 ) = (𝜉𝜆 (𝑓𝜆 (𝑥𝜆)))𝜆∈𝐼 ∈
∏
𝜆∈𝐼

𝑇𝑓𝜆 (𝑥𝜆)𝑋 .

Since for every 𝑝 ∈ 𝑋 the evaluation map Vect(𝑋 ) → 𝑇𝑝𝑋 is surjective, the map dxF is

surjective, which �nishes the proof. �

C Proof of 𝑛𝐴,𝑔 = BPS𝐴,𝑔

In this section, we outline Zinger’s proof that for a primitive Calabi–Yau class

𝑛𝐴,𝑔 (𝑋,𝜔) = BPS𝐴,𝑔 (𝑋,𝜔),

where BPS𝐴,𝑔 (𝑋,𝜔) is the Gopakumar–Vafa invariant de�ned in terms of the Gromov–Witten

invariants via (1.11). We use the same notation as in the proof of Theorem 1.5.

Given 𝐽 ∈ J★
emb

(𝑋,𝜔), every stable 𝐽–holomorphic map of arithmetic genus ℎ factors

through a 𝐽–holomorphic embedding from a smooth domain of genus 𝑔 6 ℎ. In other words,

every element ofM𝐴,ℎ (𝑋, 𝐽 ) is of the form [𝑢 ◦ 𝜑] for some [𝑢] ∈ M★
𝐴,𝑔

(𝑋, 𝐽 ) with 𝑔 6 ℎ, and
[𝜑] ∈ M [Σ],ℎ (Σ, 𝑗). Here (Σ, 𝑗) is the domain of 𝑢. Denote by (Σ̃, 𝜈, 𝑗) the domain of 𝜑 . Given

such 𝐽–holomorphic maps, let 𝑁 be the normal bundle of 𝑢 (Σ), and let

𝔡𝑁𝑢 : 𝑊 1,𝑝Γ(Σ, 𝑢∗𝑁 ) → 𝐿𝑝Ω0,1(Σ, 𝑢∗𝑁 )
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be the restriction of the operator 𝔡𝑢 = 𝔡𝑢,𝑗 ;𝐽 to the subbundle 𝑢∗𝑁 ⊂ 𝑢∗𝑇𝑋 followed by the

projection on 𝑢̃∗𝑁 . Similarly, we de�ne

𝔡𝑁𝑢̃ : 𝑊 1,𝑝Γ(Σ̃, 𝜈 ; 𝑢̃∗𝑁 ) → 𝐿𝑝Ω0,1(Σ̃, 𝑢̃∗𝑁 ) .

The spaces coker𝔡𝑁
𝑢̃
, as 𝜑 varies, play an important role in computing the contribution of maps

factoring through 𝑢 to the Gromov–Witten invariant of (𝑋,𝜔). In this case, there is a simple

description of these spaces.

First, we will see that ker𝔡𝑁𝑢 = {0} and coker𝔡𝑁𝑢 = {0}. Indeed, the Hermitian metric on

𝑢∗𝑇𝑋 induced from 𝑋 gives us a splitting 𝑢∗𝑇𝑋 = 𝑇Σ ⊕ 𝑁𝑢 , with respect to which

𝔡𝑢 =

(
𝜕𝑇Σ ∗
0 𝔡𝑁𝑢

)
;

see, for example, [DW18, Appendix A]. Since 𝑢 is unobstructed, i.e. coker𝔡𝑢 = {0}, and
index(𝑢) = 0, we have ker𝔡𝑁𝑢 = {0} and coker𝔡𝑁𝑢 = {0}.

Second, since 𝜑 : (Σ̃, 𝜈, 𝑗) → (Σ, 𝑗) has degree one, (Σ̃, 𝜈, 𝑗) has a unique irreducible com-

ponent which is mapped by 𝜑 biholomorphically to (Σ, 𝑗), and 𝜑 is constant on the other

components. In particular, 𝑢̃∗𝑁 is trivial over these components. It follows that ker𝔡𝑁
𝑢̃
� {0}

and coker𝔡𝑁
𝑢̃
is the direct sum of the corresponding spaces for the standard 𝜕–operator with

values in the trivial bundle 𝑢̃∗𝑁 over the components which are mapped to a point by 𝜑 .

In this situation, the following is a special instance of [Zin11, Theorem 1.2].

Proposition C.1.

(1) The family of vector spaces coker𝔡𝑁𝑢◦𝜑 , as [Σ̃, 𝜈, 𝑗, 𝜑] ∈ M [Σ],ℎ (Σ, 𝑗) varies, forms an oriented
orbibundle𝔒ℎ (Σ, 𝑗, 𝑢) → M [Σ],ℎ (Σ, 𝑗), called the obstruction bundle.

(2) Denoting by [M [Σ],ℎ (Σ, 𝑗)]vir the virtual fundamental class and by 𝑒 (𝔒ℎ (Σ, 𝑗, 𝑢)) the Euler
class of the obstruction bundle, we have

GW𝐴,ℎ (𝑋,𝜔) =
ℎ∑︁
𝑔=0

∑︁
[𝑢 ] ∈M★

𝐴,𝑔
(𝑋,𝐽 )

sign(Σ, 𝑗, 𝑢)〈𝑒 (𝔒ℎ (Σ, 𝑗, 𝑢)), [M [Σ],ℎ (Σ, 𝑗)]vir〉.

Pandharipande [Pan99, Section 2.3] proved that for 𝑔 ≔ 𝑔(Σ),
∞∑︁
ℎ=𝑔

〈𝑒 (𝔒ℎ (Σ, 𝑗, 𝑢)), [M [Σ],ℎ (Σ, 𝑗)]vir〉𝑡2ℎ−2 = 𝑡2𝑔−2
(
sin(𝑡/2)
𝑡/2

)
2𝑔−2

Therefore, after changing the order of summation

∑∞
ℎ=0

∑ℎ
𝑔=0 =

∑∞
𝑔=0

∑∞
ℎ=𝑔

, we obtain

∞∑︁
ℎ=0

GW𝐴,ℎ (𝑋,𝜔)𝑡2ℎ−2 =
∞∑︁
𝑔=0

𝑛𝐴,𝑔 (𝑋,𝜔)𝑡2𝑔−2
(
sin(𝑡/2)
𝑡/2

)
2𝑔−2

.

Since the numbers BPS𝐴,𝑔 (𝑋,𝜔) are uniquely determined by the Gopakumar–Vafa formula (1.11)

[BP01, Section 2], 𝑛𝐴,𝑔 (𝑋,𝜔) = BPS𝐴,𝑔 (𝑋,𝜔).
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