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Abstract

Motivated by counting pseudo-holomorphic curves in symplectic Calabi–Yau 3–folds, this

article studies a chamber structure in the space of real Cauchy–Riemann operators on a

Riemann surface, and constructs three chambered invariants associated with such operators:

𝑛Bl, 𝑛1,2, 𝑛2,1. The first of these invariants is defined by counting pseudo-holomorphic

sections of bundles whose fibres are modeled on the blow-up of C2/{±1}. The other two
are defined by counting solutions to the ADHM vortex equations. The authors believe that

𝑛1,2 and 𝑛2,1 are related to putative symplectic invariants generalizing the Pandharipande–

Thomas and rank 2 Donaldson–Thomas invariants of projective Calabi–Yau 3–folds.

1 Introduction

This article is motivated by counting pseudo-holomorphic curves in symplectic Calabi–Yau

3–folds; that is: symplectic manifolds (𝑋,𝜔) with dimR 𝑋 = 6 and c1(𝑋,𝜔) = 0. The usual

approach in symplectic geometry is through Gromov–Witten theory [LT98; FO99; Rua99; Par16].

If 𝐽 ∈ J(𝑋,𝜔) is an almost complex structure on 𝑋 tamed by 𝜔 , then the Gromov–Witten

invariant GW𝐴,𝑔 (𝑋,𝜔 ; 𝐽 ) ∈ Q is the virtual count of M𝐴,𝑔 (𝑋, 𝐽 ), the moduli space of stable

nodal 𝐽–holomorphic maps representing 𝐴 ∈ H2(𝑋 ;Z) and of genus 𝑔 ∈ N0:

GW𝐴,𝑔 (𝑋,𝜔 ; 𝐽 ) := ⟨[M𝐴,𝑔 (𝑋, 𝐽 )]vir, 1⟩.

This is an invariant ofJ(𝑋,𝜔) in the sense that GW𝐴,𝑔 (𝑋,𝜔 ; ·) is constant on paths inJ(𝑋,𝜔);
in fact: it is independent of 𝐽 because J(𝑋,𝜔) is path-connected.

In comparison, algebraic geometry abounds with curve counting theories: besides Gromov–

Witten theory [BM96; BF97; Beh97] there are various approaches using sheaf theory, e.g.,

Donaldson–Thomas theory [MNOP06a; MNOP06b] and Pandharipande–Thomas theory [PT09].

Physics also suggests the existence of other curve counting invariants such as Gopakumar–Vafa’s

BPS counts [GV98a; GV98b], whose direct mathematical construction remains elusive—despite

numerous efforts [HST01; Kat08; KL12; MT18].

The sheaf-theoretic methods used in algebraic geometry have no obvious counterpart

in symplectic geometry. Nevertheless, the authors believe that there should be symplectic

analogues of Donaldson–Thomas and Pandharipande–Thomas invariants as well as a direct

definition of Gopakumar–Vafa’s BPS count for symplectic Calabi–Yau 3–folds. This belief goes

back to [DT98; DS11] and is supported by the recent proof of the MNOP conjecture [Par23] which
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establishes an equivalence between Gromov–Witten and Donaldson/Pandharipande–Thomas

theories for projective Calabi–Yau 3–folds.

By analogy with algebraic geometry, it is expected that the symplectic analogues of these

invariants should count 𝐽–holomorphic curves (equivalently: simple 𝐽–holomorphic maps) deco-

rated with additional geometric data for generic 𝐽 ∈ J(𝑋,𝜔). In fact: interpreting Gopakumar–

Vafa’s BPS count BPS𝐴,𝑔 (𝑋,𝜔) through the lens of Gromov–Witten theory, Zinger [Zin11, Theo-

rem 1.5 and footnote 11] proved that for primitive 𝐴 ∈ H2(𝑋 ;Z) and generic 𝐽 ∈ J(𝑋,𝜔) it is
equal to the signed count of simple 𝐽–holomorphic maps

BPS𝐴,𝑔 (𝑋,𝜔) = #Msi

𝐴,𝑔 (𝑋, 𝐽 ) .

If 𝐴 is not primitive, then the signed count on the right-hand side is a only chambered invariant
of J(𝑋,𝜔): it is constant on a generic paths in J(𝑋,𝜔) that avoid the wall of failure of super-
rigidity W∞ ⊂ J(𝑋,𝜔); otherwise: multiple-cover phenomena might cause jumps [Wen19].

The wallW∞ is defined as follows. The deformation theory of a 𝐽–holomorphic curve 𝐶 ⊂ 𝑋
is governed by a differential operator 𝔡𝑁

𝐶,𝐽
: Γ(𝐶, 𝑁𝐶) → Ω0,1(𝐶, 𝑁𝐶) with 𝑁𝐶 denoting the

normal bundle of 𝐶 . This is a real Cauchy–Riemann operator in the sense that its the sum of

a C–linear Dolbeault operator and a C–anti-linear operator of order zero. A 𝐽–holomorphic

curve 𝐶 fails to be super-rigid if there is a branched cover 𝜋 :
˜𝐶 → 𝐶 such that the pull-back

𝜋∗𝔡𝑁
𝐶,𝐽

has non-trivial kernel; see Remark 3.18. The wallW∞ consists of those 𝐽 ∈ J(𝑋,𝜔) for
which there exists a 𝐽–holomorphic curve which fails to be super-rigid.

The authors envision that the putative invariants counting decorated curves take the shape

𝑁 (𝑋,𝜔) =
∑︁

𝐴∈H2 (𝑋,Z)

∞∑︁
𝑔=0

∑︁
[𝐶 ]∈Msi

𝐴,𝑔
(𝑋,𝐽 )

∞∑︁
𝑘=1

𝑛𝑘 (𝔡𝑁𝐶 ) · 𝑞𝑘𝐴

for generic 𝐽 ∈ J(𝑋,𝜔). The weights 𝑛𝑘 themselves are chambered invariants ofCR(𝑁𝐶), the
space of real Cauchy–Riemann operators on 𝑁𝐶 , and should arise from counting geometric data

associated with 𝔡𝑁
𝐶
. For example, the weight 𝑛1 for Pandharipande–Thomas theory counts pairs

(L, 𝑠) consisting of a holomorphic line bundle L over 𝐶 and a non-zero holomorphic section

𝑠; see [PT09, (4.4); PT10, §3.1; DW19, §7.4]. To obtain an invariant of J(𝑋,𝜔) from the above

ansatz the wall-crossing formulae of the 𝑛𝑘 and the wall-crossing arising from multiple-cover

phenomena need to cancel precisely.

The above ansatz is inspired by similar suggestions in the context of gauge theory in higher

dimension [DS11, §6.2; Wal13, Chapter 6; HW15; Hay17]. Along similar lines actual invariants of

3–manifolds have been obtained, e.g., in [BH98; BHK01; CLM02; Lim00; Lim03; BZ20]. More

importantly, in the context of the present article, Taubes’ Gromov invariant for symplectic

4–manifolds [Tau96] is of the above form with a judicious choice of weights.

Recently, Bai and Swaminathan [BS23] extended Taubes’ Gromov invariant to symplectic

Calabi–Yau 3–folds and homology classes of the form 2𝐴 for primitive 𝐴 ∈ H2(𝑋 ;Z)/Tor. Their

invariant BS2𝐴,𝑔 (𝑋,𝜔) ∈ Z is of the form

BS2𝐴,𝑔 (𝑋,𝜔) := #Msi

2𝐴,𝑔 (𝑋, 𝐽 ) +
𝑔∑︁
ℎ=0

∑︁
[𝐶 ]∈Msi

𝐴,ℎ
(𝑋,𝐽 )

bs2,𝑔 (𝔡𝑁𝐶,𝐽 )
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for generic 𝐽 ∈ J(𝑋,𝜔); that is: it counts 𝐽–holomorphic curves representing 2𝐴 and of

genus 𝑔 with the usual signs ±1 as well as 𝐽–holomorphic curves representing 𝐴 and of genus

ℎ ∈ {0, . . . , 𝑔}with weights bs2,𝑔 (𝔡𝑁𝐶,𝐽 ) ∈ Z. Their weight bs2,𝑔 (𝔡𝑁𝐶,𝐽 ) is defined as the intersection
number of a generic path inCR(𝑁𝐶) from 𝔡𝑁

𝐶,𝐽
to a Dolbeault operator with the wall of failure

of (2, 𝑔)–rigidityW2,𝑔. Here (2, 𝑔)–rigidity is a variant of super-rigidity obtained by considering

only branched covers 𝜋 :
˜𝐶 → 𝐶 of degree 2 and with

˜𝐶 of genus 𝑔. [BS23, Conjecture 1.10]

suggests that BS2𝐴,𝑔 (𝑋,𝜔) may agree with the virtual count of elementary clusters 𝑒2𝐴,𝑔 (𝑋,𝜔)
defined by Ionel and Parker [IP18, Theorem 8.3].

The Donaldson–Thomas and Pandharipande–Thomas invariants in algebraic geometry are

graded by𝐴 ∈ H2(𝑋 ;Z) and the Euler characteristic of the sheaves under consideration, instead
of the genus of the corresponding curves. As a consequence, to construct their symplectic

counterparts, it seems necessary to understand how generic paths in J(𝑋,𝜔) intersect the
wall of failure of super-rigidity, without assuming a genus bound—in contrast to the situations

considered by Taubes, and Bai and Swaminathan. The authors believe that these intersections

are finite and, therefore, manageable. Unfortunately, this does not follow from Wendl’s proof of

the super-rigidity conjecture [Wen19], even when combined with the techniques of geometric

measure theory used to prove similar statements in [DW21a; DIW21]. This finiteness conjecture

appears challenging to prove with current methods, reflecting fundamental gaps in present

understanding of degenerations of 𝐽–holomorphic curves to multiple covers without assuming

a genus bound.

The first result of this article is a localised version of this conjecture, simplified by considering

CR(𝑁𝐶) instead of J(𝑋,𝜔) and the wall of failure of 2–rigidity W2 =
⋃∞
𝑔=0

W2,𝑔 instead of

super-rigidity.

Theorem 1.1 (see Theorem 3.40). Let𝐶 be a closed connected Riemann surface. Let𝑉 be a complex
vector bundle over 𝐶 with

2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) = 0.

The wall of failure of 2–rigidity W2 ⊂ CR(𝑉 ) is a proper wall (in the sense of Definition 2.6); in
particular: a generic path intersectsW2 in finitely many points.

The significance of the above is that W2 is a countable union of walls W2,𝑔; therefore, a

priori, generic paths might intersect W2 in a countable dense set. The proof of Theorem 1.1

builds on ideas from [DW21a; DW23a; DIW21] and combines transversality techniques and

geometric measure theory [All72; DSS18; DSS17a; DSS20].

The remainder of this article is concerned with the construction of three chambered invari-

ants

𝑛Bl, 𝑛1,2, and 𝑛2,1

of CR(𝑉 ) with potential wall-crossing inW2 assuming that

rkC𝑉 = 2 and deg𝑉 + 𝜒 (𝐶) = 0.

These hypotheses are satisfied if 𝑉 is the normal bundle of a 2–dimensional symplectic sub-

manifold 𝐶 of a symplectic Calabi–Yau 3–fold (𝑋,𝜔). If 𝜕 is a Dolbeault operator on 𝑉 , then
it induces a holomorphic vector bundle V over 𝐶 of rank 2 with detV � 𝐾𝐶 . In algebraic
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geometry, this is referred to as a local Calabi–Yau 3–fold and it is possible to study the invariants

mentioned above for these. The chambered invariants 𝑛Bl, 𝑛1,2, and 𝑛2,1 should be regarded as

the local counterparts of the putative global invariants that motivated this article.

The chambered invariant 𝑛Bl counts pseudo-holomorphic sections of 𝑞 : OP𝑉 (−2) → 𝐶 , the

blow-up of the C2/{±1}–bundle 𝑝 : 𝑉 /{±1} → 𝐶 .

Theorem 1.2 (see Section 4). There is a chambered invariant 𝑛Bl ∈ H
0(CR(𝑉 )\W2;Z[[𝑥]]) such

that for generic 𝔡 ∈ CR(𝑉 )\W2 and generic 𝐽 ∈ 𝔡−1

∞ (𝔡) ⊂ Jr (OP𝑉 (−2))

𝑛Bl(𝔡) =
∑︁
𝑑∈N0

#MBl(𝐽 , 𝑑) · 𝑥𝑑 .

Here Jr (OP𝑉 (−2)), the space of admissible almost complex structures of OP𝑉 (−2), and the map
𝔡∞ : Jr (OP𝑉 (−2)) → CR(𝑉 ) are as explained in Section 4.2, and MBl(𝐽 , 𝑑) denotes the space of
𝐽–holomorphic sections of 𝑞 of degree 𝑑 .

This is reminiscent of the construction of Gromov–Witten invariants of fibrations in [MS12,

§8.6]. However, a substantial novel complication arises because OP𝑉 (−2) is non-compact and

there are no a priori 𝐶0
or energy bounds for 𝐽–holomorphic sections. Indeed, sequences of

𝐽–holomorphic sections can escape to infinity, introducing a non-compactness phenomenon in

MBl(𝐽 , 𝑑) different from the familiar bubbling phenomenon. At the heart of Theorem 1.2 lies an

argument that proves that this escape to infinity produces evidence for the failure of 2–rigidity;

in particular: it cannot occur if 𝔡 ∉ W2. Of course, this relies on extracting a convergent rescaled

subsequence. Since the rescaling causes the almost complex structure to degenerate, Gromov’s

compactness theorem cannot be applied. The proof uses a combination of geometric measure

theory and a twist on Radó’s theorem in complex analysis [Rad24].

The degree 𝑑 mentioned in Theorem 1.2 does relate to the genus of a branched double cover

of 𝐶 (see Remark 4.5). Therefore, 𝑛Bl might be connected to Gopakumar–Vafa’s BPS count, Bai

and Swaminathan’s invariant or, indeed, something completely different.

The chambered invariants 𝑛1,2 and 𝑛2,1 are constructed in a different way using gauge theory.

They are virtual counts of solutions of the (𝑟, 𝑘) ADHM vortex equation for (𝑟, 𝑘) = (1, 2) and
(𝑟, 𝑘) = (2, 1) respectively. For every 𝑟, 𝑘 ∈ N, the (𝑟, 𝑘) ADHM vortex equation is a system

of partial differential equations for a U(𝑘) connection and a Higgs field on a Riemann surface.

For 𝑟 = 𝑘 = 1 this is the vortex equation studied by Noguchi [Nog87], Bradlow [Bra90], and

García-Prada [Gar93]. In general, it shares many features with the vortex equation and Hitchin

equation and can be thought of as a generalization of the two. The Higgs field takes values in a

vector bundle associated with the quaternionic representation

U(𝑘) ⟳ 𝑆𝑟,𝑘 := HomC(C𝑟 ,H ⊗C C𝑘 ) ⊕ H ⊗R 𝔲(𝑘) .

This representation appears in Atiyah, Drinfeld, Hitchin, and Manin’s construction of instantons.

For 𝑟 ⩾ 2 its hyperkähler quotient is the Uhlenbeck completion of the moduli space of SU(𝑟 )
ASD instantons of charge 𝑘 ∈ N on R4

[ADHM78; DK90, §3.3]. For 𝑟 = 1 it is the 𝑘–fold

symmetric product Sym
𝑘 H [Nak99, Proposition 2.9].

The (𝑟, 𝑘) ADHM vortex equations depend on a choice of 𝔡 ∈ CR(𝑉 ) as well as an auxilliary
U(𝑘) bundle determined by its degree 𝑑 ∈ Z. For reasons that shall be explained in Section 5
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it is convenient to choose a 𝐾𝐶–valued complex symplectic form Ω : Λ2

C𝑉 → 𝐾𝐶 and restrict

attention to CR(𝑉 ,𝛾), the subspace of those real Cauchy–Riemann operators which are self-

adjoint with respect to the isomorphism 𝛾 : 𝑉 � 𝑉 ∗ ⊗C 𝐾𝐶 induced by Ω. The hypotheses
on 𝑉 guarantee the existence of Ω and that the appropriate variant of Theorem 1.1 holds; see

Theorem 3.41.

The moduli spaces M𝑟,𝑘 (𝔡, 𝑑) of solutions to the (𝑟, 𝑘) ADHM vortex equation are of vir-

tual dimension zero, but possibly plagued by reducibles and non-compactness. Morally, non-

compactness is expected to arise from pseudo-holomorphic sections of bundles with fibres

modeled on the hyperkähler quotient 𝑆𝑟,𝑘///U(𝑘) [Hay12]. If (𝑟, 𝑘) = (1, 2) or (𝑟, 𝑘) = (2, 1),
then 𝑆𝑟,𝑘///U(𝑘) = Sym

2 H and, therefore, one might expect a relation with the failure of 2–

rigidity. Indeed, in both cases, a variation of the compactness theorem in [WZ21] explained in

Appendix D confirms this expectation. In both cases, reducibles can be dealt with by appropriate

perturbations provided the genus of 𝐶 satisfies 𝑔(𝐶) ⩾ 1. The case 𝑔(𝐶) = 0 is more involved

and discussed in Section 5.

Theorem 1.3 (see Theorem 5.35). Assume that 𝑔(𝐶) ⩾ 1. There is a chambered invariant

𝑛1,2 ∈ H
0(CR(𝑉 ,𝛾)\W2,Z[[𝑥, 𝑥−1]])

such that for every 𝔡 ∈ CR(𝑉 ,𝛾)\W2

𝑛1,2(𝔡) =
∑︁
𝑑∈Z

#M1,2(𝔡, 𝑑) · 𝑥𝑑

with #M1,2(𝔡, 𝑑) denoting a virtual count ofM1,2(𝔡, 𝑑).
The count being virtual has to do with the fact M1,2(𝔡, 𝑑) is only compact and of virtual

dimension zero, but possibly obstructed and containing reducibles. The authors believe that

𝑛1,2 is the weight 𝑛2 for the putative symplectic Pandharipande–Thomas theory. In fact, if 𝔡 lies

in the chamber containing Dolbeault operators, then the correspondence between (1, 2) ADHM
vortices and stable ADHM bundles [BGM03; ÁG03; DW19, §7] and the correspondence between

stable ADHM sheaves and stable pairs [Dia12, Theorem 1.9] indicate that 𝑛1,2(𝔡) should agree

with the degree 2 part of the local Pandhariphande–Thomas invariant of 𝐶 .

There is an analogous result for the (2, 1) ADHM vortex equation, with the case 𝑔(𝐶) = 0

again being deferred to Section 5.

Theorem 1.4 (see Theorem 5.45). Assume that 𝑔(𝐶) ⩾ 1. There is a chambered invariant

𝑛2,1 ∈ H
0(CR(𝑉 ,𝛾)\W2,Z[[𝑥, 𝑥−1]])

such that for every 𝔡 ∈ CR(𝑉 ,𝛾)\W2

𝑛2,1(𝔡) =
∑︁
𝑑∈Z

#M2,1(𝔡, 𝑑) · 𝑥𝑑

with #M2,1(𝔡, 𝑑) denoting a virtual count ofM2,1(𝔡, 𝑑).
The authors believe that 𝑛2,1 is related to a putative symplectic version of Donaldson–

Thomas theory counting rank 2 instantons on symplectic Calabi–Yau 3–folds; this connection
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to 6–dimensional gauge theory is discussed in [DS11; Wal13; Hay17]. When 𝔡 is a Dolbeault

operator, 𝑛2,1(𝔡, 𝑑) has been computed in various examples in [Doa17]. The precise relation of

𝑛1,2 and 𝑛2,1 to algebro-geometric invariants of Calabi–Yau 3–folds will be explored in future

articles.

In addition to potential connections to enumerative geometry, the motivation for Theo-

rem 1.3 and Theorem 1.4 comes from gauge theory and low-dimensional topology. The (𝑟, 𝑘)
ADHM vortex equations are dimensional reductions of generalized Seiberg–Witten equations on

manifolds of dimension 3 and 4. The study of these equations has been an active area of research

starting with Taubes’s work on the compactness problem for the moduli space of flat PSL2(C)
connections [Tau13a] and subsequent work [Tau13b; HW15; Tau16; Tau17; WZ21]. The picture

emerging from this work is that the count of solutions to generalized Seiberg–Witten invariant

is not a topological invariant. This is in stark contrast to the well-studied invariants defined

using moduli spaces of instantons and Seiberg–Witten monopoles. Instead, this counts depends

on the Riemannian metric on the manifold as well as other perturbations of the equations. In

dimension 3 and 4, it is an open problem to show that in the space of such perturbations P

there is a proper wallW ⊂ P such that the count of solutions is invariant in each connected

component of P\W. Theorem 1.1, Theorem 1.3, and Theorem 1.4 establish this conjectural

picture in dimension 2 for the Seiberg–Witten equations associated with the (1, 2) and (2, 1)
ADHM representations.

Acknowledgements The authors are indebted to Jacek Rzemieniecki for a careful proofreading

of parts of this article and to Clifford Taubes for answering questions about his work on harmonic

Z2 spinors. Aleksander Doan is supported by Trinity College, Cambridge, and was a MATH+

Visiting Scholar at Humboldt-Universität zu Berlin while writing this article.

2 Chambered invariants and wall-crossing formulae

The following concept is pervasive in many areas of geometry, especially gauge theory and

symplectic topology.

Definition 2.1. Let 𝐺 be an abelian group. Let P be a topological space. A 𝐺–valued invariant
of P is an element

I ∈ H
0(P;𝐺) = Hom(𝜋0(P);𝐺) ⊂ Map(P;𝐺) . •

Of course, if P is path-connected, then H
0(P;𝐺) = 𝐺 ; therefore: a posteriori, I ∈ 𝐺 .

Typically, a choice of 𝑝 ∈ P determines an elliptic partial differential equation and I(𝑝) is
extracted from the moduli space of solutions. Here is an abstract caricature.

Example 2.2. Let M,P be a Banach manifolds. Let 𝜋 : M → P be a proper Fredholm map

of index 𝑑 ∈ N0 together with an orientation of its index bundle. Denote by ΩSO

𝑑
the oriented

bordism group (of a point) in dimension 𝑑 . There is a unique

I ∈ H
0(P; ΩSO

𝑑
) with I(𝑝) = [𝜋−1(𝑝)]

for every 𝑝 ∈ P\𝜋 (Crit(𝜋)). If M ⊂ X, then this can be promoted to I ∈ H
0(P; ΩSO

𝑑
(X)) and

combined with any 𝛼 ∈ Hom(ΩSO

𝑑
(X),𝐺) to obtain 𝛼∗I ∈ H

0(P;𝐺). ♠
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In order to implement the above in relevant geometric situations, issues with transversality,

compactness, and symmetries need to be overcome. Sometimes this is not quite possible, but

one can still obtain the following.

Definition 2.3. Let 𝐺 be an abelian group. LetP be a topological space.

(1) A 𝐺–valued chambered invariant ofP consists of a subset,W ⊂ P, the wall, and an

element

CI ∈ H
0(P\W;𝐺) .

(2) The wall-crossing formula of CI ∈ H
0(P\W;𝐺) is the equivalence class

[CI] ∈ WCF(P,W;𝐺) := coker(H0(P;𝐺) → H
0(P\W;𝐺)). •

A chambered invariant lifts to an invariant if and only if its wall-crossing formula vanishes.

This applies, in particular, to the sum of two chambered invariants with opposite wall-crossing

formulae.

The space of wall-crossing formulae WCF(P,W;𝐺) depends on the intersection behavior

ofW and paths p : [0, 1] → P. Indeed, the long exact sequence of relative cohomology induces

an isomorphism

Δ : WCF(P,W;𝐺) � ker(H1(P,P\W;𝐺) → H
1(P;𝐺))

such that

Δ( [CI]) ( [p]) = CI(p(1)) − CI(p(0)),

identifying H
1(P,P\W;𝐺) � Hom(H1(P,P\W);𝐺) via the universal coefficient theorem.

Example 2.4. Let W ⊂ P is a closed subset and a codimension 1 submanifold. Denote by 𝔬 the

coorientation local system ofW.

(1) There is a homomorphism

♯ : H
0(W;𝐺 ⊗Z 𝔬) → Hom(H1(P,P\W),𝐺) � H

1(P,P\W;𝐺)

such that if p : [0, 1] → P is a 𝐶1
path with p(0), p(1) ∉ W and transverse toW, then

(2.5) ♯(𝛼) [p] :=
∑︁

𝑡 ∈p−1 (W)
𝛼 (p(𝑡)).

This sum is finite because W is closed. Here 𝛼 is evaluated at p(𝑡) using the coorientation

ofW induced by ¤p(𝑡).

(2) IfT is a closed tubular neighborhoodW, then excision and direct inspection produce an

injective homomorphism

WCF(P,W;𝐺)
Δ

loc

↩→ WCF(T,W;𝐺) � H
0(W;𝐺 ⊗Z 𝔬) .
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(This is an elementary instance of the Thom isomorphism.) These assemble into the

commutative diagram

WCF(P,W;𝐺) H
0(W;𝐺 ⊗Z 𝔬)

H
1(P,P\W;𝐺) .

Δ
loc

Δ
♯

(3) As a consequence of the above, there is a short exact sequence

WCF(P,W;𝐺)
Δ

loc

↩→ H
0(W;𝐺 ⊗Z 𝔬)

♯
→ H

1(P;𝐺). ♠

Unfortunately, W ⊂ P rarely is a codimension 1 submanifold. The following weaker

condition is a reasonable substitute and does hold in the situation considered in this article.

Definition 2.6. Let P be a Banach manifold. A subset W ⊂ P is a proper wall in P if the

following hold:

(1) W ⊂ P is a closed subset.

(2) There are a Banach manifoldE and a Fredholm map 𝜋 : E → P of index at most −1 with

W = im𝜋.

Moreover:

(a) The map 𝜋 is essentially injective; that is: there are a Banach manifold N and a

Fredholm map 𝜈 : N →E of index at most −1 such that

𝜋 |E\ im 𝜈 : E\ im𝜈 → P\ im(𝜋 ◦ 𝜈)

is injective.

(b) The map 𝜋 is essentially proper; that is: there are a Banach manifold S and a

Fredholm map 𝜎 : S →E of index at most −1 such that

𝜋 |E\(im 𝜈∪im𝜎 ) : E\(im𝜈 ∪ im𝜎) → P\(im(𝜋 ◦ 𝜈) ∪ im(𝜋 ◦ 𝜎))

is proper. •

Proposition 2.7. Assume the situation of Definition 2.6. If p : [0, 1] → P is a 𝐶1 path with
p(0), p(1) ∉ W and transverse to 𝜋 , 𝜋 ◦ 𝜈 , and 𝜋 ◦ 𝜎 , then p∗E is a finite set and the map
p∗E → (0, 1) is injective; that is: along p (potential) wall-crossing occurs in a finite subset
{𝑡1, . . . , 𝑡𝑁 } ⊂ (0, 1).

Proof. Since p is transverse to 𝜋 , p∗E is a 0–dimensional manifold. Since p is transverse to

𝜋 ◦ 𝜈 and 𝜋 ◦ 𝜈 , it p∗E → [0, 1] is injective and proper. In particular, p∗E is compact; hence:

finite. ■

Appendix B explains the analogue of Example 2.4 ifW is a proper wall.
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3 The wall of failure of 2–rigidity

The purpose of this section is to recall (or introduce) the notion of 2–rigidity, define the wall of

failure of 2–rigidity in the space of real Cauchy–Riemann operators, and to prove that it is a

proper wall in the sense of Definition 2.6.

Much of the material in this section is similar to the discussion in [Wen19; DW23b], which

itself is inspired by [Tau96; Eft16]. The essential technical novelty is contained in establishing

properties (1) and (2.b) in Definition 2.6. This is achieved using tools from geometric measure

theory: an idea already employed in [DW21a; DIW21].

3.1 Real Cauchy–Riemann operators

Let 𝐶 be a Riemann surface. Let 𝑉 be a complex vector bundle over 𝐶 .

Definition 3.1. A real Cauchy–Riemann operator on 𝑉 is an R–linear differential operator

𝔡 : Γ(𝐶,𝑉 ) → Ω0,1(𝐶,𝑉 ) = Γ(𝐶,𝑉 ⊗C 𝐾𝐶 )

satisfying

𝔡(𝑓 · 𝑠) = 𝑠 ⊗C 𝜕𝑓 + 𝑓 · 𝔡𝑠

for every 𝑓 ∈ 𝐶∞
𝑐 (𝐶,R) and 𝑠 ∈ Γ(𝐶,𝑉 ). Here 𝐾𝐶 := HomC(𝑇𝐶,C) and 𝜕𝑓 := 1

2
(d𝑓 + 𝑖 · d𝑓 ◦ 𝑗)

with 𝑗 denoting the complex structure on 𝐶 . •
Remark 3.2. A Dolbeault operator on 𝑉 is a real Cauchy–Riemann operator 𝜕 on 𝑉 which is

also C–linear. The Koszul–Malgrange theorem [KM58] establishes a correspondence between

holomorphic vector bundlesV over 𝐶 and pairs (𝑉 , 𝜕) consisting of a complex vector bundle 𝑉

over 𝐶 and a Dolbeault operator 𝜕 on 𝑉 . If 𝔡 is a real Cauchy–Riemann operator on 𝑉 , then

𝔡 = 𝜕 + 𝔞 with 𝜕 :=
1

2

(𝔡 − 𝑖𝔡𝑖) and 𝔞 :=
1

2

(𝔡 + 𝑖𝔡𝑖).

By construction, 𝜕 is Dolbeault operator, and 𝔞 ∈ Γ(𝐶,HomC(𝑉 ,𝑉 ⊗C 𝐾𝐶 )). ♣
Proposition 3.3. The subspace

CR(𝑉 ) ⊂ Hom(Γ(𝐶,𝑉 ),Ω0,1(𝐶,𝑉 ))

of real Cauchy–Riemann operators on 𝑉 is an affine subspace modelled on

Γ(𝐶,H(𝑉 )) with H(𝑉 ) := Hom(𝑉 ,𝑉 ⊗C 𝐾𝐶 ) . ■

Remark 3.4. If𝐶 is closed, then𝔡 extends to a Fredholm operator𝔡 : 𝑊 1,2Γ(𝐶,𝑉 ) → 𝐿2Ω0,1(𝐶,𝑉 )
with

index𝔡 = 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶)

by Riemann–Roch. Here𝑊 1,2
and 𝐿2

are with respect to arbitrary (and immaterial) choices of a

Riemannian metric on 𝐶 and a Hermitian inner product and a unitary covariant derivative on

𝑉 . ♣
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Set

𝑉 †
:= HomC(𝑉 , 𝐾𝐶 ) = 𝑉 ∗ ⊗C 𝐾𝐶

and 𝐾𝐶 := HomC(𝑇𝐶,C). The isomorphism 𝐾𝐶 ⊗C 𝐾𝐶 � Λ2𝑇 ∗𝐶 ⊗ C induces (complex) perfect

pairings

(3.5) ⟨·, ·⟩ : (𝑉 † ⊗C 𝐾𝐶 ) ⊗C 𝑉 → Λ2𝑇 ∗𝐶 ⊗ C and ⟨·, ·⟩ : 𝑉 † ⊗C (𝑉 ⊗C 𝐾𝐶 ) → Λ2𝑇 ∗𝐶 ⊗ C

with respect to which

⟨𝜆 ⊗C 𝜁 , 𝑣⟩ = ⟨𝜆, 𝑣 ⊗C 𝜁 ⟩

for every 𝜆 ∈ 𝑉 †
, 𝑣 ∈ 𝑉 , and 𝜁 ∈ 𝐾𝐶 .

Definition 3.6. The adjoint of a real Cauchy–Riemann operator 𝔡 on 𝑉 is the real Cauchy–

Riemann operator 𝔡† on 𝑉 †
over 𝐶 characterised by

ˆ
𝐶

Re⟨𝔡†𝑠, 𝑡⟩ =
ˆ
𝐶

Re⟨𝑠, 𝔡𝑡⟩

for every 𝑠 ∈ Γ𝑐 (𝐶,𝑉 †) and 𝑡 ∈ Γ𝑐 (𝐶,𝑉 ). •
Proposition 3.7. The map

·† : CR(𝑉 ) → CR(𝑉 †)

is an isomorphism of affine spaces; in fact: (𝔡†)† = 𝔡 with respect to the identification (𝑉 †)† =

𝑉 ⊗C 𝐾
∗
𝐶
⊗C 𝐾𝐶 = 𝑉 . ■

The bulk of this article is concerned with the case

index𝔡 = 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) = 0.

This is equivalent to deg(𝑉 ) = deg(𝑉 †); hence: 𝑉 � 𝑉 †
.

Definition 3.8. Let 𝛾 : 𝑉 � 𝑉 †
be an isomorphism. A real Cauchy–Riemann operator 𝔡 on 𝑉

over 𝐶 is 𝛾–self-adjoint if
𝔡† = 𝔡𝛾 := (𝛾 ⊗C 1

𝐾𝐶
) ◦ 𝔡 ◦ 𝛾−1. •

Proposition 3.9. Let 𝛾 : 𝑉 � 𝑉 † be an isomorphism. The subspace

CR(𝑉 ,𝛾) ⊂ Hom(Γ(𝐶,𝑉 ),Ω0,1(𝐶,𝑉 ))

of 𝛾–self-adjoint real Cauchy–Riemann operators on 𝑉 is an affine subspace modelled on

Γ(𝐶,H(𝑉 ,𝛾)) with H(𝑉 ,𝛾) := {𝔞 ∈ H(𝑉 ) : 𝔞† = 𝔞𝛾 }.

Proof. In light of Proposition 3.3 it suffices to prove that CR(𝑉 ,𝛾) is non-empty. A moment’s

thought shows that if 𝔡 ∈ CR(𝑉 ), then 1

2
(𝔡+ (𝛾 ◦1

𝐾𝐶
)−1 ◦𝔡† ◦𝛾) is 𝛾–self-adjoint. In particular,

CR(𝑉 ,𝛾) ≠ ∅. ■
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Remark 3.10. The isomorphism 𝛾 induces an isomorphism𝑉 ⊗C 𝐾𝐶 � 𝑉
† ⊗C 𝐾𝐶 � 𝑉

∗ ⊗ Λ2𝑇 ∗𝐶 .
This, in turn, induces an isomorphism

H(𝑉 ,𝛾) � 𝑆2𝑉 ∗ ⊗ Λ2𝑇 ∗𝐶.

Here 𝑆2𝑉 ∗
denotes the second symmetric power of 𝑉 ∗

. ♣
Remark 3.11. Let 𝑋 be a Calabi–Yau 3–fold together with a choice of holomorphic volume form

𝜃 ∈ Ω3,0(𝑋,C). If 𝐶 ⊂ 𝑋 is a holomorphic curve, then 𝜌 := Re𝜃 induces an isomorphism

𝛾 : 𝑁𝐶 � 𝑁𝐶†
and the Dolbeault operator 𝜕𝑁𝐶 governing the infinitesimal deformation theory

of 𝐶 is 𝛾–self-adjoint. In fact, 𝜕𝑁𝐶 is the (formal) Hessian at 𝐶 of the (real part) of the Chern–

Simons functional Ψ mentioned in [DT98, §8].

If (𝑋, 𝐽 ) is an almost complex 3–fold with 𝑐1(𝑋, 𝐽 ) = 0, then there is a definite 3–form

𝜌 ∈ Ω3(𝑋 ) in the sense of [Don18, Definition 1]; this amounts to a reduction of structure

group along SL3(C) ↩→ GL3(C). If 𝐶 ⊂ 𝑋 is a 𝐽–holomorphic curve, then 𝜌 induces an

isomorphism 𝛾 : 𝑁𝐶 � 𝑁𝐶†
and the corresponding real Cauchy–Riemann operator 𝔡𝑁𝐶 on 𝑁𝐶

is 𝛾–self-adjoint. If 𝜌 is closed, then 𝔡𝑁𝐶 is self-adjoint and ReΨ is defined.

Typically, 𝜌 cannot be arranged to be to be closed. However, there is an ℎ–principle for

closed definite 3–forms [Don18, §4; May23, Theorem 7.2]. In particular, there is a closed definite

3–form 𝜌 ′ isotopic to 𝜌 . Unfortunately, the 𝐶0
–dense version of this ℎ–principle does not hold.

In particular, if (𝑋,𝜔) is a symplectic Calabi–Yau 3–fold, then it is not clear whether or not

a closed definite 3–form tamed by 𝜔 exists. It would be interesting to better understand this

issue. ♣

3.2 Homogeneous almost complex structures

This section reviews the correspondence between real Cauchy–Riemann operators on 𝑉 and

homogeneous almost complex structures on the total space of 𝑉 . Denote by 𝑝 : 𝑉 → 𝐶 the

projection map.

Definition 3.12. An almost complex structure 𝐽 ∈ Γ(𝑉 , End(𝑇𝑉 )) on the total space of 𝑉 is

homogeneous if:

(1) The linear maps

𝑝∗𝑉
𝜄
↩→ 𝑇𝑉 and 𝑇𝑉

𝑝∗
↠ 𝑝∗𝑇𝐶

are complex linear.

(2) For every 𝜆 ∈ R the linearmap 𝜆 : 𝑉 → 𝑉 given bymultiplicationwith 𝜆 is 𝐽–holomorphic.

•

Lemma 3.13. Denote by 𝜏 ∈ Γ(𝑉 , 𝑝∗𝑉 ) the tautological section

𝜏 (𝑣) = 𝑣 .

Let𝑊 be a vector bundle over 𝐶 . Let 𝑠 ∈ Γ(𝑉 , 𝑝∗𝑊 ). The following are equivalent:
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(1) The section 𝑠 is homogeneous; that is: for every 𝜆 ∈ R

𝜆∗𝑠 = 𝜆𝑠

with respect to the identification Γ(𝑉 , 𝜆∗𝑝∗𝑊 ) = Γ(𝑉 , 𝑝∗𝑊 ) induced by 𝑝 ◦ 𝜆 = 𝑝 .

(2) There is an 𝑠 ∈ Γ(𝑋,Hom(𝑉 ,𝑊 )) such that for every 𝑣 ∈ 𝑉

𝑠 (𝑣) = 𝑠 (𝑝 (𝑣)) (𝑣);

that is:
𝑠 ∈ im[⟨𝑝∗·, 𝜏⟩ : Γ(𝑋,Hom(𝑉 ,𝑊 )) ↩→ Γ(𝑉 , 𝑝∗𝑊 )] .

Proof. Evidently, (2) implies (1).

To prove that (1) implies (2) it suffices to consider 𝑉 = C𝑟 and𝑊 = R𝑠 , by locality. If

𝑠 ∈ 𝐶∞(𝐶 × C𝑟 ,R𝑠) is homogeneous, then

𝑠 (𝑥, 𝑣) = d(𝑥,0)𝑠 (𝑣).

Therefore, 𝑠 ∈ im⟨𝑝∗·, 𝜏⟩. ■

Lemma 3.13 and the inclusion

𝑝∗(𝐾𝐶 ⊗C 𝑉 ) ⊂ 𝑝∗ Hom(𝑇𝐶,𝑉 )
𝜄◦·◦𝑝∗
↩−−−−→ End(𝑇𝑉 )

induce an inclusion

Γ(𝐶,Hom(𝑉 ,𝑉 ⊗C 𝐾𝐶 )) ↩→ Γ(𝑉 , End(𝑇𝑉 )) .
Proposition 3.14. The subspace

Jℎ (𝑉 ) ⊂ Γ(𝑉 , End(𝑇𝑉 ))

of homogeneous almost complex structures on the total space of 𝑉 is an affine subspace modelled
on Γ(𝐶,Hom(𝑉 ,𝑉 ⊗C 𝐾𝐶 )).

Proof. Evidently, Jℎ (𝑉 ) is non-empty.

A moment’s thought shows that if 𝐽0 ∈ Jℎ (𝑉 ) and 𝔞 ∈ Γ(𝐶,Hom(𝑉 ,𝑉 ⊗C 𝐾𝐶 )), then
𝐽0 + 𝔞 ∈ Jℎ (𝑉 ).

Let 𝐽0, 𝐽 ∈ Jℎ (𝑉 ). Set𝔞 := 𝐽−𝐽0 ∈ Γ(𝑉 , End(𝑇𝑉 )). ByDefinition 3.12 (1), 𝔞 ∈ Γ(𝑉 , 𝑝∗ Hom(𝑇𝐶,𝑉 )).
Since 𝐽 2 = (𝐽0+𝔞)2

and also usingDefinition 3.12 (1), 𝔞 ∈ Γ(𝑉 , 𝑝∗(𝑉 ⊗C𝐾𝐶 )). By Definition 3.12 (2),
𝔞 is homogeneous. Therefore, by Lemma 3.13, 𝔞 ∈ Γ(𝐶,Hom(𝑉 ,𝑉 ⊗C 𝐾𝐶 )). ■

Proposition 3.15. There is an isomorphism of affine spaces

𝔡· : Jℎ (𝑉 ) → CR(𝑉 )

such that for every 𝐽 ∈ Jℎ and 𝑠 ∈ Γ(𝐶,𝑉 )

𝔡𝐽 𝑠 =
1

2
(𝑇𝑠 − 𝐽 ◦𝑇𝑠 ◦ 𝑗) ∈ Ω0,1(𝐶,𝑉 ) ⊂ Ω0,1(𝐶, 𝑠∗𝑇𝑉 );

in particular: 𝑠 ∈ ker𝔡𝐽 if and only if 𝑠 is 𝐽–holomorphic.
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Proof. Let 𝑠 ∈ Γ(𝐶,𝑉 ). Define ˜𝔡𝐽 𝑠 ∈ 𝐿2Γ(𝐶, 𝑠∗𝑇𝑉 ⊗C 𝐾𝐶 ) by the above formula.

By Definition 3.12 (1), 𝑝 is 𝐽–holomorphic. Therefore and since 𝑝 ◦ 𝑠 = id𝐶 ,
˜𝔡𝐽 𝑠 ∈ Γ(𝐶,𝑉 ⊗C

𝐾𝐶 ).
To show that

˜𝔡𝐽 is a real Cauchy–Riemann operator, by locality, it suffices to consider

𝑉 = C𝑟 . In this case, 𝑇𝑉 = 𝑝∗(𝑇𝐶 ⊕ 𝑉 ) and, by Proposition 3.14,

𝐽 =

(
𝑗 0

𝔞 𝑖

)
.

A direct computation shows that 𝔡𝐽 = 𝜕 − 1

2
𝔞.

This constructs the map 𝐽 ↦→ 𝔡𝐽 . Evidently, it is affine and its underlying linear map is the

isomorphism − 1

2
. ■

3.3 Four perspectives on 2–rigidity

The purpose of this section is to introduce the concept of 2–rigidity and present four points of

view on it. Henceforth, assume that𝐶 is closed and connected (unless said otherwise). Moreover,

choose a Hermitian metric on 𝑉 .

Proposition 3.16. Let 𝔡 be a real Cauchy–Riemann operator on 𝑉 . Let ˜𝐶 be a Riemann surface. Let
𝜋 :

˜𝐶 → 𝐶 be a holomorphic map. There is a unique real Cauchy–Riemann operator 𝜋∗𝔡 on 𝜋∗𝑉 ,
the pull-back of 𝔡 along 𝜋 , such that the diagram

Γ(𝐶,𝑉 ) Ω0,1(𝐶,𝑉 )

Γ( ˜𝐶, 𝜋∗𝑉 ) Ω0,1( ˜𝐶, 𝜋∗𝑉 )

𝔡

𝜋∗ 𝜋∗

𝜋∗𝔡

commutes.

Proof. By locality, it suffices to prove this for 𝑉 = C𝑟 . In this case, 𝜋∗𝑉 = C𝑟 and the assertion

is a consequence of the isomorphism 𝐶∞(𝐶,C𝑟 ) ⊗𝐶∞ (𝐶 ) 𝐶
∞(𝐶) � 𝐶∞(𝐶,C𝑟 ). ■

Definition 3.17. Suppose that 𝐶 is closed. A real Cauchy–Riemann operator 𝔡 on 𝑉 is 2–rigid
if for every closed, connected Riemann surface

˜𝐶 and every non-constant holomorphic map

𝜋 :
˜𝐶 → 𝐶 of degree at most two

ker𝜋∗𝔡 = 0. •

Remark 3.18. There are, of course, concepts of 𝑘–rigidity for 𝑘 ∈ N ∪ {∞}; cf. [BP01, Definition
1.6; Eft16, §1; Wen19]. Remark 3.74 contains an attempt to justify the restriction to 𝑘 = 2 in the

present article. ♣

The second perspective on 2–rigidity is a translation of the above into homogeneous almost

complex structures using the correspondence reviewed in Section 3.2.

Proposition 3.19. Let 𝐽 ∈ Jℎ (𝑉 ). Let 𝜋 :
˜𝐶 → 𝐶 be holomorphic. The following hold:

(1) 𝜋∗𝑉 ⊂ ˜𝐶 ×𝑉 is an almost complex submanifold, and 𝜋∗ 𝐽 := ( 𝑗 × 𝐽 ) |𝜋∗𝑉 is homogeneous.
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(2) 𝔡𝜋∗ 𝐽 = 𝜋
∗𝔡𝐽 .

Proof. Since 𝑝 is 𝐽–holomorphic and 𝜋 is holomorphic, 𝜋∗𝑉 ⊂ ˜𝐶 × 𝑉 is an almost complex

submanifold. Since 𝐽 is homogeneous, so is 𝜋∗ 𝐽 . This proves (1).
Let 𝑠 ∈ Γ(𝐶,𝑉 ). Inspection of the commutative diagram

𝜋∗𝑉 𝑉

˜𝐶 𝐶

𝑝∗𝜋

𝜋∗𝑝 𝑝
𝜋∗𝑠

𝜋

𝑠

reveals that

𝑇𝑝∗𝜋 ◦ (𝑇𝜋∗𝑠 − 𝜋∗ 𝐽 ◦𝑇𝜋∗𝑠 ◦ 𝑗) = (𝑇𝑠 − 𝐽 ◦𝑇𝑠 ◦ 𝑗) ◦𝑇𝜋.

This proves (2). ■

Corollary 3.20. Let 𝐽 ∈ Jℎ (𝑉 ). Set 𝔡 := 𝔡𝐽 . The following hold:

(1) If 𝜋 :
˜𝐶 → 𝐶 is holomorphic and 𝑠 ∈ ker𝜋∗𝔡, then𝑢 := (𝑝∗𝜋) ◦𝑠 :

˜𝐶 → 𝑉 is 𝐽–holomorphic.

(2) If 𝑢 :
˜𝐶 → 𝑉 is 𝐽–holomorphic, then 𝜋 := 𝑝 ◦ 𝑢 is holomorphic and 𝑠 := (id𝐶̃ , 𝑢) ∈

ker𝜋∗𝔡. ■

The above directly leads to the third perspective, since 𝐽–holomorphic maps induce 𝐽–

holomorphic cycles. This is spelled out in detail in [DW21a, §4, §5]. Here is a brief summary.

Definition 3.21. Let 𝑋 be a smooth manifold equipped with an almost complex structure 𝐽 ,

a Hermitian form 𝜎 , and the Riemannian metric 𝑔 := 𝜎 (·, 𝐽 ·). A 𝐽–holomorphic cycle is a

closed integral 2–current𝑇 ∈ Hom(Ω2

𝑐 (𝑋 ),R) which is semi-calibrated by 𝜎 and has finite mass:

M(𝑇 ) < ∞. •
Remark 3.22. The choice of a Hermitian form 𝜎 is somewhat of a red herring: if 𝜎 , 𝜎 ′ are
Hermitian forms (with respect to 𝐽 ), then𝑇 ∈ Hom(Ω2

𝑐 (𝑋 ),R) is a closed integral current which
is semi-calibrated by 𝜎 if and only if the same holds for 𝜎 ′. However, the massM(𝑇 ) depends
on 𝜎 . ♣
Remark 3.23. A 𝐽–holomorphic cycle 𝑇 with compact support supp(𝑇 ) represents a homology

class [𝑇 ] ∈ H2(𝑋,Z). If 𝑋 is the total space of 𝑉 , then H2(𝑉 ,Z) � H2(𝐶,Z) � Z is generated

by [0], the fundamental class of the zero section. Therefore, [𝑇 ] is determined by

deg(𝑇 ) := [𝑇 ]/[0] ∈ Z. ♣

Proposition 3.24. Let 𝑋 be a smooth manifold equipped with an almost complex structure 𝐽 and
a Hermitian form 𝜎 . If 𝐶 is a not necessarily closed Riemann surface and 𝑢 : 𝐶 → 𝑋 is a proper
𝐽–holomorphic map, then the closed integral 2–current 𝑇𝑢 ∈ Hom(Ω2

𝑐 (𝑋 ),R) defined by

𝑇𝑢 (𝛼) :=

ˆ
𝐶

𝑢∗𝛼
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is a 𝐽–holomorphic cycle with

M(𝑇𝑢) = 𝑇𝑢 (𝜎) and supp(𝑇𝑢) = im𝑢;

moreover, if 𝐶 is closed, then [𝑇𝑢] = 𝑢∗ [𝐶]. ■

Theorem 3.25 (De Lellis, Spadaro, and Spolaor [DSS17b; DSS18; DSS17a; DSS20]; cf. [DW21a,

Lemma 5.5]). Let 𝑋 be a smooth manifold equipped with an almost complex structure 𝐽 and a
Hermitian form 𝜎 . If 𝑇 is a 𝐽–holomorphic cycle, then there are a not necessarily closed Riemann
surface 𝐶 and a proper 𝐽–holomorphic map 𝑢 : 𝐶 → 𝑋 with 𝑇 = 𝑇𝑢 ; moreover: if supp𝑇 is
compact, then 𝐶 is closed. ■

Here is the fourth, more involved, perspective on 2–rigidity. It is based on the following

concept.

Definition 3.26. A ramified Euclidean line bundle over 𝐶 consists of:

(1) a finite subset Br(𝔩) ⊂ 𝐶 , the branching locus, and

(2) a Euclidean line bundle 𝔩 over ˚𝐶 := 𝐶\Br(𝔩)

such that:

(3) the monodromy representation 𝜇 : 𝜋1( ˚𝐶, ∗) → O(1) = {±1} restricts to a non-trivial

homomorphism on ker(𝜋1( ˚𝐶, ∗) → 𝜋1( ˚𝐶 ∪ {𝑏}, ∗)) � Z for every 𝑏 ∈ Br(𝔩). •

Remark 3.27. By Seifert–van Kampen,

𝜋1( ˚𝐶, ∗) � ⟨𝛼1, 𝛽1, · · · , 𝛼𝑔, 𝛽𝑔, 𝑥1, . . . , 𝑥𝑘 | [𝛼1, 𝛽1] · · · [𝛼𝑔, 𝛽𝑔] = 𝑥1 · · · 𝑥𝑘⟩

with 𝑔 denoting the genus of𝐶 and 𝑘 := #Br(𝔩). In particular, (3) enforces that #Br(𝔩) is even. ♣
Definition 3.28. Two ramified Euclidean line bundles 𝔩1, 𝔩2 over 𝐶 are isomorphic if Br(𝔩1) =
Br(𝔩2) and 𝔩1 � 𝔩2 as Euclidean line bundles over

˚𝐶 . •
Remark 3.29. If 𝔩1, 𝔩2 are Euclidean line bundles over

˚𝐶 , then they are isomorphic if and only

if their monodromy representations 𝜇 (𝔩𝑖) ∈ Hom(𝜋1( ˚𝐶, ∗), {±1}) or, equivalently, their first
Stiefel–Whitney classes

𝑤1(𝔩𝑖) ∈ H
1(𝐶,Z/2Z)

agree. ♣
Proposition 3.30. Let 𝔡 be a real Cauchy–Riemann operator on 𝑉 . Let 𝔩 be a ramified Euclidean
line bundle over 𝐶 . There is a unique real Cauchy–Riemann operator

𝔡𝔩 : Γ( ˚𝐶,𝑉 ⊗ 𝔩) → Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩)

on 𝑉 ⊗ 𝔩 over ˚𝐶 , the twist of 𝔡 by 𝔩, satisfying

𝔡𝔩 (𝑠 ⊗ 𝑡) = 𝔡𝑠 ⊗ 𝑡 + (𝑠 ⊗ ∇𝑡)0,1

for every 𝑠 ∈ Γ( ˚𝐶,𝑉 ) and 𝑡 ∈ Γ( ˚𝐶, 𝔩). Here ∇ denotes the unique orthogonal covariant derivative
on 𝔩.
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Proof. By locality, it suffices to consider 𝔩 = R. In this case 𝑉 ⊗ 𝔩 = 𝑉 and 𝔡𝔩 = 𝔡. ■

Remark 3.31. Evidently, the restriction of 𝔡𝔩 to Γ𝑐 ( ˚𝐶,𝑉 ⊗ 𝔩) extends to a bounded linear operator

(3.32) 𝔡𝔩 : 𝑊 1,2Γ(𝐶,𝑉 ⊗ 𝔩) → 𝐿2Ω0,1(𝐶,𝑉 ⊗ 𝔩) .

Here𝑊 1,2
and 𝐿2

are with respect to (immaterial) choices of a Riemannian metric on 𝐶 , a

Hermitian inner product and a unitary covariant derivative on 𝑉 ; and the Euclidean inner

product and unique orthogonal covariant derivative on 𝔩. In fact, 𝔡𝔩 is Fredholm; cf. Section 3.4.2.

♣
Proposition 3.33. If 𝔩 is a ramified Euclidean line bundle over 𝐶 , then the following hold:

(1) The smooth map

𝜋 :
˚
𝐶 := {(𝑥, 𝑣) ∈ 𝔩 : |𝑣 | = 1} → 𝐶

is a {±1}–principal covering map, and 𝔩 � ˚
˜𝐶 ×{±1} R.

(2) The covering map 𝜋 extends to a holomorphic map 𝜋 :
˜𝐶 → 𝐶 (unique up to unique

biholomorphism).

Moreover, every holomorphic map 𝜋 :
˜𝐶 → 𝐶 of degree two arises in this way.

Proof. Let 𝔩 be a ramified Euclidean line bundle over 𝐶 . (1) is obvious. To verify (2) it suffices to

consider the following ramified Euclidean line bundle over 𝐷 := {𝑧 ∈ C : |𝑧 | < 1}:

(3.34) 𝔪 := {(𝑧,𝑤) ∈ 𝐷̊ × C : 𝑤2 ∈ R⩾0 · 𝑧} → 𝐷̊ := 𝐷\{0}

with the Euclidean inner product ⟨(𝑧,𝑤1), (𝑧,𝑤2)⟩ := 𝑤1𝑤2𝑧
−1
. For 𝔩 = 𝔪,

˚
𝐶 = {(𝑧,𝑤) ∈ 𝐷̊ × 𝐷̊ : 𝑤2 = 𝑧} and 𝜋 (𝑧,𝑤) = 𝑤2.

Since
˚
𝐶 � 𝐷̊ via (𝑧,𝑤) ↦→ 𝑤 , the double cover 𝜋 :

˚
𝐶 � 𝐷̊ → 𝐷̊ extends to the holomorphic map

𝜋 : 𝐷 → 𝐷,𝑤 ↦→ 𝑤2
.

Let 𝜋 :
˜𝐶 → 𝐶 be a holomorphic map of degree two. Denote by Br(𝔩) ⊂ 𝐶 the set of critical

values of 𝜋 . Set ˚𝐶 := 𝐶\Br(𝔩) and ˚
˜𝐶 := 𝜋−1( ˚𝐶). The restriction 𝜋 := 𝜋 |

˚
𝐶̃

:
˚
˜𝐶 → ˚𝐶 is a double

covering; hence, a {±1}–principal covering map. The associated Euclidean line bundle

𝔩 := ( ˚
𝐶 × R)/{±1}

is a ramified Euclidean line bundle over 𝐶 with branching locus Br(𝔩). Evidently, the above
construction applied to 𝔩 yields 𝜋 :

˜𝐶 → 𝐶 . ■

Remark 3.35. Assume the situation of Proposition 3.33. Let 𝑏 ∈ Br(𝔩). The Euclidean line bundle

𝔩 determines a square root of 𝑇 ∗
𝑏
𝐶:
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(1) Set { ˜𝑏} := 𝜋−1(𝑏). Denote by O𝑏 and O ˜𝑏
the local ring of germs of holomorphic functions

at 𝑏 ∈ 𝐶 and
˜𝑏 ∈ ˜𝐶 respectively. Denote by 𝔪𝑏 ⊂ O𝑏 and 𝔪 ˜𝑏

⊂ O ˜𝑏
the maximal ideals

(of germs of holomorphic functions vanishing at 𝑏 ∈ 𝐶 and
˜𝑏 ∈ ˜𝐶 respectively). The

holomorphic map 𝜋 induces an injective ring homomorphism 𝜋∗
: O𝑏 ↩→ O ˜𝑏

satisfying

𝜋∗𝔪𝑏 = 𝔪2

˜𝑏
. Therefore,

𝑇 ∗
𝑏
𝐶 = 𝔪𝑏 ⊗O𝑏 (O𝑏/𝔪𝑏) =

𝔪𝑏

𝔪2

𝑏

�
(𝔪 ˜𝑏

𝔪2

˜𝑏

)⊗2

= (𝑇 ∗
˜𝑏

˜𝐶)⊗2.

(2) Set

(𝔩 ⊗ C(−𝑏))𝑏 := lim−−→
𝑈 ∋𝑏

𝐿∞H
0(𝑈 \{𝑏}, 𝔩 ⊗ C)

with 𝐿∞H
0
denoting bounded holomorphic sections. (In the situation discussed in the

proof of Proposition 3.33, such a section has an asymptotic expansion 𝑎0𝑧
1/2 + 𝑎1𝑧

3/2 + . . .
at 0.) (𝔩 ⊗ C(−𝑏))𝑏 is an O𝑏–module. Define the

1

2
–jet space of 𝔩 ⊗ C at 𝑏 by

𝐽
1/2

𝑏
(𝔩 ⊗ C) := (𝔩 ⊗ C(−𝑏))𝑏 ⊗O𝑏 (O𝑏/𝔪𝑏).

The canonical isomorphism 𝔩⊗2 � R induces a canonical isomorphism (𝔩⊗C(−𝑏))⊗2

𝑏
� 𝔪𝑏 .

Therefore, (𝐽 1/2

𝑏
(𝔩 ⊗ C))⊗2 � 𝑇 ∗

𝑏
𝐶 .

Of course, these constructions are related. The holomorphic map 𝜋 induces an O𝑏–module

isomorphism 𝜋∗
: (𝔩 ⊗ C)𝑏 � 𝔪 ˜𝑏

; therefore:

𝐽
1/2

𝑏
(𝔩 ⊗ C) � 𝑇 ˜𝑏

˜𝐶. ♣

Remark 3.36. The notation (𝔩 ⊗ C(−𝑏))𝑏 is motivated by Proposition A.2. ♣
Proposition 3.37. Assume the situation of Proposition 3.33. Let 𝔡 be a real Cauchy–Riemann
operator on 𝑉 . The following hold:

(1) The pull-back 𝜋∗𝔡 is {±1}–equivariant. In particular,

ker𝜋∗𝔡 = (ker𝜋∗𝔡)+ ⊕ (ker𝜋∗𝔡)−

with (·)+ and (·)− denoting the invariant and anti-invariant subspaces respectively.

(2) The isomorphism 𝜋∗
: Γ(𝐶,𝑉 ) � Γ( ˜𝐶, 𝜋∗𝑉 )+ induces an isomorphism

𝜋∗
: ker𝔡 � (ker𝜋∗𝔡)+.

(3) The inclusion 𝜋! : Γ( ˜𝐶, 𝜋∗𝑉 )− ↩→𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) induces an isomorphism

𝜋! : (ker𝜋∗𝔡)− � ker𝔡𝔩 .

Here (and in the following) ker𝔡𝔩 denotes the kernel of the extension (3.32).

17



Proof. (1) and (2) are immediate from Proposition 3.16.

A moment’s thought shows that if 𝑠 ∈ (ker𝔡)− , then its descend 𝜋!𝑠 ∈𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) and
satisfies 𝔡𝔩𝜋!𝑠 = 0; therefore, 𝜋!𝑠 ∈ ker𝔡𝔩 . Hence, 𝜋! induces an inclusion 𝜋! : (ker𝜋∗𝔡)− ↩→
ker𝔡𝔩 .

Let 𝑠 ∈ ker𝔡𝔩 . By elliptic regularity, 𝑠 ∈ Γ( ˚𝐶,𝑉 ⊗ 𝔩); indeed, for 𝐵𝑅 (𝑥) ⊂ ˚𝐶 with 𝑅 ≪ 1

|𝑠 |2(𝑥) ≲ 𝑅−2

ˆ
𝐵𝑅 (𝑥 )

|𝑠 |2.

It follows from Definition 3.26 (3) that if 𝐵𝑅 (𝑏) ⊂ 𝐶 with 𝐵𝑅 (𝑏) ∩ Br(𝔩) = {𝑏} and 𝑅 ≪ 1, then

𝑅−2

ˆ
𝜕𝐵𝑅 (𝑏 )

|𝑠 |2 ≲
ˆ
𝜕𝐵𝑅 (𝑏 )

|∇𝑠 |2,

and, therefore,

(3.38)

ˆ
𝐵𝑅 (𝑏 )

𝑑 (·, 𝑏)−2 |𝑠 |2 ≲
ˆ
𝐵𝑅 (𝑏 )

|∇𝑠 |2.

Consequently, 𝑠 ∈ 𝐿∞Γ( ˚𝐶,𝑉 ⊗ 𝔩).
Evidently, 𝜋∗𝑠 satisfies (𝜋∗𝔡) (𝜋∗𝑠) = 0 on

˚
˜𝐶 . Since 𝜋∗𝑠 ∈ 𝐿∞Γ( ˜𝐶, 𝜋∗𝑉 ), it also satisfies

(𝜋∗𝔡) (𝜋∗𝑠) = 0 in the sense of distributions. Therefore, by elliptic regularity, 𝜋∗𝑠 ∈ (ker𝜋∗𝔡)− .
This finishes the proof of (3). ■

Remark 3.39. As a consequence of (3.38),𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) =𝑊 1,2
0

Γ( ˚𝐶,𝑉 ⊗ 𝔩). ♣
To summarise the above discussion, the following four are equivalent pieces of evidence for

the failure of 2–rigidity of a real Cauchy–Riemann operator 𝔡 = 𝔡𝐽 on 𝑉 :

(1) A closed Riemann surface
˜𝐶 , a holomorphic map 𝜋 :

˜𝐶 → 𝐶 of degree at most two, and

𝑠 ∈ ker𝜋∗𝔡\{0}.

(2) A closed Riemann surface
˜𝐶 and a 𝐽–holomorphic map 𝑢 :

˜𝐶 → 𝑉 which does not factor

through the zero section and with 𝜋 ◦ 𝑢 of degree at most two.

(3) A 𝐽–holomorphic cycle 𝑇 in 𝑉 whose support is not contained in the zero section and

with deg(𝑇 ) at most two.

(4) A ramified Euclidean line bundle 𝔩 over 𝐶 and 𝑠 ∈ ker𝔡𝔩\{0}.

3.4 W is a proper wall

Recall the standing assumption that 𝐶 is closed and connected. Henceforth, assume that

2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) = 0.

The aim of the upcoming sections is to prove that wall of failure of 2–rigidity, defined by

W :=
{
𝔡 ∈ CR(𝑉 ) : 𝔡 fails to be 2–rigid

}
,

18



is a proper wall in the sense of Definition 2.6.

Of course, CR(𝑉 ) is not a Banach manifold but an affine space modelled on the Frechet

space Γ(𝐶,H(𝑉 )); see Proposition 3.3. To rectify this, choose 𝐾 ≫ 1 and set

𝐶𝐾CR(𝑉 ) := CR(𝑉 ) +𝐶𝐾Γ(𝐶,HomC(𝑇𝐶,C)),

and similarly define 𝐶𝐾CR(𝑉 ,𝛾) and 𝐶𝐾Jℎ (𝑉 ). The results discussed so far continue to hold

with these spaces—with minimal cosmetic modifications. To ease notation, henceforth, the

prefix 𝐶𝐾 shall be omitted; in other words, CR(𝑉 ), CR(𝑉 ,𝛾), and Jℎ (𝑉 ) are redefined to be

the aforementioned spaces. With this technicality out of the way, the aim of the remainder of

this section is to prove the following.

Theorem 3.40. The wall of failure of 2–rigidity W is a proper wall in CR(𝑉 ).
The upcoming discussion also establishes the following variant.

Theorem 3.41. If𝛾 : 𝑉 � 𝑉 † is an isomorphism, thenW∩CR(𝑉 ,𝛾) is a proper wall inCR(𝑉 ,𝛾).

3.4.1 W is closed

Proposition 3.42. The wall of failure of 2–rigidityW ⊂ CR(𝑉 ) is closed.
The proof of Proposition 3.42 relies on the following.

Theorem 3.43 (Federer and Fleming [FF60, §8]; [Fed69, §4.2.17; Sim83, Theorem 27.3; Whi89]).
Let (𝑋,𝑔) be a Riemannian manifold. Let (𝑇𝑛) be a sequence of closed integral 𝑘–currents. If there
is a Λ > 0 such that

M(𝑇𝑛) ⩽ Λ,

then a subsequence of (𝑇𝑛) converges to a closed integral 𝑘–current𝑇∞ in the weak–∗–topology. ■

Proof of Proposition 3.42. Suppose that (𝔡𝑛) ∈ WN
converges to 𝔡∞ ∈ CR(𝑉 ). For 𝑛 ∈ N∪{∞}

set 𝐽𝑛 := 𝐽𝔡𝑛 . Define 𝜌
2 ∈ 𝐶∞(𝑉 ) by 𝜌2(𝑣) := |𝑣 |2 (with respect to the chosen Hermitian metric).

For every 𝑛 ∈ N choose a 𝐽𝑛–holomorphic cycle 𝑇𝑛 in 𝑉 whose support is not contained in the

zero section and with deg(𝑇𝑛) at most two; and, moreover:

max

supp𝑇𝑛
𝜌2 = 1.

Set𝑈 := {𝑣 ∈ 𝑉 : |𝑣 | < 2}. Choose a Kähler form𝜔𝐶 on𝐶 . ForΛ ≫ 1, for every𝑛 ∈ N∪{∞},

𝜔𝑛 := Λ · 𝜔𝐶 − 1

4
d(d𝜌2 ◦ 𝐽𝑛) ∈ Ω2(𝑈 )

is symplectic and tames 𝐽𝑛 |𝑈 ; that is: 𝜎𝑛 := 1

2
[𝜔𝑛 +𝜔𝑛 (𝐽𝑛 ·, 𝐽𝑛 ·)] is a Hermitian form; cf. [DW21a,

Proof of Lemma 3.6 (5)]. Since 𝑇𝑛 is 𝐽𝑛–holomorphic, M(𝑇𝑛) = 𝑇𝑛 (𝜎𝑛); therefore,

M(𝑇𝑛) = 𝑇𝑛 (𝜎𝑛) = 𝑇𝑛 (𝜔𝑛) ⩽ 2Λ⟨[𝐶], [𝜔𝐶 ]⟩.

By Theorem 3.43, after passing to a subsequence, (𝑇𝑛) converges to a closed integral 2–

current 𝑇∞ in the weak–∗–topology. Since 𝐽𝑛 → 𝐽∞ (and 𝜎𝑛 → 𝜎∞), 𝑇∞ is a 𝐽∞–holomorphic

cycle. Moreover, 𝑇∞ is of degree

deg(𝑇∞) = 𝑇∞(𝜔𝐶 ) = lim

𝑛→∞
𝑇𝑛 (𝜔𝐶 ) = lim

𝑛→∞
deg(𝑇𝑛)
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at most two. By the monotonicity formula (cf. [DW21a, Lemma 5.6]), (supp𝑇𝑛) converges to
supp𝑇∞ in the Hausdorff distance; hence: the support of𝑇∞ is not contained in the zero section.

Therefore, 𝔡∞ ∈ W. ■

3.4.2 Fredholm extensions and index formulae

This section provides an elementary and self-contained proof of the following result and its

higher regularity analogue Theorem 3.58. Of course, these results could be derived from [Wen19,

Theorem 4.1] or [DW23b, Proposition 2.8.6]. They are needed in the construction of the Fredholm

maps 𝜋 , 𝜈 , and 𝜎 in Definition 2.6.

Theorem 3.44. If 𝔡 is a real Cauchy–Riemann operator on 𝑉 and 𝔩 is a ramified Euclidean line
bundle over 𝐶 , then 𝔡𝔩 : 𝑊 1,2Γ(𝐶,𝑉 ⊗ 𝔩) → 𝐿2Ω0,1(𝐶,𝑉 ⊗ 𝔩) is Fredholm with

index𝔡𝔩 = −#Br(𝔩) · rkC𝑉 .

Remark 3.45. Theorem 3.44 assumes 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) = 0. The operator 𝔡𝔩 continues to be

Fredholm if this assumption is dropped, but index𝔡𝔩 = 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) − #Br(𝔩) · rkC𝑉 ;

see Theorem A.1. ♣

Throughout the remainder of the section, assume the situation of Theorem 3.44.

Proposition 3.46. 𝔡𝔩 is left semi-Fredholm; that is: dim ker𝔡𝔩 < ∞ and im𝔡𝔩 ⊂ 𝐿2Ω0,1(𝐶,𝑉 ⊗ 𝔩)
is closed.

Proof. If ∇ is the unitary covariant derivative on𝑉 ⊗ 𝔩 from Proposition 3.30, then, by the Kähler

identities,

2(∇0,1)∗∇0,1 = ∇∗∇ − 𝑖Λ𝐹∇ .

Therefore,

∥∇𝑠 ∥2 = 2∥∇0,1𝑠 ∥2

𝐿2
− ⟨𝑖Λ𝐹∇𝑠, 𝑠⟩𝐿2

for every 𝑠 ∈𝑊 1,2
0

( ˚𝐶,𝑉 ⊗ 𝔩). Since 𝔡𝔩 = ∇0,1 + 𝔞 with 𝔞 ∈ 𝐿∞Γ( ˚𝐶,H(𝑉 )),

∥𝑠 ∥𝑊 1,2 ≲ ∥𝔡𝔩𝑠 ∥𝐿2 + ∥𝑠 ∥𝐿2 .

By Rellich’s Theorem and (3.38),𝑊
1,2

0
Γ( ˚𝐶,𝑉 ⊗ 𝔩) ↩→ 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩) is compact. Therefore,

by [BS18, Lemma 4.3.9], it follows that 𝔡𝔩 is left-semi-Fredholm. ■

Consider the extension

𝔡𝔩
𝐿2

: 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩) →𝑊 −1,2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩) .

Because of Remark 3.39, 𝔡
†,𝔩
𝐿2

is the adjoint of 𝔡𝔩 . In particular,

ker𝔡
†,𝔩
𝐿2
� (coker𝔡𝔩)∗.
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Therefore, it remains to prove that ker𝔡
†,𝔩
𝐿2

is finite-dimensional, and to determine index𝔡𝔩 =

dim ker𝔡𝔩 − dim ker𝔡
†,𝔩
𝐿2

(for a judicious choice of 𝔡 ∈ CR(𝑉 )). The key to the former is to

understand

coker(ker𝔡𝔩 ↩→ ker𝔡𝔩
𝐿2
) .

To this end, it is useful to extract the leading order terms at𝑏 ∈ Br(𝔩) of elements of the following

superspace of ker𝔡𝔩
𝐿2
:

dom(𝔡𝔩
max

) :=
{
𝑠 ∈ 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩) : 𝔡𝔩

𝐿2
𝑠 ∈ 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩)

}
.

This is, of course, the domain of the maximal extension of 𝔡𝔩 considered as an unbounded

operator 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩) → 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩).
Definition 3.47. Let 𝑏 ∈ Br(𝔩). Set

(𝔩 ⊗ C)𝑏 := lim−−→
𝑈 ∋𝑏

𝐿2
H

0(𝑈 \{𝑏}, 𝔩 ⊗ C)

with 𝐿2
H

0
denoting 𝐿2

holomorphic sections. (In the situation discussed in the proof of Proposi-

tion 3.33, such a section has an asymptotic expansion 𝑎0𝑧
−1/2 + 𝑎1𝑧

1/2 + . . . at 0.) (𝔩 ⊗ C)𝑏 is an
O𝑏–module. The

1

2
–residue space of 𝔩 ⊗ C at 𝑏 is

ℜ𝑏 (𝔩) := (𝔩 ⊗ C)𝑏 ⊗O𝑏 (O𝑏/𝔪𝑏) . •

Remark 3.48. The pairing (𝔩 ⊗ C(−𝑏))𝑏 ⊗O𝑏 (𝔩 ⊗ C)𝑏 → O𝑏 induces an isomorphism ℜ𝑏 (𝔩) �
(𝐽 1/2

𝑏
(𝔩 ⊗ C))∗. ♣

Proposition 3.49. Let 𝑏 ∈ Br(𝔩). There is a unique linear map

Res𝑏 : dom(𝔡𝔩
max

) → ℜ𝑏 (𝔩,𝑉 ) := ℜ𝑏 (𝔩) ⊗C 𝑉𝑏,

the residue at 𝑏, such that the following holds: if 𝑠 ∈ dom(𝔡𝔩
max

), Res𝑏 (𝑠) = [𝜌] ⊗C 𝑣 with
𝜌 ∈ 𝐿2

H
0( ˚𝑈 , 𝔩 ⊗ C) and 𝑣 ∈ 𝑉𝑏 , and 𝜏 : 𝑈 ×𝑉𝑏 → 𝑉 |𝑈 is an isometry with 𝜏𝑏 = id𝑉𝑏 , then

𝑠 − 𝜏∗𝑣 ⊗C 𝜌 ∈𝑊 1,2Γ( ˚𝑈 ,𝑉 ⊗ 𝔩) .

The proof reduces to the following model case.

Proposition 3.50. Consider the ramified Euclidean line bundle 𝔪 over 𝐷 defined in (3.34). Choose
𝑧−1/2 ∈ Γ(𝐷̊,C⊗𝔪). If 𝑠 ∈ 𝐿2Γ(𝐷̊,C𝑟 ⊗𝔪) satisfies 𝜕𝔪𝑠 ∈ 𝐿2Γ(𝐷̊,C𝑟 ⊗𝔪), then there is a unique
𝑣 ∈ C𝑟 such that

𝑠 − 𝑣 ⊗C 𝑧
−1/2 ∈𝑊 1,2( 1

2

˚𝐷,C𝑟 ⊗ 𝔪).

Here 1

2
𝐷̊ := {𝑧 ∈ C : 0 < |𝑧 | < 1/2}.

The proof relies on the following elementary observation.

Lemma 3.51. Let 𝜆 ∈ Z + 1

2
. Let 𝜙 ∈ 𝐿2((0, 1), 𝑟d𝑟 ) with (𝜕𝑟 − 𝜆/𝑟 )𝜙 ∈ 𝐿2((0, 1), 𝑟d𝑟 ).

(1) If 𝜆 = −1/2, then there is a unique 𝑎 ∈ R such that 𝜙 (𝑟 ) = 𝑎𝑟−1/2 + 𝑜 (1) as 𝑟 ↓ 0.
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(2) If 𝜆 ≠ −1/2, then 𝜙 (𝑟 ) = 𝑜 (1) as 𝑟 ↓ 0.

Proof. Set𝜓 := (𝜕𝑟 − 𝜆/𝑟 )𝜙 . There is a unique 𝑎 ∈ R such that

˜𝜙 (𝑟 ) := 𝜙 (𝑟 ) − 𝑎𝑟𝜆 =
{
𝑟𝜆
´ 𝑟

0
𝑠−(𝜆+1)𝜓 (𝑠) 𝑠d𝑠 if 𝜆 < 0

−𝑟𝜆
´

1

𝑟
𝑠−(𝜆+1)𝜓 (𝑠) 𝑠d𝑠 if 𝜆 > 0.

If 𝜆 < 0, then, by Cauchy–Schwarz and monotone convergence,

| ˜𝜙 (𝑟 ) |2 ⩽ 1

2|𝜆 |

ˆ 𝑟

0

|𝜓 (𝑠) |2 𝑠d𝑠 = 𝑜 (1) .

Moreover, if 𝜆 ⩽ −1, then 𝑎 = 0 because 𝜙 ∈ 𝐿2((0, 1), 𝑟d𝑟 ).
If 𝜆 > 0, then, by Cauchy–Schwarz, for 𝑟 ⩽ 𝜀 ⩽ 1

| ˜𝜙 (𝑟 ) |2 ⩽ 1

𝜆

ˆ 𝜀

0

|𝜓 (𝑠) |2 𝑠d𝑠 + (𝑟/𝜀)2𝜆

𝜆

ˆ
1

𝜀

|𝜓 (𝑠) |2 𝑠d𝑠 =: I(𝜀) + II(𝑟, 𝜀) .

By monotone convergence, lim𝜀↓0 I(𝜀) = 0. Evidently, lim𝑟↓0 II(𝑟, 𝜀) = 0. Therefore,
˜𝜙 (𝑟 ) = 𝑜 (1)

as 𝑟 ↓ 0. ■

Proof of Proposition 3.50. In polar coordinates 𝑧 = 𝑟𝑒𝑖𝛼 ,

𝜕𝔪 𝑓 = (𝜕𝑟 + 𝑖𝑟−1 · ∇𝔪
𝛼 ) 𝑓 · 1

2
(d𝑟 − 𝑖𝑟 · d𝛼) .

By Fubini’s theorem,

𝐿2Γ( ˚𝐷,C𝑟 ⊗ 𝔪) = 𝐿2((0, 1), 𝑟d𝑟 ;𝐿2Γ(𝑆1,C𝑟 ⊗ 𝔪)) .

By Fourier analysis,

𝑠 =
∑︁
𝜆∈Z+ 1

2

𝑠𝜆 (𝑟 )𝑒𝑖𝜆𝛼

with 𝑠𝜆, (𝜕𝑟 + 𝜆/𝑟 )𝑠𝜆 ∈ 𝐿2((0, 1), 𝑟d𝑟 ;C𝑟 ).
By Lemma 3.51,

𝑠−1/2 = 𝑣𝑟
−1/2 + 𝑜 (1),

and 𝑠𝜆 = 𝑜 (1) for every 𝜆 ≠ − 1

2
. Since 𝑣 ⊗C 𝑧

−1/2 ∈ ker 𝜕𝔪, 𝑠 may be replaced by 𝑠 − 𝑣 ⊗C 𝑧
−1/2

.

Therefore, without loss of generality 𝑠𝜆 (0) = 𝑠𝜆 (1) = 0 for every 𝜆 ∈ Z + 1

2
.

It remains to prove that 𝑠 ∈𝑊 1,2Γ(𝐷̊,C𝑟 ⊗ 𝔪). By direct computation,

2

ˆ
𝐷̊

|𝜕𝔪𝑠 |2 𝑟d𝑟d𝛼 =
∑︁
𝜆∈Z+ 1

2

ˆ
1

0

| (𝜕𝑟 + 𝜆
𝑟
)𝑠𝜆 |2𝑟d𝑟

=
∑︁
𝜆∈Z+ 1

2

ˆ
1

0

(
|𝜕𝑟𝑠𝜆 |2𝑟 + 𝜆2

𝑟
|𝑠𝜆 |2 + 𝜆𝜕𝑟 |𝑠𝜆 |2

)
d𝑟

=
∑︁
𝜆∈Z+ 1

2

ˆ
1

0

( |𝜕𝑟𝑠 |2 + |∇𝔪
𝛼 𝑠 |2) 𝑟d𝑟

=

ˆ
𝐷̊

|∇𝔪𝑠 |2 𝑟d𝑟d𝛼. ■
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Proof of Proposition 3.49. Since 𝔡 = 𝜕 + 𝔞 with |𝔞 | ∈ 𝐿∞(𝐶), the assertion follows from Proposi-

tion 3.50. ■

The maps Res𝑏 constructed in Proposition 3.49 assemble into

Res : dom(𝔡𝔩
max

) → ℜ(𝔩,𝑉 ) :=
⊕
𝑏∈𝐵

.ℜ𝑏 (𝔩,𝑉 )

The following is immediate from the construction.

Corollary 3.52. The sequence

𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) ↩→ dom(𝔡𝔩
𝐿2
) Res

↠ ℜ(𝔩,𝑉 )

is exact. In particular,
ker𝔡𝔩 = ker(Res : ker𝔡𝔩

𝐿2
→ ℜ(𝔩,𝑉 )) . ■

Proof of Theorem 3.44: Fredholm property. By Proposition 3.46 and the discussion following its

proof, to prove that 𝔡𝔩 is Fredholm it remains to establish that ker𝔡
†,𝔩
𝐿2

is finite-dimensional. This,

however, is a consequence of Corollary 3.52 sinceℜ(𝔩,𝑉 ) and ker𝔡†,𝔩 are finite-dimensional. ■

The proof of the index formula assuming 𝑉 � 𝑉 †
relies on the following.

Proposition 3.53. Let 𝛾 : 𝑉 � 𝑉 † be an isomorphism.

(1) There is a non-degenerate alternating form𝐺 ∈ Hom(Λ2ℜ(𝔩,𝑉 ),R) onℜ(𝔩,𝑉 ), the Green’s
form, such that

ˆ
𝐶

Re⟨(𝛾 ⊗ 1) ◦ 𝔡𝔩𝑠, 𝑡⟩ − Re⟨𝑠, (𝛾 ⊗ 1) ◦ 𝔡𝔩𝑡⟩ = 𝐺 (Res(𝑠), Res(𝑡))

for every 𝑠, 𝑡 ∈ dom(𝔡𝔩
𝐿2
).

(2) The subspace im(Res : ker𝔡𝔩
𝐿2

→ ℜ(𝔩,𝑉 )) ⊂ ℜ(𝔩,𝑉 ) is Lagrangian with respect to 𝐺 .

Proof. The unbounded operator (𝛾⊗1)◦𝔡𝔩 : 𝑊 1,2Γ(𝐶,𝑉 ⊗𝔩) ⊂ 𝐿2Γ(𝐶,𝑉 ⊗𝔩) → 𝐿2Ω0,1( ˚𝐶,𝑉 †⊗𝔩)
is symmetric (with respect to the perfect pairings induced by (3.5)) and closed. Its maximal

extension is (𝛾 ⊗ 1) ◦ 𝔡𝔩 : dom(𝔡𝔩
𝐿2
) ⊂ 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩) → 𝐿2Ω0,1( ˚𝐶,𝑉 † ⊗ 𝔩).

By [MS98, Exercise 2.17], the Green’s form ˆ𝐺 ∈ Hom(Λ2
dom(𝔡𝔩

𝐿2
),R) defined by

𝐺 (𝑠, 𝑡) :=

ˆ
𝐶

Re⟨(𝛾 ⊗ 1) ◦ 𝔡𝔩𝑠, 𝑡⟩ − Re⟨𝑠, (𝛾 ⊗ 1) ◦ 𝔡𝔩𝑡⟩

descends to a symplectic form on the Gelfand–Robbin quotient

dom(𝔡𝔩
𝐿2
)/𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩)

Res

� ℜ(𝔩,𝑉 ) .

This proves (1).
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It immedately follows that im(Res : ker𝔡𝔩
𝐿2

→ ℜ(𝔩,𝑉 )) is isotropic. To prove that it is

coisotropic, let 𝑣 ∈ ℜ(𝔩,𝑉 ) such that 𝐺 (𝑣,𝑤) = 0 for every 𝑤 ∈ im(Res : ker𝔡𝔩
𝐿2

→ ℜ(𝔩,𝑉 )).
Construct 𝑠0 ∈ dom(𝔡𝔩

𝐿2
) with Res(𝑠0) = 𝑣 . Since

ˆ𝐺 (𝑠0, 𝑡) =
ˆ
𝐶

Re⟨(𝛾 ⊗ 1) ◦ 𝔡𝔩𝑠0, 𝑡⟩ = 0

for every 𝑡 ∈ ker𝔡𝔩
𝐿2
, 𝔡𝔩
𝐿2
𝑠0 ∈ im𝔡𝔩 . Choose 𝑠1 ∈ 𝑊 1,2

0
Γ( ˚𝐶,𝑉 ⊗ 𝔩) with 𝔡𝔩𝑠1 = −𝔡𝔩

𝐿2
𝑠0. Finally,

𝑠 := 𝑠0 + 𝑠1 ∈ ker𝔡𝔩
𝐿2

and Res(𝑠) = Res(𝑠0) = 𝑣 . This proves (2). ■

Proof of Theorem 3.44: index formula. Choose 𝛾 : 𝑉 � 𝑉 †
. By Proposition 3.3 and Proposi-

tion 3.9, it suffices to prove the index formula for 𝔡 ∈ CR(𝑉 ,𝛾). In this case,

index𝔡𝔩 = dim ker𝔡𝔩 − dim ker𝔡𝔩
𝐿2

= − dim im(Res : ker𝔡𝔩
𝐿2

→ ℜ(𝔩,𝑉 )) = −1

2

dimℜ(𝔩,𝑉 ) = −#Br(𝔩) · rkC𝑉

by Proposition 3.53. ■

For parts of the discussion in Section 3.4.6 a higher regularity version of Theorem 3.44

is necessary. It turns out that the correct generalisation of𝑊 1,2
is not𝑊 𝑘,2

but instead the

following variant.

Definition 3.54. Denote by 𝑟 :
˚𝐶 → (0,∞) the distance to Br(𝔩). Set 𝑔cyl

:= 𝑟−2𝑔. Let 𝑘 ∈ N. For
𝑠 ∈𝑊 𝑘,2

loc
Γ( ˚𝐶,𝑉 ⊗ 𝔩) set

∥𝑠 ∥
𝑊

𝑘,2

cyl

:=

(
𝑘∑︁
ℓ=0

ˆ
𝐶

|∇ℓ𝑠 |2𝑔
cyl

vol𝑔
cyl

)1/2

.

This defines a complete norm on

𝑊
𝑘,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) :=

{
𝑠 ∈𝑊 𝑘,2

loc
Γ( ˚𝐶,𝑉 ⊗ 𝔩) : ∥𝑠 ∥

𝑊
𝑘,2

cyl

< ∞
}
.

Similarly, define𝑊
𝑘,2

cyl
Ω0,1(𝐶,𝑉 ⊗ 𝔩) using the Euclidean inner product on𝐾𝐶 induced by 𝑔cyl. •

Remark 3.55. If 𝑟 = 𝑒−𝑡 , then

d𝑟 2 + 𝑟 2
d𝛼2 = 𝑟 2(d𝑡2 + d𝛼2).

Therefore, with respect to 𝑔cyl every puncture 𝑏 ∈ Br(𝔩) corresponds to an asymptotically

cylindrical end of
˚𝐶 ♣

The following is an immediate consequence of (3.38) and conformal invariance.

Proposition 3.56.𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) =𝑊 1,2

cyl
( ˚𝐶,𝑉 ⊗ 𝔩) and 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩) = 𝐿2

cyl
Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩). ■

The bounded operator 𝔡𝔩 : 𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) → 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩) (co)restricts to a bounded

operator

𝔡𝔩
𝑊

𝑘+1,2

cyl

: 𝑊
𝑘+1,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) →𝑊

𝑘,2

cyl
( ˚𝐶,𝑉 ⊗ 𝔩).
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Proposition 3.57. For every 𝑘 ∈ {0, . . . , 𝐾} if 𝑠 ∈ 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩), 𝔡𝔩𝑠 ∈ 𝑊 𝑘,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩), and

Res(𝑠) = 0, then 𝑠 ∈𝑊 𝑘+1,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) and

∥𝑠 ∥
𝑊

𝑘+1,2

cyl

≲𝑘 ∥𝔡𝔩𝑠 ∥
𝑊

𝑘,2

cyl

+ ∥𝑠 ∥𝐿2 .

Proof. For 𝑘 = 0, this is a consequence of Proposition 3.49; in particular:

∥𝑠 ∥𝐿2

cyl

≲ ∥𝔡𝔩𝑠 ∥𝐿2

cyl

+ ∥𝑠 ∥𝐿2 .

By interior elliptic regularity and estimates, if 𝑠 ∈ 𝐿2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) and 𝔡𝔩𝑠 ∈𝑊 𝑘,2

cyl
Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩),

then 𝑠 ∈𝑊 𝑘+1,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) and

∥𝑠 ∥
𝑊

𝑘+1,2

cyl

≲𝑘 ∥𝔡𝔩𝑠 ∥
𝑊

𝑘,2

cyl

+ ∥𝑠 ∥𝐿2

cyl

.

This proves the assertion. ■

Theorem 3.58. Let 𝑘 ∈ {0, . . . , 𝐾}. If 𝔡 is a real Cauchy–Riemann operator on𝑉 and 𝔩 is a ramified
Euclidean line bundle over 𝐶 , then 𝔡𝔩

𝑊
𝑘+1,2

cyl

is Fredholm with

index𝔡𝔩
𝑊

𝑘+1,2

cyl

= −#Br(𝔩) · rkC𝑉 ;

moreover,
ker𝔡𝔩

𝑊
𝑘+1,2

cyl

= ker𝔡𝔩

and the map
coker𝔡𝔩

𝑊
𝑘+1,2

cyl

→ coker𝔡𝔩 � (ker𝔡
†,𝔩
𝐿2
)∗

is an isomorphism.

Proof. By Proposition 3.57, ker𝔡𝔩
𝑊

𝑘+1,2

cyl

= ker𝔡𝔩 ; moreover: the linear map

𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩)
𝑊

𝑘+1,2

cyl
Γ(𝐶,𝑉 ⊗ 𝔩)

→ 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩)
𝑊

𝑘,2

cyl
Ω0,1(𝐶,𝑉 ⊗ 𝔩)

induced by 𝔡𝔩 is injective. Therefore, by the Snake Lemma, the canonical map

coker𝔡𝔩
𝑊 𝑘+1

cyl

→ coker𝔡𝔩

is injective.

Since𝑊
𝑘,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) is dense in 𝐿2Γ( ˚𝐶,𝑉 ⊗ 𝔩), the map

𝑊
𝑘,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) → (ker𝔡

†,𝔩
𝐿2
)∗

is surjective. Since it factors through coker𝔡𝔩
𝑊

𝑘+1,2

cyl

→ coker𝔡𝔩 , the latter must be surjective. ■
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3.4.3 The space of ramified Euclidean line bundles

The following preparation is needed in the construction of the Banach manifoldsE, N, and S

which appear in Definition 2.6.

Definition 3.59. The space of ramified Euclidean line bundles over 𝐶 is constructed as follows:

(1) The configuration space is the smooth manifold

Conf (𝐶) :=
∐
𝑘∈N0

Conf𝑘 (𝐶) with Conf𝑘 (𝐶) := (𝐶𝑘\Δ𝑘 )/𝑆𝑘

and Δ𝑘 := {(𝑥1, . . . , 𝑥𝑘 ) ∈ 𝐶𝑘 : #{𝑥1, . . . , 𝑥𝑘 } < 𝑘}. Identify [𝑥1, . . . , 𝑥𝑘 ] ∈ Conf (𝐶) with
{𝑥1, . . . , 𝑥𝑘 }, and regard Conf (𝐶) as the space of finite subsets of 𝐶 .

(2) Denote by RamLinBun(𝐶) the set of equivalence classes of ramified Euclidean line bundles

over 𝐶 . Consider the map Br : RamLinBun(𝐶) → Conf (𝐶).

(3) For every open subset 𝑈 ⊂ 𝐶 , denote by U ⊂ Conf (𝐶) the open subset of those 𝐵 ⊂
𝑈 such that H

1(𝐶\𝑈 ,Z/2Z) → H
1(𝐶\𝐵,Z/2Z) is an isomorphism. The monodromy

representation defines an injection 𝜏𝑈 : Br
−1(U) ↩→ U×H

1(𝐶\𝑈 ,Z/2Z); cf. Remark 3.27.

(4) Equip RamLinBun(𝐶) with the coarsest topology with respect to which the maps 𝜏𝑈 are

continuous. •

Proposition 3.60. The map Br : RamLinBun(𝐶) → Conf (𝐶) is a covering map with finite fibers.
In particular, RamLinBun(𝐶) inherits the structure of a smooth manifold from Conf (𝐶).

Proof. To prove that Br is a covering map it suffices to verify that the transition maps 𝜏−1

𝑈
◦

𝜏𝑉 : (U ∩V) × H
1(𝐶\𝑈 ,Z/2Z) → (U ∩V) × H

1(𝐶\𝑉 ,Z/2Z) are continuous. This is an easy

exercise; cf. [tDie08, Proof of (3.3.2) Theorem].

Since Br
−1(𝐵) is in bijection with a subset the finite set H1(𝐶\𝐵,Z/2Z), Br has finite fibers.

■

Proposition 3.61. RamLinBun(𝐶) carries a twisted universal ramified Euclidean line bundle
in the following sense:

(1) Consider the universal punctured curve

˚C := {(𝐵, 𝑥) ∈ Conf (𝐶) ×𝐶 : 𝑥 ∉ 𝐵}.

The projection map 𝑃 :
˚C → Conf (𝐶) is a fibre bundle.

(2) Denote by {U𝑖 : 𝑖 ∈ 𝐼 } the set of open subsets U ⊂ Conf (𝐶) such that 𝑃 |U :
˚C |U → U is

trivial. SetV𝑖 := Br
−1(U). Consider Br

∗𝑃 : Br
∗ ˚C → RamLinBun(𝐶).

For every 𝑖 ∈ 𝐼 there are a Euclidean line bundle 𝔏𝑖 over Br
∗ ˚C |V𝑖

and for every ramified
Euclidean local system 𝔩 with Br(𝔩) ∈ U𝑖 an isomorphism

𝔏𝑖 | [𝔩 ]×(𝐶\Br(𝔩) ) � 𝔩

unique up to Aut(𝔩) = {±1}.
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(3) There are a Čech 2–cocycle 𝜆 ∈ Č
2({V𝑖 : 𝑖 ∈ 𝐼 }, {±1}) and, for every 𝑖, 𝑗 ∈ 𝐼 , an isomorphism

𝜙𝑖𝑗 : 𝔏𝑖 |
Br

∗ ˚C |V𝑖∩V𝑗

� 𝔏𝑗 |
Br

∗ ˚C |V𝑖∩V𝑗

such that

(Br
∗𝑃)∗𝜆𝑖 𝑗𝑘 := 𝜙𝑘𝑖 𝜙

𝑗

𝑘
𝜙𝑖𝑗 ∈ 𝐶0(Br

∗ ˚C |V𝑖∩V𝑗∩V𝑘
, {±1}).

Proof. (1) is an easy exercise.

(2) is trivial, and so is the existence of the isomorphisms in (3). A priori, these define a

cocycle
˜𝜆 ∈ Č

2({Br
∗ ˚C |V𝑖

: 𝑖 ∈ 𝐼 }, {±1}). However, since Br
∗𝑃 has connected fibres,

˜𝜆 descends

to 𝜆. ■

Remark 3.62. The use of twisted universal objects goes back (at least to) Căldăraru [Căl00]. ♣
Of course, [𝜆] ∈ Ȟ

2(RamLinBun(𝐶), {±1}) is the obstruction to {𝔏𝑖 : 𝑖 ∈ 𝐼 } gluing to

a universal ramified Euclidean line bundle 𝔏 over Br
∗ ˚C. If 𝔏 did exists, then it would be

straight-forward to construct Hilbert space bundles E, F over RamLinBun(𝐶) such that

E[𝔩 ] � E𝔩 :=𝑊 1,2Γ( ˚𝐶,𝑉 ⊗R 𝔩) and F[𝔩 ] � F𝔩 := 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗R 𝔩).

These in turn would give rise to the relative Grassmann bundle Gr𝑑 (E) of 𝑑–planes in E[𝔩 ] ,
a Banach space bundle L(E, F) of bounded linear maps from E[𝔩 ] to F[𝔩 ] , etc. Although E,
F do not exist in an untwisted sense, various objects derived from E and F do. Indeed, the

construction of these objects over V𝑖 as in Proposition 3.61 is straight-forward. The induced

2–cocycles measuring the obstruction to gluing are induced by 𝜆. Indeed, by the nature of the

objects to be constructed, these cocycles are obtained from 𝜆 via the trivial homomorphism

(·)2
: {±1} → {±1}. Therefore, the obstruction vanishes. An alternative way to understand

this is that the automorphism group Aut(𝔩) = {±1} acts trivially on Gr𝑑 (E𝔩),L(E𝔩, F𝔩), etc.

3.4.4 Failure of 2–rigidity: construction of 𝜋

Proposition 3.63. Let 𝑑 ∈ {1, 2}. Consider the Grassmann bundle Gr𝑑 (E) over RamLinBun(𝐶).
The following hold:

(1) There are a Hilbert space bundle Hom(S, F) → CR(𝑉 ) ×Gr𝑑 (E) and for every (𝔡; [𝔩,Λ]) ∈
CR(𝑉 ) × Gr𝑑 (E) canonical isomorphisms

𝜂 (𝔡;𝔩,Λ) : Hom(S, F) (𝔡;[𝔩,Λ] ) � Hom(Λ, F𝔩) .

(2) Hom(S, F) → CR(𝑉 ) × Gr𝑑 (E) has a smooth section TwistRes𝑑 such that

TwistRes𝑑 (𝔡; [𝔩,Λ]) = 𝜂−1

(𝔡;𝔩,Λ) (𝔡
𝔩 |Λ) .

(3) TwistRes𝑑 (𝔡; [𝔩,Λ]) = 0 if and only if Λ ⊂ ker𝔡𝔩 .

(4) TwistRes𝑑 intersects the zero section transversely; in particular,

E𝑑 := TwistRes
−1

𝑑
(0)

is a Banach submanifold.
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(5) The projection map 𝜋𝑑 : E𝑑 → CR(𝑉 ) is Fredholm of index

(2 − 𝑑 · rkC𝑉 ) · #Br(𝔩) − 𝑑2

at (𝔡; [𝔩,Λ]).

The extension of Proposition 3.63 to 𝑑 ∈ N does hold, but the above is sufficient for the

purpose of this article. The restriction to 𝑑 ∈ {1, 2} allows for a drastic simplification of the

proof: it can be based on the following observation instead of the the subtle results on Petri’s

condition obtained in [Wen19, Section 5].

Proposition 3.64 (cf. [Eft16, Proof of Lemma 4.4]). Let 𝔡 be a real Cauchy–Riemann operator on
𝑉 over 𝐶 . If 𝑠1, 𝑠2 ∈ ker𝔡 are linearly-independent, then

𝑈 := {𝑥 ∈ 𝐶 : 𝑠1(𝑥), 𝑠2(𝑥) are linearly-independent}

is open and dense.

Proof. Since 𝐶\𝑈 := {𝑥 ∈ 𝐶 : dimR⟨𝑠1(𝑥), 𝑠2(𝑥)⟩ ⩽ 1} is closed,𝑈 is open.

To prove that𝑈 is dense, assume (by contradiction) that 𝐶\𝑈 contains a non-empty open

subset 𝑂 . By unique continuation, neither 𝑠1 nor 𝑠2 can vanish on 𝑂 . Without loss of generality,

𝑠1(𝑥) ≠ 0 for every 𝑥 ∈ 𝑂 . Therefore and since 𝑂 ⊂ 𝐶\𝑈 𝑠2 = 𝑓 · 𝑠1. Since 𝔡𝑠1 = 𝔡𝑠2 = 0, 𝑓 is

holomorphic. In fact, 𝑓 is constant because it is R–valued. By unique continuation, 𝑠2 − 𝑓 𝑠1

vanishes on 𝐶—a contradiction. ■

Proof of Proposition 3.63. (1) and (2) are evident from the discussion in Section 3.4.3. (3) holds by

construction.

(4) asserts that for every (𝔡; [𝔩,Λ]) ∈ TwistRes
−1

𝑑
(0) the composition

𝑇𝔡CR(𝑉 ) ⊕ 𝑇[𝔩,Λ] Gr𝑑 (E)
𝑇(𝔡;[𝔩,Λ])TwistRes𝑑−−−−−−−−−−−−−→ 𝑇(𝔡;[𝔩,Λ];0) Hom(S, F) ↠ Hom(Λ, F𝔩)

is surjective. By Proposition 3.3, 𝑇𝔡CR(𝑉 ) = 𝐶𝐾Γ(𝐶,H(𝑉 )). Furthermore, 𝑇[𝔩,Λ] Gr𝑑 (E) fits
into the short exact sequence

Hom(Λ, E𝔩/Λ) � 𝑇Λ Gr𝑑 (E)𝔩 ↩→ 𝑇[𝔩,Λ] Gr𝑑 (E) ↠ 𝑇Br(𝔩)Conf (𝐶) .

Amoment’s thought shows that the above composition restricts to the map L : 𝐶𝐾Γ(𝐶,H(𝑉 )) ⊕
Hom(Λ, E𝔩/Λ) → Hom(Λ, F𝔩) defined by

L(𝔞, 𝑀)𝑠 := (𝔞 ⊗ id𝔩)𝑠 + 𝔡𝔩 (𝑀𝑠) .

Therefore, it suffices to show that L is surjective.

Since coker𝔡𝔩 � (ker𝔡
†,𝔩
𝐿2
)∗, L is surjective if and only if the map M : 𝐶𝐾Γ(𝐶,H(𝑉 )) →

(Λ ⊗ ker𝔡
†,𝔩
𝐿2
)∗ defined by

M(𝔞) (𝑠 ⊗ 𝑡) := ⟨𝑡, (𝔞 ⊗ id𝔩)𝑠⟩
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is surjective. M is surjective if and only if the Petri map 𝜛 : Λ ⊗ ker𝔡
†,𝔩
𝐿2

→ 𝐿1Γ( ˚𝐶,𝑉 ⊗ 𝑉 †)
defined by

𝜛(𝑠 ⊗ 𝑡) (𝑥) := 𝑠 (𝑥) ⊗ 𝑡 (𝑥)
is injective. Since 𝑑 ∈ {1, 2}, by Proposition 3.64, 𝜛 is injective. This proves (4).

To prove (5), consider the projection 𝜋𝑑 : E𝑑 → CR(𝑉 ) × Conf (𝐶). Evidently, 𝜋𝑑 is

Fredholm if and only if 𝜋𝑑 is, and

index𝑇(𝔡;[𝔩,Λ] )𝜋𝑑 = index𝑇(𝔡;[𝔩,Λ] )𝜋𝑑 + dim𝑇Br(𝔩)Conf (𝐶) = index𝑇(𝔡;[𝔩,Λ] )𝜋𝑑 + 2#Br(𝔩) .

The Snake Lemma applied to

𝑇(𝔡;[𝔩,Λ] )E𝑑 𝐶𝐾Γ(𝐶,H(𝑉 )) ⊕ 𝑇[𝔩,Λ] Gr𝑑 (E) Hom(Λ, F𝔩)

𝐶𝐾Γ(𝐶,H(𝑉 )) ⊕ 𝑇Br(𝔩)Conf (𝐶) 𝐶𝐾Γ(𝐶,H(𝑉 )) ⊕ 𝑇Br(𝔩)Conf (𝐶)

𝑇(𝔡;[𝔩,Λ])𝜋

yields an exact sequence

ker𝑇(𝔡;[𝔩,Λ] )𝜋𝑑 ↩→ Hom(Λ, E𝔩/Λ)
𝔡𝔩◦·−−−→ Hom(Λ, F𝔩) ↠ coker𝑇(𝔡;[𝔩,Λ] )𝜋𝑑 .

By Theorem 3.44, 𝔡𝔩 is Fredholm of index −#Br(𝔩) · rkC𝑉 . Therefore, 𝔡
𝔩 ◦ · : Hom(Λ, E𝔩/Λ) →

Hom(Λ, F𝔩) is Fredholm of index 𝑑 · (−#Br(𝔩) · rkC𝑉 − 𝑑). This proves (5). ■

Set

E :=E1 and 𝜋 := 𝜋1.

The wall of failure of 2–rigidity is parameterised as

W = im𝜋.

3.4.5 Failure of injectivity: construction of 𝜈

Here is the proof that 𝜋 is essentially injective; that is: Definition 2.6 (2.a) holds. The map

𝜋 : E → CR(𝑉 ) fails to be injective if there are distinct (𝔡, [𝔩𝑖 ,Λ𝑖]) ∈ E (𝑖 = 1, 2). If 𝔩1 = 𝔩2 =: 𝔩,

then (𝔡, [𝔩,Λ1 + Λ2]) ∈ E2. The following describes these failures of injectivity.

Proposition 3.65. Consider the flag manifold bundle Fl1,2(E) over RamLinBun(𝐶). For 𝑑 ∈ {1, 2}
consider the projection maps 𝑝𝑑 : Fl1,2(E) → Gr𝑑 (E). Set

N2
:= (id × 𝑝2)∗E2 ⊂ CR(𝑉 ) × Fl1,2(E) .

The map 𝜈2 : N2 →E1 induced by 𝑝1 is Fredholm of index

− rkC𝑉 · #Br(𝔩) − 2.

Proof. The map 𝜌 : N2 → E2 induced by 𝑝2 is Fredholm of index 1. Therefore, by Proposi-

tion 3.63, 𝜋2 ◦ 𝜌 = 𝜋1 ◦ 𝜈2 is Fredholm of index (2 − 2 · rkC𝑉 ) · #Br(𝔩) − 3. This implies the

assertion. ■
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Failures of injectivity with 𝔩1 ̸� 𝔩2 are described as follows.

Proposition 3.66. Set RamLinBun
(2)

:= RamLinBun
2\Δ (with Δ denoting the diagonal). Con-

sider pr
∗
1

Gr1(E) × pr
∗
2

Gr1(E) over RamLinBun
(2) . Denote by TwistRes

(2)
1

the smooth section of
pr

∗
1

Hom(S, F) ⊕ pr
∗
2

Hom(S, F) → CR(𝑉 ) × pr
∗
1

Gr1(E) × pr
∗
2

Gr1(E) induced by TwistRes1.
The following hold:

(1) TwistRes
(2)
1

(𝔡; [𝔩1,Λ1]; [𝔩2,Λ2]) = 0 if and only if Λ𝑖 ⊂ ker𝔡𝔩𝑖 (𝑖 = 1, 2).

(2) TwistRes
(2)
1

intersects the zero section transversely.

(3) The projection 𝜋 (2)
1

: E
(2)
1

:= (TwistRes
(2)
1

)−1(0) → CR(𝑉 ) is Fredholm of index

(2 − rkC𝑉 ) · (#Br(𝔩1) + #Br(𝔩1)) − 2

at (𝔡; [𝔩1,Λ1]; [𝔩2,Λ2]).

Proposition 3.67. Set N (2)
1

:=E
(2)
1

. The map 𝜈 (2)
1

: N
(2)

1
→E1 is Fredholm of index

(2 − rkC𝑉 ) · #Br(𝔩) − 1

Proof. The proof is straight-forward and similar to that of Proposition 3.65. ■

The proof of Proposition 3.66 requires the following preparation.

Proposition 3.68. Let 𝔡 be a real Cauchy–Riemann operator on 𝑉 . Let 𝔩𝑖 be a ramified Euclidean
line bundle over 𝐶 and 𝑠𝑖 ∈ ker𝔡𝔩𝑖\{0} (𝑖 = 1, 2). If 𝔩1 and 𝔩2 are not isomorphic, then there are a
non-empty open subset 𝑈 ⊂ 𝐶\(Br(𝔩1) ∪ Br(𝔩2)) and trivialisations 𝜏𝑖 : 𝔩𝑖 |𝑈 � R (𝑖 = 1, 2) such
that 𝜏1𝑠1, 𝜏2𝑠2 ∈ ker𝔡 |𝑈 are linearly-independent.

Proof. Suppose not. Choose a open cover (𝑈𝛼 )𝛼∈𝐴 of 𝐶\(Br(𝔩1) ∪ Br(𝔩2)) and trivialisations

𝜏𝛼
𝑖

: 𝔩𝑖 |𝑈𝛼
� R (𝑖 = 1, 2, 𝛼 ∈ 𝐴). Define 𝜆𝛼 ∈ R×

by 𝜏𝛼
2
𝑠2 = 𝜆𝛼 · 𝜏𝛼

1
𝑠1. A moment’s thought shows

that

(𝜏𝛼
2
)−1 ◦ 𝜆𝛼 ◦ 𝜏𝛼

1
= (𝜏𝛽

2
)−1 ◦ 𝜆𝛽 ◦ 𝜏𝛽1

on𝑈𝛼 ∩𝑈𝛽 . Therefore, 𝔩1 � 𝔩2 as line bundles over𝐶\(Br(𝔩1) ∪Br(𝔩2)). This implies that 𝔩1 � 𝔩2

as ramified Euclidean line bundles over 𝐶 . ■

Proof of Proposition 3.66. (1) is obvious.
As in the proof of Proposition 3.63, (2) reduces to proving that the Petri map 𝜛 : Λ1 ⊗

ker𝔡
†,𝔩1
𝐿2

⊕ Λ2 ⊗ ker𝔡
†,𝔩2
𝐿2

→ 𝐿1Γ(𝐶,𝑉 ⊗ 𝑉 †) defined by

𝜛(𝑠1 ⊗ 𝑡1, 𝑠2 ⊗ 𝑡2) (𝑥) := 𝑠1(𝑥) ⊗ 𝑡1(𝑥) + 𝑠2(𝑥) ⊗ 𝑡2(𝑥)

is injective. This is a consequence of Proposition 3.68 and Proposition 3.64.

The proof of (3) is similar to that of Proposition 3.63 (5) and, therefore, omitted. ■

Set N := N2 ⨿ N
(2)

1
and 𝜈 := 𝜈2 ⨿ 𝜈

(2)
1

. The above discussion shows that 𝜈 : N → E is

Fredholm of index at most −1 and 𝜋 |E\ im 𝜈 : E\ im𝜈 → W is injective.
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3.4.6 Failure of smoothness: construction of 𝜎

The crucial step in the proof of Theorem 3.40 is to establish that 𝜋 is essentially proper; that is:

Definition 2.6 (2.b) holds. A naive hope might be that Theorem 3.43 implies outright properness.

Indeed: if (𝔡𝑛 ; [𝔩𝑛,Λ𝑛 = ⟨𝑠𝑛⟩]) ∈ EN
is such that (𝔡𝑛) ∈ WN

converges to 𝔡∞ ∈ W, then it can be

arranged that the sequence of pseudo-holomorphic cycles (𝑇𝑛) corresponding to (𝑠𝑛) converges
to a 𝐽∞–holomorphic cycle 𝑇∞. This, however, does not imply that ( [𝔩𝑛,Λ𝑛]) converges to
[𝔩∞,Λ∞]—unless: 𝑇∞ is smooth and 𝜋−1(𝔡∞) = {[𝔩∞,Λ∞ = ⟨𝑠∞⟩]}. Fortunately, it is straight-
forward to describe when 𝑇∞ fails to be smooth or, equivalently, when the corresponding

𝐽∞–holomorphic map 𝑢∞ : 𝐶 → 𝑉 fails to be an injective immersion.

Definition 3.69. Assume the situation of Proposition 3.33. Let 𝑏 ∈ Br(𝔩). Set 𝐽 1/2

𝑏
(𝑉 ⊗ 𝔩) ≔

𝑉𝑏 ⊗C 𝐽
1/2

𝑏
(𝔩 ⊗ C). Set { ˜𝑏} := 𝜋−1(𝑏). Denote by 𝜋∗

: 𝐽
1/2

𝑏
(𝑉 ⊗ 𝔩) � 𝑉𝑏 ⊗C 𝑇

∗
˜𝑏
𝐶 the isomorphism

induced by 𝜋 (see Remark 3.35). The
1

2
–jet evaluation map at 𝑏 is the linear map 𝑗

1/2

𝑏
: ker𝔡𝔩 →

𝐽
1/2

𝑏
(𝑉 ⊗ 𝔩) defined by

𝜋∗ 𝑗1/2

𝑏
(𝑠) := 𝜕 ˜𝑏

𝑢 ∈ 𝑉𝑏 ⊗C 𝑇
∗
˜𝑏
𝐶

with 𝑢 :
˜𝐶 → 𝑉 denoting the 𝐽–holomorphic map corresponding to 𝑠 (according to Section 3.3).

•
Proposition 3.70. Let 𝔩 be a ramified Euclidean line bundle. Let 𝑠 ∈ ker𝔡𝔩 . Let 𝑢 :

˜𝐶 → 𝑉 be the
corresponding 𝐽–holomorphic map (according to Section 3.3). The following are equivalent:

(1) The map 𝑢 :
˜𝐶 → 𝑉 is an injective immersion.

(2) The section 𝑠 is nowhere vanishing in the following sense:

(a) For every 𝑥 ∈ ˚𝐶 , ev𝑥 (𝑠) := 𝑠 (𝑥) ≠ 0.

(b) For every 𝑏 ∈ Br(𝔩), 𝑗1/2

𝑏
(𝑠) ≠ 0.

Proof. The map𝑢 is injective if and only if (2.a) holds. 𝑇𝑥̃𝑢̃ ≠ 0 for every 𝑥 ∈ ˚
˜𝐶 . If ˜𝑏 ∈ 𝜋−1(Br(𝔩)),

then 𝑇 ˜𝑏
𝑢 = 𝜕 ˜𝑏

𝑢. Therefore, 𝑢 is an immersion if and only only if (2.b) holds. ■

The failure of (2.a) is described by the following.

Proposition 3.71. Consider the fibre productE ×Conf (𝐶 ) ˚C. The following hold:

(1) There are a vector bundle Hom(S,𝑉 ⊗ 𝔏) → E ×Conf (𝐶 ) ˚C and for every (𝔡; [𝔩,Λ];𝑥) ∈
E ×Conf (𝐶 ) ˚C (canonical) isomorphisms

𝜂 (𝔡;𝔩,Λ;𝑥 ) : Hom(S,𝑉 ⊗ 𝔏) (𝔡;[𝔩,Λ];𝑥 ) � Hom(Λ,𝑉𝑥 ⊗ 𝔩𝑥 ) .

(2) Hom(S,𝑉 ⊗ 𝔏) →E ×Conf (𝐶 ) ˚C has a 𝐶1 section ev such that

(ev(𝔡; [𝔩,Λ];𝑥)) = 𝜂−1

(𝔡;𝔩,Λ;𝑥 ) (ev𝑥 )

with ev𝑥 ∈ Hom(Λ,𝑉𝑥 ⊗ 𝔩𝑥 ) defined by ev𝑥 (𝑠) := 𝑠 (𝑥).

31



(3) ev(𝔡; [𝔩,R⟨𝑠⟩], 𝑥) = 0 if and only if 𝑠 (𝑥) = 0.

(4) ev intersects the zero section transversely; in particular, SReg
:= ev

−1(0) is a Banach sub-
manifold.

(5) The projection map 𝜎Reg
: SReg →E is Fredholm of index

2 − rk𝑉 .

Proof. (1) and (2) are evident from the discussion in Section 3.4.3. (3) holds by construction.

To prove (4) it suffices to show that for (𝔡, [𝔩,R⟨𝑠⟩], 𝑥) ∈ ev
−1(0) the map

ev𝑥 : ker

(
𝑊 1,2Γ(𝐶,𝑉 ⊗ 𝔩) ⊕ 𝐶𝐾Γ(𝑋,H(𝑉 )) → 𝐿2Ω0,1(𝐶,𝑉 ⊗ 𝔩)

)
→ 𝑉𝑥 ⊗ 𝔩𝑥

is surjective. Let 𝑘 ∈ {1, · · · , 𝐾}. By Proposition 3.57,

ker

(
𝑊 1,2Γ(𝐶,𝑉 ⊗ 𝔩) ⊕ 𝐶𝐾Γ(𝑋,H(𝑉 )) → 𝐿2Ω0,1(𝐶,𝑉 ⊗ 𝔩)

)
= ker

(
𝑊

𝑘+1,2

cyl
Γ(𝐶,𝑉 ⊗ 𝔩) ⊕ 𝐶𝐾Γ(𝑋,H(𝑉 )) →𝑊

𝑘,2

cyl
Ω0,1(𝐶,𝑉 ⊗ 𝔩)

)
.

The significance of the above is that𝑊
𝑘+1,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩) ↩→ 𝐶𝑘−1Γ( ˚𝐶,𝑉 ⊗ 𝔩); hence, ev𝑥 is defined

on𝑊
𝑘+1,2

cyl
Γ( ˚𝐶,𝑉 ⊗ 𝔩). By the Snake Lemma, it suffices to prove that the map L : 𝑊

𝑘+1,2

cyl
Γ( ˚𝐶,𝑉 ⊗

𝔩) ⊕ 𝐶𝐾Γ(𝑋,H(𝑉 )) →𝑊
𝑘,2

cyl
Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩) ⊕ 𝑉𝑥 ⊗ 𝔩𝑥 defined by

L(𝑠, 𝔞) :=
(
𝔡𝔩𝑠 + (𝔞 ⊗ id𝔩)𝑠, 𝑠 (𝑥)

)
is surjective. Choose 𝔙 ⊂ Γ( ˚𝐶,𝑉 ⊗ 𝔩) such that ev𝑥 : 𝔙 → (𝑉 ⊗ 𝔩)𝑥 is an isomorphism. It

suffices to prove that the map

M : 𝐶𝐾Γ(𝑋,H(𝑉 )) → coker

(
𝔡𝔩
𝑊

𝑘+1,2

cyl

: 𝔙⊥ →𝑊
𝑘,2

cyl
Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩)

)
�

(
ker𝔡

†,𝔩
𝐿2

+ 𝔡𝔩 (𝔙)
)∗

defined by

⟨M(𝔞), 𝑡⟩ := ⟨𝑡, (𝔞 ⊗ id𝔩)𝑠⟩

is surjective. M is surjective, because the Petri map 𝜛 : ker𝔡
†,𝔩
𝐿2

+ 𝔡𝔩 (𝔙) → 𝐿1Γ(𝐶,𝑉 ⊗ 𝑉 †)
defined by 𝜛(𝑡) := 𝑠 ⊗ 𝑡 is injective.

(5) is obvious. ■

The failure of (2.b) is described by the following.

Proposition 3.72. Consider the universal branch points

B := {(𝐵,𝑏) ∈ Conf (𝐶) ×𝐶 : 𝑏 ∈ 𝐵}.

Consider the fibre productE ×Conf (𝐶 ) B. The following hold:
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(1) There are a vector bundleHom(S, 𝐽 1/2(𝑉 ⊗𝔏)) →E×Conf (𝐶 )B and for every (𝔡; [𝔩,Λ];𝑏) ∈
E ×Conf (𝐶 ) B (canonical) isomorphisms

𝜂 (𝔡;𝔩,Λ;𝑏 ) : Hom(S, 𝐽 1/2(𝑉 ⊗ 𝔏)) (𝔡;[𝔩,Λ];𝑏 ) � Hom(Λ, 𝐽 1/2

𝑏
(𝑉 ⊗ 𝔩)) .

(2) Hom(S, 𝐽 1/2(𝑉 ⊗ 𝔏)) →E ×Conf (𝐶 ) ˚B has a 𝐶1 section 𝑗1/2 such that

( 𝑗1/2(𝔡; [𝔩,Λ];𝑏)) = 𝜂−1

(𝔡;𝔩,Λ;𝑥 ) ( 𝑗
1/2

𝑏
).

(3) 𝑗1/2(𝔡; [𝔩,R⟨𝑠⟩], 𝑏) = 0 if and only if 𝑗1/2

𝑏
(𝑠) = 0.

(4) 𝑗1/2 intersects the zero section transversely; in particular, SBr
:= ( 𝑗1/2)−1(0) is a Banach

submanifold.

(5) The projection map 𝜎Br
: SBr →E is Fredholm of index

− rkC𝑉 .

Proof. The crucial point is to extend 𝑗
1/2

𝑏
from ker𝔡𝔩 to𝑊 1,2Γ(𝐶,𝑉 ⊗ 𝔩). By Remark 3.35 (2) and

Remark 3.48, (𝐽 1/2

𝑏
(𝔩 ⊗ C))⊗2 = 𝑇 ∗

𝑏
𝐶 and ℜ𝑏 (𝔩) � (𝐽 1/2

𝑏
(𝔩 ⊗ C))∗. Therefore,

𝐽
1/2

𝑏
(𝔩 ⊗ C) � ℜ𝑏 (𝔩) ⊗C 𝑇

∗
𝑏
𝐶.

Let 𝜁 ∈ 𝐶∞(C,𝐶) with 𝜁 −1(0) = {𝑏}, 𝑇𝑏𝜁 ≠ 0, and |𝜕𝜁 | ≲ |𝜁 |. Since𝑊 1,2Γ(𝐶,𝑉 ⊗ 𝔩) ↩→
𝑟𝐿2( ˚𝐶,𝑉 ⊗ 𝔩), for every 𝑠 ∈𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩), 𝜁 −1𝑠 ∈ dom(𝔡𝔩

max
); moreover: if 𝑠 ∈ ker𝔡𝔩 , then

Res𝑏 (𝜁 −1𝑠) ⊗C 𝜕𝑏𝜁 = 𝑗
1/2

𝑏
(𝑠) .

This provides the extension of 𝑗
1/2

𝑏
.

The remainder of the proof is analogous to that of that of Proposition 3.71 and, therefore,

omitted. ■

Set S := SReg ⨿ SBr
and 𝜎 := 𝜎Reg ⨿ 𝜎Br

. The above discussion shows that 𝜎 : S → E is

Fredholm of index at most −1.

3.4.7 Proofs of Theorem 3.40 and Theorem 3.41

Here is the final ingredient for the proofs.

Proposition 3.73. The map

𝜋 |E\(im 𝜈∪im𝜎 ) : E\(im𝜈 ∪ im𝜎) → CR(𝑉 )\(im(𝜋 ◦ 𝜈) ∪ im(𝜋 ◦ 𝜎))

is proper.
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Proof. Let (𝔡𝑛 ; [𝔩𝑛,Λ𝑛 = ⟨𝑠𝑛⟩]) ∈ (E\(im𝜈 ∪ im𝜎))N. Suppose that (𝔡𝑛) converges to 𝔡∞ ∈
CR(𝑉 )\(im(𝜋 ◦ 𝜈) ∪ im(𝜋 ◦ 𝜎)). Set (𝔡∞; [𝔩∞,Λ𝑛 = ⟨𝑠∞⟩]) := 𝜋−1(𝔡∞). For 𝑛 ∈ N ∪ {∞} set
𝐽𝑛 := 𝐽𝔡𝑛 and denote by 𝑢𝑛 : 𝐶𝑛 → 𝑉 the 𝐽𝑛–holomorphic map corresponding to 𝑠𝑛 , normalised

such that

max

𝐶̃𝑛

𝜌2 ◦ 𝑢𝑛 = 1.

As in the proof of Proposition 3.42, after passing to a subsequence, (𝑇𝑛 := 𝑇𝑢𝑛 ) converges to
a 𝐽∞–holomorphic cycle 𝑇∞ in the weak–∗–topology. By injectivity, 𝑇∞ = 𝑇𝑢∞ .

Since 𝑢𝑛 (𝑛 ∈ N ∪ {∞}) is an injective immersion, it follows from [DIW21, Corollary 2.29]

that (𝑢𝑛) converges to 𝑢∞; therefore, ( [𝔩𝑛,Λ𝑛]) converges to (𝔩∞,Λ∞). (The proof of [DIW21,

Corollary 2.29] itself relies crucially on an observation due to White [Whi05] regarding a simple

version of Allard’s Regularity Theorem [All72].) ■

Proof of Theorem 3.40. This is an immediate consequence of the above discussion. ■

Proof of Theorem 3.41. The proof is nearly identical to that of Theorem 3.40. The constructions

of 𝜋 , 𝜈 , and 𝜎 have to be adapted sightly to account for the 𝛾–self-adjointness; cf. [DW23b, §1.A].

As a result of this index formula in Proposition 3.63 (5) changes to

(2 − 𝑑 · rkC𝑉 ) · #Br(𝔩) −
(
𝑑 + 1

2

)
. ■

Remark 3.74. The astute reader may have noticed that for most of section the restriction to

𝑘–rigidity with 𝑘 = 2 was unnecessary. Here is why this restriction was made. For 𝑘 > 2 the

translation between the perspectives laid out in Section 3.3 becomes more subtle. In particular,

if 𝔏 is a higher rank branched local system, then 𝑠 ∈ ker𝔡𝔏 does not directly correspond to a

𝐽–holomorphic map 𝑢̃ :
˜𝐶 → 𝑉 ; cf. [DW23b, §1.5]. As a consequence of this, evidence of the

failure of 𝑘–rigidity in the form of a 𝐽–holomorphic map 𝑢 :
˜𝐶 → 𝑉 no longer typically is an

injective immersion (except for rather small 𝑘 and/or under additional hypothesis). This breaks

the above proof strategy.

Nevertheless, the restriction to 𝑘 = 2 may not be necessary. Moreover, the use of Allard’s

Regularity Theorem and the perspective of 𝐽–holomorphic maps 𝑢 :
˜𝐶 → 𝑉 might well be red

herring. Roughly speaking, the above argument proceeds as follows. EquipE with a topology

that is coarser than the one discussed in Section 3.4.3. The coarse topology onE allows for the

branch locus of the Euclidean local system 𝔩 to jump. This is an essential ingredient to prove that

the coarse topology has better compactness properties. The existence of a non-zero 𝑠 ∈ ker𝔡𝔩

tames 𝔩. A typical 𝑠 ∈ ker𝔡𝔩 vanishes only where geometry forces it to. As a consequence,

typical sequences with typical limits in the coarse topology converge in the fine topology. Its

possible that this strategy extends to branched local systems 𝔏 of higher rank, provided an

appropriate extension of the coarser topology to this situation is found. ♣

4 Chambered invariants from blow-ups

Let 𝐶 be a closed connected Riemann surface. Let 𝑉 be a complex vector bundle over 𝐶 with

rkC𝑉 = 2 and 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) = 0.
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This section constructs a chambered invariant

𝑛Bl ∈ H
0(CR(𝑉 )\W;Z[[𝑥]])

by counting 𝐽–holomorphic sections of 𝑞 : OP𝑉 (−2) → 𝐶 , the blow-up of the C2/{±1}–bundle
𝑝 : 𝑉 /{±1} → 𝐶 , with respect to an admissible almost complex structure on OP𝑉 (−2) which is

homogeneous near infinity and, therefore, induces a real Cauchy–Riemann operator on 𝑉 .

The construction of 𝑛Bl is reminiscent of the construction in [MS12, §8.6]. In fact, various

aspects are simpler in the present situation. However, a substantial novel complication arises

becauseOP𝑉 (−2) is non-compact: sequences of 𝐽–holomorphic sections might escape to infinity.

A combination of geometric measure theory (again) and a twist on Radó’s theorem in complex

analysis are used to prove that this phenomenon can only occur if the real Cauchy–Riemann

operator associated with 𝐽 fails to be 2–rigid.

4.1 The blow-up: OP𝑉 (−2)
Here is a summary of the construction of the blow-up of 𝑝 : 𝑉 /{±1} → 𝐶 , and some of its

properties relevant to the further discussion.

Definition 4.1. The blow-up of 𝑝 : 𝑉 /{±1} → 𝐶 is constructed as follows:

(1) The projectivisation of 𝑉 is the C𝑃1
–bundle

𝜛 : P𝑉 := 𝑉 ×/C× → 𝐶.

Here 𝑉 ×
:= 𝑉 \0 and C×

acts with weight 1.

(2) Consider the complex line bundle

𝜍 : OP𝑉 (−2) := (𝑉 × × C)/C× → P𝑉

with C×
acting with weight (1,−2). The blow-up of 𝑝 : 𝑉 /{±1} → 𝐶 is the fibre bundle

𝑞 := 𝜛 ◦ 𝜍 : OP𝑉 (−2) → 𝐶.

(3) The blow-down map is the continuous map 𝛽 : OP𝑉 (−2) → 𝑉 /{±1} defined by

𝛽 ( [𝑣, 𝜆]) := [±
√
𝜆𝑣] . •

Of course, the blow-down map 𝛽 satisfies 𝑞 = 𝑝 ◦ 𝛽 , and induces a diffeomorphism

OP𝑉 (−2)× := OP𝑉 (−2)\0 � 𝑉 ×/{±1}.

This shall be regarded as an identification.

If 𝐼 ∈ Jℎ (𝑉 ) is C×
–invariant, then it is integrable, and descends to a complex structure ˇ𝐼

on 𝑉 ×/{±1}; moreover:
ˇ𝐼 extends to a complex structure

˜𝐼 on OP𝑉 (−2). (If 𝐽 ∈ Jℎ (𝑉 ) is not
C×

–invariant, then
ˇ𝐽 does not extend from 𝑉 ×/{±1} to OP𝑉 (−2).)

Choose a Hermitian metric on 𝑉 . Define 𝜌2 ∈ 𝐶∞(𝑉 ) by 𝜌2(𝑣) := |𝑣 |2. Denote the induced
smooth maps on 𝑉 ×/{±1} and OP𝑉 (−2) by 𝜌2

and 𝜌2
respectively.
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Proposition 4.2. The complex fibre bundle 𝑞 : OP𝑉 (−2) → 𝐶 admits the following family of
fibrewise Kähler forms:

(1) Let 𝑡 ⩾ 0. Define 𝑓 ∈ 𝐶∞(R>0) by

𝑓𝑡 (𝑢) :=
√
𝑢2 + 𝑡4 + 𝑡2

log𝑢 − 𝑡2
log(

√
𝑢2 + 𝑡4 + 𝑡2)

and set
Ω𝐼 ,𝑡 := −1

4

d[d(𝑓𝑡 ◦ 𝜌2) ◦ 𝐼 ] ∈ Ω2(𝑉 ×).

Ω𝐼 ,𝑡 is {±1}–invariant and descends to Ω̌𝐼 ,𝑡 ∈ Ω2(𝑉 ×/{±}); moreover: Ω̌𝐼 ,𝑡 extends to a
closed 2–form

Ω̃𝐼 ,𝑡 ∈ Ω2(OP𝑉 (−2)) .

(2) (a) For every 𝑡 > 0, Ω̃𝐼 ,𝑡 is a fiberwise Kähler form with respect to ˜𝐼 ; that is: for every
𝑥 ∈ 𝐶 , Ω̃𝐼 ,𝑡 |OP𝑉𝑥 (−2) is a Kähler form with respect to ˜𝐼 |OP𝑉𝑥 (−2) ; moreover: Ω̃𝐼 ,𝑡 |P𝑉𝑥 is a
positive multiple of the Fubini–Study form on P𝑉𝑥 .

(b) Ω𝐼 ,0 is a fibrewise Kähler form with respect to 𝐼 on 𝑉 × ; moreover: the fibrewise Kähler
metric is the one induced by the Hermitian metric on 𝑉 .

(3) For every 𝑡 ⩾ 0 and 𝑅 > 0,
𝑅−2 · 𝑅∗Ω𝐼 ,𝑡 = Ω𝐼 ,𝑡/𝑅 .

Proof. (1) and (2.a) are verified by straight-forward computations. Indeed, this is nothing but (a

family version of) the construction due to Eguchi and Hanson [EH79]; cf. [Lye23].

(2.b) and (3) are obvious. ■

Here are two observations regarding the topology of OP𝑉 (−2), which are required in the

following.

Proposition 4.3. The vertical tangent bundle 𝑇 vertOP𝑉 (−2) := ker𝑇𝑞 ⊂ 𝑇OP𝑉 (−2) satisfies

𝑐1(𝑇 vertOP𝑉 (−2)) = 𝑞∗𝑐1(𝑉 ).

Proof. Since
𝜍∗OP𝑉 (−2) ↩→ 𝑇 vertOP𝑉 (−2) ↠ 𝜍∗𝑇 vertP𝑉

is exact,

𝑐1(𝑇 vertOP𝑉 (−2)) = 𝜍∗
(
𝑐1(𝑇 vertP𝑉 ) − 2𝑐1(OP𝑉 (1))

)
.

Since the (relative) Euler sequence

OP𝑉 ↩→ OP𝑉 (1) ⊗C 𝜛
∗𝑉 ↠ 𝑇 vertP𝑉

is exact,

𝑐1(𝑇 vertP𝑉 ) = rkC𝑉 · 𝑐1(OP𝑉 (1)) +𝜛∗𝑐1(𝑉 ) .

Since rkC𝑉 = 2, these combine to prove the assertion. ■
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Proposition 4.4. If 𝑠 : 𝐶 → OP𝑉 (−2) is a section of𝑞 : OP𝑉 (−2) → 𝐶 , then 𝑠∗ [𝐶] ∈ H2(OP𝑉 (−2);Z)
is determined by the degree

deg(𝑠) := ⟨𝑠∗𝜍∗𝑐1(OP𝑉 (1)), [𝐶]⟩ ∈ Z;

indeed:
𝑠∗ [𝐶] = 𝑆 + (deg𝑉 + deg(𝑠)) · 𝐹 ∈ H2(P𝑉 ;Z) � H2(OP𝑉 (−2);Z)

with 𝑆 := PD[𝑐1(OP𝑉 (1))] and 𝐹 denoting the homology class of a fibre of P𝑉 .

Proof. H2(P𝑉 ;Z) = ⟨𝑆, 𝐹 ⟩ with

𝑆 · 𝑆 = − deg𝑉 , 𝑆 · 𝐹 = 1, and 𝐹 · 𝐹 = 0.

Since

𝑠∗ [𝐶] · 𝑆 = deg(𝑠) and 𝑠∗ [𝐶] · 𝐹 = 1,

the assertion follows. ■

Remark 4.5. Let 𝑠 : 𝐶 → OP𝑉 (−2) be a section of 𝑞. Define 𝜋 :
˜𝐶 → 𝐶 by the pullback diagram

˜𝐶 𝐶

𝑉 𝑉 /{±1}.

𝜋

𝛽◦𝑠

If 𝑠 is transverse to P𝑉 ⊂ OP𝑉 (−2), then 𝜋 :
˜𝐶 → 𝐶 is a double cover branched over 𝑠−1(P𝑉 ).

Therefore, by the Riemann–Hurwitz formula,

𝑔(𝐶) = 2𝑔(𝐶) − 1 + |𝑠−1(P𝑉 ) |.

If, moreover, 𝑠 intersects P𝑉 positively, then |𝑠−1(P𝑉 ) | = deg(𝑠). In this sense, deg(𝑠) relates to
the genus of

˜𝐶 . ♣

4.2 Admissible almost complex structures on OP𝑉 (−2)
Here is a description of the subspace of J(OP𝑉 (−2)), the space of𝐶𝐾 almost complex structures

on OP𝑉 (−2) employed in the construction of 𝑛Bl.

Proposition 4.6. Let𝜔𝐶 be a Kähler form on𝐶 . There are a subspaceJr (OP𝑉 (−2)) ⊂ J(OP𝑉 (−2)),
the structure of a Banach manifold on Jr (OP𝑉 (−2)), and a submersion

𝔡∞ : Jr (OP𝑉 (−2)) → CR(𝑉 )

such that the following hold:

(1) Every 𝐽 ∈ Jr (OP𝑉 (−2)) is admissible; that is: the following hold:

(a) The map 𝑞 : OP𝑉 (−2) → 𝐶 is 𝐽–holomorphic.
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(b) If 𝔡 := 𝔡∞(𝐽 ), then

𝐽 = ˇ𝐽𝔡 on {𝜌2 ⩾ 1} = {𝜌2 ⩾ 1} ⊂ OP𝑉 (−2)× = 𝑉 ×/{±1}.

(c) There is a Λ = Λ(𝐽 ) > 0 such that for every 𝑅 > 0 the restriction of

Ω𝐼 ,1 + Λ(1 + 𝑅2) · 𝑞∗𝜔𝐶

to {𝜌2 < 2𝑅2} ⊂ OP𝑉 (−2) is symplectic and tames 𝐽 . Here 𝐼 := 𝐽𝜕 with 𝜕 denoting the
Dolbeault operator induced by 𝔡.

(2) For every 𝔡 ∈ CR(𝑉 ), 𝔡−1

∞ (𝔡) is contractible; in particular: non-empty.

(3) For every 𝐽 ∈ Jr (OP𝑉 (−2)) there is an 𝜀 = 𝜀 (𝐽 ) > 0 such that if

𝔞 ∈ 𝐵𝜀 (0) ⊂ 𝐶𝐾𝑐 Γ(OP𝑉 (−2), EndC(𝑇OP𝑉 (−2), 𝐽 ))

satisfies 𝑇𝑞 ◦ 𝔞 = 0 and vanishes on {𝜌2 ⩾ 1} ⊂ OP𝑉 (−2), then

𝐽 (𝔞) := (1 + 1

2
𝐽𝔞) 𝐽 (1 + 1

2
𝐽𝔞)−1 ∈ Jr (OP𝑉 (−2));

moreover: 𝔞 ↦→ 𝐽 (𝔞) is smooth.

Proof. Let 𝔡 ∈ CR(𝑉 ). Denote by 𝜕 the Dolbeault operator induced by 𝔡. Set 𝐼 := 𝐽𝜕 and 𝔞 := 𝐽𝜕 .

Let 𝜒 ∈ 𝐶∞( [0,∞), 0) with 𝜒 | [0,1/2] = 0 and 𝜒 | [1,∞) = 1. The almost complex structure

𝐽
𝜒

𝔡
:= 𝐼 + (𝜒 ◦ 𝜌2) · 𝔞

is {±1}–invariant, and ˇ𝐽
𝜒

𝔡
extends to an almost complex structure

˜𝐽
𝜒

𝔡
on OP𝑉 (−2).

By construction,
˜𝐽
𝜒

𝔡
satisfies (1.a) and (1.b) with 𝔡∞( ˜𝐽

𝜒

𝔡
) := 𝔡. Moreover, it satisfies (1.c);

indeed: for Λ ≫𝔡 1,

[Ω𝐼 ,1 + Λ(1 + 𝜌2) · 𝑞∗𝜔𝐶 ] (𝑣, ˜𝐽
𝜒

𝔡
𝑣) > 0

for every non-zero 𝑣 ∈ 𝑇OP𝑉 (−2); cf. [DW21a, Proof of Lemma 3.6 (5)].

Evidently, for 𝜀 ≪𝔡 1 and 𝔞 as in (3), 𝐽
𝜒

𝔡
(𝔞) satisfies (1). The choice of 𝜀 = 𝜀 (𝔡) can be

arranged to depend continuously on 𝔡 ∈ CR(𝑉 ). Set

Jr (OP𝑉 (−2)) := { ˜𝐽
𝜒

𝔡
(𝔞) : 𝔡 ∈ CR(𝑉 ), 𝔞 as in (3) with 𝜀 = 𝜀 (𝔡)}

and define 𝔡∞( ˜𝐽
𝜒

𝔡
(𝔞)) := 𝔡. There is an obvious Banach manifold structure on Jr (OP𝑉 (−2))

with respect to which the above assertions hold. ■

For the remainder of this section choose an incarnation of 𝔡∞ : Jr (OP𝑉 (−2)) → CR(𝑉 ) as
in Proposition 4.6.
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4.3 The space of pseudo-holomorphic sections

Set

Jr (OP𝑉 (−2))× := Jr (OP𝑉 (−2))\𝔡−1

∞ (W).

The chambered invariant 𝑛Bl is extracted from the following space of pseudo-holomorphic

sections.

Proposition 4.7. Let 𝑝 > 2. Denote by B :=𝑊 1,𝑝Γ(𝐶,OP𝑉 (−2)) the Banach manifold of𝑊 1,𝑝 sec-
tions of the fibre bundle 𝑞 : OP𝑉 (−2) → 𝐶 . Denote byE → Jr (OP𝑉 (−2))× ×B the Banach space
bundle whose fibre over (𝐽 , 𝑠) ∈ Jr (OP𝑉 (−2))×B is 𝐿𝑝Ω0,1(𝐶, 𝑠∗𝑇 vertOP𝑉 (−2)). The following
hold:

(1) The section 𝜕 of E defined by 𝜕(𝐽 , 𝑠) := 𝜕𝐽 𝑠 intersects the zero section transversely; in
particular,M := 𝜕−1(0) is a Banach submanifold.

(2) The map 𝜋 : 𝜕−1(0) → Jr (OP𝑉 (−2))× is Fredholm of index 0.

Proof. If (𝐽 , 𝑠) ∈ 𝜕−1(0), then im 𝑠 must intersect {𝜌2 < 1} ⊂ OP𝑉 (−2); otherwise: 𝑠 defines a
ˇ𝐽𝔡–holomorphic section of 𝑉 ×/{±1} for 𝔡 := 𝔡∞(𝐽 ), contradicting 𝐽𝔡 ∉ W. Therefore and by

Proposition 4.6 (3), the transversality argument from the proof of [MS12, Theorem 8.3.1] carries

over to prove (1).

The Snake Lemma implies that index𝑇𝐽 ,𝑠𝜋 agrees with the index of a real Cauchy–Riemann

operator

𝔡 : 𝑊 1,2Γ(𝐶, 𝑠∗𝑇 vertOP𝑉 (−2)) → 𝐿2Ω0,1(𝐶, 𝑠∗𝑇 vertOP𝑉 (−2)) .

By Riemann–Roch and Proposition 4.3, and since rkC𝑇
vertOP𝑉 (−2) = rkC𝑉 = 2 and 2 deg𝑉 +

rkC𝑉 · 𝜒 (𝐶) = 0,

index𝔡 = 2 deg(𝑠∗𝑇 vertOP(−2)) + rkC𝑉 · 𝜒 (𝐶)
= 2(rkC𝑉 − 2) · deg(𝑠) = 0.

This proves (2). ■

The index bundle of 𝜋 : M → Jr (OP𝑉 (−2))× is oriented in the standard fashion; cf. [MS12,

Theorem 8.3.1].

4.4 (𝜋, deg) is essentially proper

Proposition 4.8. There are a Banach manifoldS and a Fredholm map 𝜎 : S → Jr (OP𝑉 (−2))× of
index at most −2 such that

(𝜋, deg) : M\𝜋−1(im𝜎) → (Jr (OP𝑉 (−2))×\ im𝜎) × Z

is proper.

There are two potential source of non-properness of (𝜋, deg): the formation of bubbles and

the non-compactness of OP𝑉 (−2). Here is how to deal with the former.
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Proposition 4.9. Define max 𝜌2
: M → [0,∞) by max 𝜌2(𝑠) := max𝐶 𝜌

2 ◦ 𝑠 . There are a Banach
manifold S and a Fredholm map 𝜎 : S → Jr (OP𝑉 (−2))× of index at most −2 such that

(𝜋, deg,max 𝜌2) : M\𝜋−1(im𝜎) → (Jr (OP𝑉 (−2))×\ im𝜎) × Z × [0,∞)

is proper.

Proof. Let 𝑑 ∈ Z and 𝑅 > 0. Let (𝐽𝑛, 𝑠𝑛) ∈ MN
with 𝐽𝑛 → 𝐽∞, deg 𝑠𝑛 = 𝑑 and max𝐶 𝜌

2 ◦ 𝑠 ⩽ 𝑅.

By Proposition 4.6 (1.c), for every 𝑛 ∈ N ∪ {∞} there is a symplectic form 𝜔𝑛 taming 𝐽𝑛 on

{𝜌2 ⩽ 𝑅} ⊂ OP𝑉 (−2) with 𝜔𝑛 → 𝜔∞. Therefore, by Gromov compactness, a subsequence of

(𝑠𝑛) converges (a priori) to a stable nodal 𝐽∞–holomorphic map

𝑠∞ ∨
∨
𝛼∈𝑇

𝑏𝛼 : 𝐶 ∨
∨
𝛼∈𝑇

C𝑃1 → OP𝑉 (−2).

Here 𝑠∞ is a 𝐽∞–holomorphic section of 𝑞 : OP𝑉 (−2) → 𝐶 , and every bubble 𝑏𝛼 of the bubble

tree 𝑇 maps into a fibre of 𝑞.

The appearance of a non-trivial bubble tree is a codimension two phenomenon. This is a

consequence of the discussion in [MS12, §8.4 and §8.5]. The salient point is that the existence of a

(simple) 𝐽–holomorphic sphere in a fibre of 𝑞 is a codimension zero phenomenon and, therefore,

such a sphere intersecting a 𝐽–holomorphic section of 𝑞 is a codimension two phenomenon. ■

Proposition 4.10. Let 𝑑 ∈ Z. If (𝐽𝑛, 𝑠𝑛) ∈ M with deg 𝑠𝑛 = 𝑑 and 𝐽𝑛 → 𝐽 , then

sup

𝑛∈N
max

𝐶
𝜌2 ◦ 𝑠𝑛 < ∞.

Proof. If not, then, after passing to a subsequence,

𝑅2

𝑛 := max

𝐶
𝜌2 ◦ 𝑠𝑛 → ∞.

The following five steps lead to a contradiction.

Step 1. There is a proper ˇ𝐽𝔡–holomorphic map 𝑢 : 𝐶× → 𝑉 ×/{±1} satisfying

max

𝐶×
𝜌2 ◦ 𝑢 = 1

and such that, after passing to a subsequence, for every 𝛼 ∈ Ω2

𝑐 (𝑉 ×/{±1})
ˆ
𝐶×
𝑢∗𝛼 = lim

𝑛→∞

ˆ
𝐶

𝑠∗𝑛 (𝑅−1

𝑛 )∗𝛼.

For every 𝑛 ∈ N, 𝑇𝑛 ∈ Hom(Ω2

𝑐 (𝑉 ×/{±1}),R) defined by

𝑇𝑛 (𝛼) :=

ˆ
𝐶

𝑠∗𝑛 (𝑅−1

𝑛 )∗𝛼

is a (𝑅𝑛)∗ 𝐽𝑛–holomorphic cycle in 𝑉 ×/{±1}.
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By Proposition 4.6 (1.c), for Λ ≫ 1, 𝑛 ∈ N,

𝜔𝑛 := 𝑅−2

𝑛 𝑅∗𝑛 [Ω𝐼𝑛,1 + Λ(1 + 𝑅2

𝑛) · 𝑞∗𝜔𝐶 ]

is symplectic and tames (𝑅𝑛)∗ 𝐽𝑛 on {𝜌2 < 2} ⊂ OP𝑉 (−2). By Proposition 4.6 (1.b), (𝑅𝑛)∗ 𝐽𝑛
converges to 𝐽𝔡 with 𝔡 := 𝔡∞(𝐽∞) on compact subsets of 𝑉 ×/{±1}. By Proposition 4.2 (2.b) and

(3), 𝜔𝑛 converges to a symplectic form 𝜔∞ on compact subsets of {𝜌2 < 2}; moreover: 𝜔∞ tames

ˇ𝐽𝔡. Since

sup

𝑛∈N
M(𝑇𝑛) ⩽ sup

𝑛∈N

ˆ
𝐶

𝑠∗𝑛 (𝑅−1

𝑛 )∗𝜔𝑛 < ∞,

by Theorem 3.43, after passing to a subsequence, (𝑇𝑛) converges to a
ˇ𝐽𝔡–holomorphic cycle

𝑇 ∈ Hom(Ω2

𝑐 (𝑉 ×/{±1}),R).
Since maxsupp𝑇𝑛 𝜌

2 = 1, by the monotonicity formula [DW21a, Lemma 5.6], maxsupp𝑇 𝜌
2 = 1.

The assertion follows from Theorem 3.25.

Step 2. The holomorphic map 𝜄 := 𝑝 ◦ 𝑢 : 𝐶× → 𝐶 is open.

Since 𝜄 is holomorphic, if its fails to be open, then it is constant on a component of 𝐶×
.

Therefore, by Step 1, 𝑢 exhibits a bounded proper holomorphic map from this component to

C2/{±1}. This contradicts the maximum principle.

Step 3. The holomorphic map 𝜄 := 𝑝 ◦ 𝑢 : 𝐶× → 𝐶 is an embedding; in particular: 𝜄 identifies 𝐶×

with the open subset im 𝜄 ⊂ 𝐶 .

By Step 2, 𝜄 : 𝐶× → im 𝜄 is a finite branched covering map. If 𝑧 ∈ im 𝜄 is not a branch point,

then it admits an open neighborhood 𝑈 ⊂ im 𝜄 such that 𝜄 : 𝜄−1(𝑈 ) → 𝑈 is a covering map and

𝐾 := 𝜄−1(𝑈 ) ⊂ 𝑉 ×/{±1} is compact. Choose 𝜂 ∈ Ω2

𝑐 (𝑈 ) with
´
𝑈
𝜂 = 1, and 𝜒 ∈ 𝐶∞

𝑐 (𝑉 ×/{±1})
with 𝜒 |𝐾 = 1. By Step 1 and since 𝑠𝑛 is a section of 𝑞,

deg𝑧 𝜄 =

ˆ
𝐶×
𝑢∗𝑝∗𝜂 =

ˆ
𝐶×
𝑢∗(𝜒 · 𝑝∗𝜂) = 𝑇 (𝜒 · 𝑝∗𝜂)

= lim

𝑛→∞

ˆ
𝐶

𝑠∗𝑛 (𝑅−1

𝑛 ) (𝜒 · 𝑝∗𝜂) = lim

𝑛→∞

ˆ
𝐶

𝑠∗𝑛 (𝑅−1

𝑛 )∗𝑞∗𝜂

=

ˆ
𝐶

𝜂 = 1.

Therefore, deg 𝜄 = 1 and 𝜄 is an embedding.

Step 4. The map 𝜌2 ◦ 𝑢 : 𝐶× → (0, 1] extends to a continuous function 𝐶 → [0,∞] vanishing on
𝐵 := 𝐶\𝐶× .

Since 𝑢 is proper, for every 𝜀 > 0, 𝐾𝜀 := {𝜌2 ◦ 𝑢 ⩾ 𝜀} ⊂ 𝐶× ⊂ 𝐶 is compact; hence:

𝐵 ∪ {𝜌2 ◦ 𝑢 < 𝜀} = 𝐶\𝐾𝜀 is open.

Step 5. 𝔡 fails to be 2–rigid: the desired contradiction.
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Set 𝐵 := 𝐶\𝐶×
. By the discussion in Section 3.3, 𝑢 defines a Euclidean line bundle 𝔩 over

𝐶\𝐵 and a non-zero 𝑠 ∈ ker𝔡𝔩 . If 𝐵 was finite, then 𝔩 is (or extends to) a ramified Euclidean

line bundle over 𝐶; therefore: 𝔡 fails to be 2–rigid. Indeed, 𝐵 is finite because |𝑠 | extends to a
continuous map on 𝐶 vanishing on 𝐵. This is proved as Proposition 4.11 below. ■

Proof of Proposition 4.8. This is an immediate consequence of Proposition 4.9 and Proposi-

tion 4.10. ■

4.5 A twist on Radó’s theorem

Proposition 4.11. Let 𝔡 be a real Cauchy–Riemann operator on 𝑉 . Let 𝐵 ⊂ 𝐶 be a closed subset.
Let 𝔩 → 𝐶\𝐵 be a Euclidean line bundle. If 𝑠 ∈ Γ(𝐶\𝐵,𝑉 ⊗ 𝔩) is non-vanishing, satisfies 𝔡𝔩𝑠 = 0,
and |𝑠 | extends to a continuous map on 𝐶 vanishing on 𝐵, then 𝐵 is finite.

Since no a priori control on the size of 𝐵 is assumed, this cannot be derived via the usual

removable singularity methods (at least those known to the authors). Instead, the proof relies

on the following classical result in complex analysis.

Theorem 4.12 (Radó [Rad24], Behnke and Stein [BS51, Satz 1], Cartan [Car52]; [Hei56; Rud87,

Theorem 12.14]). Let 𝐶 be a Riemann surface. If 𝑓 : 𝐶 → C is a continuous map which is
holomorphic on 𝐶\𝑓 −1(0), then 𝑓 is holomorphic. ■

Proof of Proposition 4.11. If 𝔡 = 𝜕 is a Dolbeault operator, then 𝑠 ⊗C 𝑠 ∈ Γ(𝐶\𝐵,𝑉 ⊗C 𝑉 ) is
holomorphic, and extends to a continuous section of 𝑉 ⊗C 𝑉 vanishing on 𝐵. By Theorem 4.12,

𝑠 ⊗C 𝑠 is holomorphic. Therefore, |𝑠 |−1(0) = (𝑠 ⊗C 𝑠)−1(0) is finite.
If 𝔡 is a real Cauchy–Riemann operator, then the assertion follows from the above and the

Carleman similarity principle [MS12, §2.3]. Decompose 𝔡 = 𝜕 + 𝔞 as in Remark 3.2 and define

𝑎 ∈ 𝐿∞(𝐶,HomC(𝑉 ,𝑉 ⊗C 𝐾𝐶 )) by

𝔞̃(𝑥) :=

{
𝔞𝑠 · |𝑠 |−2⟨𝑠, ·⟩ if 𝑥 ∉ 𝐵,

0 if 𝑥 ∈ 𝐵.

By construction (𝜕 + 𝔞̃)𝔩𝑠 = 0. Let 𝑝 > 2. By [MS12, Step 3 in the proof of Theorem 2.3.5], for

every 𝑥 ∈ 𝐶 there are 𝛿 > 0 and a 𝑔 ∈ 𝑊 1,𝑝 (𝐵𝛿 (𝑥), EndC(𝑉 )) satisfying 𝑔(𝜕 + 𝔞̃)𝑔−1 = 𝜕; in

particular: 𝜕𝔩 (𝑔𝑠) = 0.

Therefore, |𝑠 |−1(0) ⊃ 𝐵 is discrete; hence: finite. ■

4.6 Construction of 𝑛Bl

The construction of 𝑛Bl is now straight-forward; cf. Example 2.2. By Proposition 4.7 and

Proposition 4.9, if 𝐽 ∈ Jr (OP𝑉 (−2))\𝔡−1

∞ (W) is a regular value of 𝜋 and 𝐽 ∉ im𝜎 , then for

every 𝑑 ∈ Z
MBl(𝐽 , 𝑑) := (𝜋, deg)−1(𝐽 , 𝑑)

is a compact oriented 0–manifold. By Sard–Smale, the subset of these 𝐽 is comeager. Also by

Proposition 4.7, Proposition 4.9, and Sard–Smale, the oriented bordism class

[MBl(𝐽 , 𝑑)] ∈ ΩSO

0
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only depends of the path-component of Jr (OP𝑉 (−2))\𝔡∞(W). Since ΩSO

0
= Z, therefore, there

is an invariant

𝑛Bl ∈ H
0(Jr (OP𝑉 (−2))\𝔡∞(W);Z[[𝑥]])

with

𝑛Bl(𝐽 ) =
∑︁
𝑑∈N0

#MBl(𝐽 , 𝑑) · 𝑥𝑑 .

Since 𝔡∞ has path-connected fibres,

𝔡∗∞ : H
0(CR(𝑉 )\W;Z[[𝑥]]) → H

0(Jr (OP𝑉 (−2))\𝔡−1

∞ (W);Z[[𝑥]])

is an isomorphism. Therefore, 𝑛Bl descends to the desired 𝑛Bl.

Remark 4.13. If 𝑑 ∈ −N, then [MBl(𝐽 , 𝑑)] = 0. This can be proved by a suitable choice of 𝐽 . ♣
Remark 4.14. There is a variant of the above construction for rkC𝑉 > 2. The essential difference

is that 𝜋 in Proposition 4.7 (2) is Fredholm of index 2(rkC𝑉−2)·deg(𝑠) at (𝐽 , 𝑑). As a consequence,
the variant of 𝑛Bl is constructed usingMBl(𝐽 , 0) only and, therefore, Z–valued. ♣

5 Chambered invariants from gauge theory

This section constructs chambered invariants of real Cauchy–Riemann operators by counting

solutions to the quaternionic vortex equations: gauge-theoretic equations on Riemann sur-

faces associated with quaternionic representations. These equations arise from a dimensional

reduction of generalized Seiberg–Witten equations introduced in [Tau99; Pid04] and studied in

[Tau13a; Tau16; HW15; DW20; DW21b; WZ21].

We focus on the (𝑟, 𝑘) ADHM vortex equations associated with the quaternionic represen-

tations appearing in the ADHM construction of instantons on R4
. Non-compactness phenomena

for the (𝑟, 𝑘) = (2, 1) and (𝑟, 𝑘) = (1, 2) versions of the equations are closely related to 2–rigidity

of real Cauchy–Riemann operators. These equations are used to construct chambered invariants

from Theorem 1.3 and Theorem 1.4.

5.1 Quaternionic vortex equations

Definition 5.1. Let 𝐺 be a compact connected Lie group. Let 𝑉 a quaternionic vector space

equippedwith a Euclidean inner productwith respect towhich unit quaternions act by isometries.

Denote by Sp(𝑉 ) the group of quaternion-linear isometries of𝑉 . A quaternionic representation
of 𝐺 on 𝑉 is a homomorphism 𝜌 : 𝐺 → Sp(𝑉 ). •

Let 𝔤 be the Lie algebra of 𝐺 . By abuse of notation we denote the action of 𝔤 on 𝑉 by 𝜌 .

Choose a 𝐺–invariant inner product of 𝔤.

Definition 5.2. Let 𝜌 : 𝐺 → Sp(𝑉 ) be a quaternionic representation. Define moment maps

𝜇𝑖 , 𝜇 𝑗 , 𝜇𝑘 : 𝑉 → 𝔤 by

⟨𝜇𝑖 (𝜙), 𝜉⟩ = ⟨𝑖𝜌 (𝜉)𝜙, 𝜙⟩,
⟨𝜇 𝑗 (𝜙), 𝜉⟩ = ⟨ 𝑗𝜌 (𝜉)𝜙, 𝜙⟩,
⟨𝜇𝑘 (𝜙), 𝜉⟩ = ⟨𝑘𝜌 (𝜉)𝜙, 𝜙⟩
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for all 𝜙 ∈ 𝑉 and 𝜉 ∈ 𝔤. The Sp(1)–equivariant hyperkähler moment map is

𝜇 = (𝜇𝑖 , 𝜇 𝑗 , 𝜇𝑘 ) : 𝑉 → 𝔤 ⊗ R3.

The hyperkähler quotient of 𝑉 by 𝐺 is the hyperkähler variety defined by

𝑋 = 𝜇−1(0)/𝐺. •

The complex structures 𝑖, 𝑗, 𝑘 and the Euclidean metric induce three non-degenerate 2–forms

𝜔𝑖 , 𝜔 𝑗 , 𝜔𝑘 on 𝑉 . From now on, we think of 𝑉 as a complex vector space with a distinguished

complex structure given by multiplication by 𝑖 . The remaining complex structures 𝑗 and 𝑘 are

equivalent to an 𝑖–bilinear 2–form

Ω = 𝜔 𝑗 + 𝑖𝜔𝑘 .

With respect to the splitting R3 = R ⊕ C,

𝜇 = 𝜇R ⊕ 𝜇C

where 𝜇R = 𝜇𝑖 is the real moment map and 𝜇C = 𝜇 𝑗 + 𝑖𝜇𝑘 is the complex moment map. The
latter is the moment map for the action of the complex group 𝐺C on the complex symplectic

vector space (𝑉 , 𝑖,Ω).
In what follows, consider the following situation.

Hypothesis 5.3. Let 𝜌 : 𝐺 → Sp(𝑉 ) be a quaternionic representation. Assume that the center of𝐺
contains a subgroup isomorphic to {±1} such that 𝜌 (−1) = −id.

In the situation of Hypothesis 5.3, let

Spin
𝐺 (2) = Spin(2) ×{±1} 𝐺,

so that 𝜌 extends to a unitary representation

𝜌 : Spin
𝐺 (2) → U(𝑉 )

by

𝜌 ( [𝜆,𝑔])𝑣 = 𝜆𝜌 (𝑔)𝑣 .

We have isomorphisms Spin(2) � U(1) and SO(2) � U(1) under which Spin(2) → SO(2)
is given by 𝑧 ↦→ 𝑧2

. Let 𝐿 = C be the standard representation of U(1), so that the induced

representation of Spin(2) is 𝐿2
. The maps Ω and 𝜇C are Spin

𝐺 (2)–equivariant maps

Ω : Λ2

C𝑉 → 𝐿2
and 𝜇C : 𝑉 → 𝐿2 ⊗C 𝔤𝑐 .

Let 𝐶 be a surface equipped with a Riemannian metric. Let 𝔴 → 𝐶 be a principal Spin
𝐺 (2)

bundle together with an isomorphism of the frame bundle of 𝐾𝐶 , the canonical bundle of 𝐶 ,

with the principal U(1) bundle induced by𝔴 and homomorphism Spin
𝐺 (2) → U(1). Denote by

𝑃 the 𝐺/{±1}–principal bundle associated with 𝔴 and the projection Spin
𝐺 (2) → 𝐺/{±1}. Let

V = 𝔴 ×
Spin

𝐺 (2) 𝑉
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be the associated vector bundle with complex structure induced by 𝑖 . The algebraic structures

associated with 𝜌 gives rise to the following bundle structures: the real and complex moment

maps

𝜇R : V → Ad 𝑃 and 𝜇C : V → 𝐾𝐶 ⊗C Ad 𝑃C,

where Ad 𝑃C is the complexification of Ad 𝑃 , and the complex symplectic form

Ω : Λ2

CV → 𝐾𝐶 ,

which induces an isomorphism 𝛾 : V � V† = V∗ ⊗C 𝐾𝐶 as in Section 3.1.

For every connection 𝐴 on 𝑃 there is a unique connection on 𝔴 such that the induced

connections on 𝐾𝐶 and 𝑃 are the Levi–Civita connection and 𝐴. Thus, for every 𝐴 we have the

induced Cauchy–Riemann operator

𝜕𝐴 : Γ(V) → Ω0,1(𝐶,V) .

This operator is self-adjoint with respect to Ω in the sense of Definition 3.8:

𝜕
†
𝐴
= 𝜕

𝛾

𝐴

or equivalently ˆ
𝐶

Ω(𝜕𝐴Φ ∧ Ψ) =
ˆ
𝐶

Ω(Φ ∧ 𝜕𝐴Ψ) for all Φ,Ψ ∈ Γ(V).

Definition 5.4. The quaternionic vortex equation for a connection 𝐴 on 𝑃 and a section

Ψ ∈ Γ(V) is

𝜕𝐴Ψ = 0,

𝜇C(Ψ) = 0,

𝐹𝐴 + ∗𝜇R (Ψ) = 0.

(5.5)

LetA(𝑃) be the space of connections on 𝑃 . The gauge groupG(𝑃) of 𝑃 acts onA(𝑃) × Γ(V)
preserving the quaternionic vortex equations. •
Remark 5.6. Solutions to the quaternionic vortex equations are critical points of a holomorphic

functional onA(𝑃)×Γ(V). The space of connectionsA(𝑃) is an affine space over Ω1(𝐶,Ad 𝑃) =
Ω0,1(𝐶,Ad 𝑃C) where 𝑃C is the complexification of 𝑃 . This makes the configuration space

A(𝑃) × Γ(V) into an infinite-dimensional Kähler manifold with a Hamiltonian action of the

gauge groupG(𝑃). The moment map for this action is

𝑚 : A(𝑃) × Γ(V) → Γ(Ad 𝑃),
𝑚(𝐴,Ψ) = ∗𝐹𝐴 + 𝜇R (Ψ) .

We also have the action of the complex gauge group GC(𝑃) which preserves the complex

structure but not the symplectic form on A(𝑃) × Γ(V). The holomorphic Chern–Simons

functional

F : A(𝑃) × Γ(V) → C,

F(𝐴,Ψ) =
ˆ
𝐶

Ω(𝜕𝐴Ψ ∧ Ψ)
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is invariant under the action ofGC(𝑃). The equation for critical points is

𝜕𝐴Ψ = 0,

𝜇C(Ψ) = 0.

Therefore, the quaternionic vortex equation can be interpreted as the critical point equation for

F, together with the moment map equation𝑚(𝐴,Ψ) = 0. The Hitchin–Kobayashi correspon-

dence implies that theG(𝑃) orbits of solutions correspond toGC(𝑃) orbits of solutions to the

critical point equation satisfying an appropriate stability condition. ♣

5.2 Generalizations

The main results on counting solutions to quaternionic vortex equations Theorem 5.35 and

Theorem 5.45, concern certain modifications to these equations. The first modification is to

allow what physicists refer to as flavor symmetry.

Hypothesis 5.7. Let 𝐻 be a compact Lie group. Assume that𝐺 is a normal subgroup of 𝐻 and that
𝜌 : 𝐺 → Sp(𝑉 ) extends to a quaternionic representation 𝜌 : 𝐻 → Sp(𝑉 ) satisfying Hypothesis 5.3.

In this situation, 𝐺 is called the gauge symmetry group and 𝐼 = 𝐻/𝐺 the flavor symmetry
group. As before, extend 𝜌 : 𝐻 → Sp(𝑉 ) to a unitary representation

𝜌 : Spin
𝐻 (2) → U(𝑉 ) .

Let 𝔴 → 𝐶 be a principal Spin
𝐻 (2) bundle together with an isomorphism between the frame

bundle of𝐾𝐶 and the principal U(1) bundle induced by𝔴 and homomorphism Spin
𝐻 (2) → U(1).

Define

V = 𝔴 ×
Spin

𝐻 (2) 𝑉 .

We have a short exact sequence

(5.8) 1 𝐺 𝐻 𝐼 1

so that 𝔴 induces a principal 𝐼–bundle 𝑄 → 𝐶 . Fix a connection on 𝑄 . If 𝐻 = 𝐺 × 𝐼 is a
product, then there is a 𝐺/{±1} principal bundle 𝑃 → 𝐶 associated with 𝔴. In that case, given

a connection 𝐴 ∈ A(𝑃), there is a unique connection on 𝔴 which induces 𝐴 on 𝑃 , the fixed

connection on 𝐼 , and the Levi–Civita connection on 𝐾𝐶 . This connection induces a twisted

Dolbeault operator

𝜕𝐴 : Γ(V) → Ω0,1(𝐶,V),

and we can consider the quaternionic vortex equation (5.5) with respect to this operator.

In general, if (5.8) does not split, such a bundle 𝑃 might not exist. However, we can still

consider the space of Spin
𝐻 (2) connections on 𝔴 which induce the given connection on 𝑄

and the Levi–Civita connection on 𝐾𝐶 . By abuse of notation, denote this space by A(𝑃) as
before. Moreover, the associated bundle of Lie algebras Ad(𝑃) and the group of 𝐺–gauge

transformationsG(𝑃) still exist. With this adjustment of notation, we define 𝜕𝐴 and consider

(5.5) in the general case.
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The second modification is to allow zeroth order perturbations of the Cauchy–Riemann

operator. For the discussion of compactness, it is important to restrict ourselves to perturbations

which are compatible with the hyperkähler quotient construction.

Definition 5.9. Let H(V, 𝛾) be the vector spaces modeling the affine space of 𝛾–self-adjoint

real Cauchy–Riemann operators on V, see Proposition 3.9. Denote byH(V, 𝜌) ⊂ H(V, 𝛾) the
subbundle of those 𝑎 ∈ H(V, 𝛾) which commute with 𝐺–automorphisms of V and for every

Φ ∈ V with 𝜇 (Φ) = 0,

𝑎Φ ∈ ker dΦ𝜇 ∩ (𝜌 (𝔤)Φ)⊥.

A homogeneous perturbaton is a section Υ ∈ Γ(H(V, 𝜌)). Given such Υ, define

𝜕𝐴,Υ = 𝜕𝐴 + Υ : Γ(V) → Ω0,1(𝐶,V) . •

Remark 5.10. We can interpret elements ofH(V, 𝜌) as linear vector fields on 𝑉 which descend

to a vector field on the hyperkähler quotient 𝜇−1(0)/𝐺 . ♣
Remark 5.11. In the situation of Hypothesis 5.7, varying the 𝐼–connection on the flavor symmetry

bundle 𝑄 can be incorporated into a homogeneous perturbation. ♣
The third modification is to allow inhomogeneous perturbations. As in classical Seiberg–

Witten theory, such perturbations are useful for ruling out reducible solutions

Definition 5.12. An inhomogeneous perturbation is a pair 𝜂 = (𝜂C, 𝜂R) where

(1) 𝜂C : A(𝑃) × Γ(V) → Ω1,0(𝐶,Ad 𝑃C) is anG(𝑃)–equivariant map satisfying

𝜕𝐴 (𝜂C(𝐴,Ψ)) = 0,

(2) 𝜂R : A(𝑃) × Γ(V) → Ω0(𝐶,Ad 𝑃) is anG(𝑃)–equivariant map,

such that the linearizations of 𝜂 and 𝜏 are pseudo-differential operators of order zero. •
For example, 𝜂C and 𝜂R can be holonomy perturbations, or can be independent of (𝐴,Ψ)

and take values in the center of 𝔤.

Definition 5.13. Assume Hypothesis 5.3 and Hypothesis 5.7. Fix a Riemannian metric on𝐶 and a

connection on the flavor symmetry bundle𝑄 . Let Υ and 𝜂 be homogeneous and inhomogeneous

perturbations. The (Υ, 𝜂)–pertubed quaternionic vortex equation for 𝐴 ∈ A(𝑃) and Ψ ∈ Γ(V)
is

𝜕𝐴,ΥΨ = 0,

𝜇C(Ψ) = 𝜂C(𝐴,Ψ),
∗𝐹𝐴 + 𝜇R (Ψ) = 𝜂R (𝐴,Ψ) .

(5.14)

•
Remark 5.15. The assumptions that Υ is 𝛾–self-adjoint and 𝜂C satisfies 𝜕𝐴𝜂C = 0 are technical

and probably not necessary. However, without these assumptions (5.14) has to be replaced by

more general equations (5.18) to make the equations elliptic, see Proposition 5.19 below. It is

likely that compactness theory for generalized Seiberg–Witten equations can be extended to

(5.18) but we will not consider this question here. ♣
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5.3 Moduli spaces of quaternionic vortices

Definition 5.16. In the situation of Definition 5.13, the moduli space of (Υ, 𝜂)–perturbed quater-
nionic vortices is

M(Υ, 𝜂) = {(𝐴,Ψ) ∈ A(𝑃) × Γ(V) : (𝐴,Ψ) satisfies (5.14)}/G(𝑃) .

Equip M(Υ, 𝜂) with the topology of 𝐶∞
convergence. •

Remark 5.17. In practice, it is convenient to consider perturbations Υ, 𝜂R, 𝜂C of lower regularity.

In that case, we consider solutions to (5.14) of lower regularity, such as 𝐶𝐾 for some 𝐾 ∈ N, and
equip the moduli space with the 𝐶𝐾 topology. ♣

Equation (5.14) arises from gauge theory over the 3–manifold 𝐶 × 𝑆1
(this is explained in

Appendix D). Therefore, deformation theory of solutions to (5.14) should be controlled by an

elliptic complex of index zero. The first and third equation in (5.14) already form an elliptic

system modulo gauge. However, the index of the linearization of this elliptic is not zero. To

obtain correct deformation theory with index zero, introduce the following extension of (5.14).

Denote by

𝛾 : V → V ⊗C 𝐾
∗
𝐶

the complex anti-linear map obtained by composing 𝛾 : V → V∗ ⊗C 𝐾𝐶 with the anti-linear

isomorphism V∗⊗C𝐾𝐶 → V⊗C𝐾
∗
𝐶
given by the Hermitian inner product. Consider the following

equations for a triple (𝐴,Ψ, 𝜁 ) where 𝜁 ∈ Γ(Ad 𝑃C):

(𝜕𝐴,Υ + 𝛾 (𝜌 (𝜁 )Ψ) = 0,

𝜕𝐴𝜁 + 𝜇C(Ψ) = 𝜂C(𝐴,Ψ),
∗𝐹𝐴 + 𝜇R (Ψ) = 𝜂R (𝐴,Ψ) .

(5.18)

The next proposition, which follows from a standard calculation in Seiberg–Witten theory, see

Proposition D.4, shows that the additional field 𝜁 can be ignored.

Proposition 5.19. If (𝐴,Ψ, 𝜁 ) is a solution to (5.18), then

𝜕𝐴𝜁 = 0 and 𝜌 (𝜁 )Ψ = 0.

In particular, if the stabilizer of (𝐴,Ψ) inG is trivial, then 𝜁 = 0.

By linearizing (5.18) at (𝐴,Ψ, 0) modulo the action ofG(𝑃), we associate with the solution

an elliptic deformation complex:

Ω0(Ad 𝑃) Ω0(Ad 𝑃C) ⊕ Ω1(Ad 𝑃) ⊕ Γ(V) Ω2(Ad 𝑃) ⊕ Ω0,1(Ad 𝑃C) ⊕ Ω0,1(V) .

We have real isomorphisms

Ω0,1(𝐶,C) � Ω1(𝐶,R) and Ω0(𝐶,C) � Ω0(𝐶,R) ⊕ Ω2(𝐶,R),

with respect to which the map

d + d
∗

: Ω1(𝐶,R) → Ω0(𝐶,R) ⊕ Ω2(𝐶,R)
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is identified with

𝜕∗ : Ω0,1(𝐶,C) → Ω0(𝐶,C) .
We also use the real isomorphism 𝛾 : Γ(V) � Ω0,1(V). Under these identifications, the operator
associated with the deformation complex is

𝐿𝐴,Ψ : Ω0,•(Ad 𝑃C) ⊕ Γ(V) → Ω0,•(Ad 𝑃C) ⊕ Γ(V),

𝐿𝐴,Ψ =

(
𝜕𝐴 + 𝜕∗

𝐴
Γ∗Ψ

ΓΨ 𝛾−1𝜕𝐴,Υ

)
+𝑇𝐴,Ψ𝜂

where Ω0,• = Ω0 ⊕ Ω0,1
, the map ΓΨ : Ω0,•(Ad 𝑃C) → V is defined by

ΓΨ (𝜉 + 𝑎) = 𝜌 (𝜉)Ψ + 𝛾−1(𝜌 (𝑎)Ψ) for 𝜉 ∈ Ad 𝑃C and 𝑎 ∈ 𝐾∗
𝐶 ⊗ Ad 𝑃C,

and 𝑇𝐴,Ψ𝜂 is the derivative of 𝜂 (𝐴,Ψ) at (𝐴,Ψ). The operator 𝐿𝐴,Ψ is a compact perturbation of

the self-adjoint elliptic operator (
𝜕𝐴 + 𝜕∗

𝐴
0

0 𝛾−1𝜕𝐴,Υ

)
.

Therefore, 𝐿𝐴,Ψ is elliptic and index(𝐿𝐴,Ψ) = 0.

Remark 5.20. An alternative way to obtain the deformation operator is to consider the equation

for citical points of the complex Chern–Simons functional modulo the complex gauge group

GC(𝑃). (We assume here that Υ is C–linear so that the complex Chern–Simons functional is

GC(𝑃)–invariant.) A finite-dimensional analog is the deformation complex associated with

a critical point of a holomorphic Morse function invariant under the action of a complex Lie

group. From this point of view, the deformation complex is

Ω0(Ad 𝑃C) Ω0,1(Ad 𝑃C) ⊕ Γ(V) Ω1,0(Ad 𝑃C) ⊕ Ω0,1(V) Ω1,1(Ad 𝑃C) .

The first map is the linearization of theGC(𝑃) action, the second map is the linearization of the

equation with a complex co-gauge condition, and the remaining two maps are complex dual to

the first two over C. Observe that Ω1,0
is dual to Ω0,1

and Ω0
is dual to Ω1,1

using the wedge

product and integration, and similarly Ω0,1(V) is dual to Γ(V) by the pairing

𝛼 ∈ Ω0,1(V), 𝛽 ∈ Γ(V) ↦→
ˆ
Σ
Ω(𝛼 ∧ 𝛽).

With respect to these identifications, the above complex is self-dual over C. Under the isomor-

phisms

Ω0(Ad 𝑃) ⊕ Ω2(Ad 𝑃) � Ω0(Ad 𝑃C), Ω1(Ad 𝑃) � Ω0,1(Ad 𝑃C), Γ(V) � Ω0,1(V)

the operator associated with the above complex agrees with 𝐿𝐴,Ψ. ♣
The following is a standard application of the implicit function theorem and the existence

of slices for the action of the gauge group.

Definition 5.21. A solution (𝐴,Ψ) to (5.14) is irreducible if the stabilizer of (𝐴,Ψ) inG is trivial,

and unobstructed if coker𝐿𝐴,Ψ = {0}) (equivalently, ker𝐿𝐴,Ψ = {0}). •
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Proposition 5.22. Let (𝐴,Ψ) be a solution to (5.14) and let𝐺𝐴,Ψ be the stabilizer of (𝐴,Ψ) inG(𝑃).
The operator 𝐿𝐴,Ψ is 𝐺𝐴,Ψ–equivariant and there exist

(1) an open neighborhood𝑈 of [𝐴,Ψ] inM(Υ, 𝜂),

(2) a 𝐺𝐴,Ψ–equivariant open neihborhood𝑈 of 0 in ker𝐿𝐴,Ψ,

(3) a 𝐺𝐴,Ψ–equivariant smooth map 𝜅 : 𝑈 → 𝑈

such that𝑈 is homeomorphic to𝜅−1(0)/𝐺𝐴,Ψ. In particular, if every [𝐴,Ψ] ∈ M(Υ, 𝜂) is irreducible
and unobstructed, thenM(Υ, 𝜂) is a discrete space.

The determinant line bundle of the family of operators 𝐿𝐴,Ψ over A(𝑃) × Γ(V) is G(𝑃)–
equivariantly trivial because theG(𝑃)–equivariant homotopy

𝐿𝐴,Ψ;𝑡 =

(
𝜕𝐴 + 𝜕∗

𝐴
𝑡Γ∗Ψ

𝑡ΓΨ 𝛾−1𝜕𝐴 + 𝑡Υ

)
+ 𝑡𝑇𝐴,Ψ𝜂

connects 𝐿𝐴,Ψ = 𝐿𝐴,Ψ;1 with 𝐿𝐴,Ψ;0, which is the sum of a C–linear and C–antilinear operator.
For every irreducible unobstructed solution [𝐴,Ψ] ∈ M(Υ, 𝜂), define sign(𝐴,Ψ) ∈ {−1, 1} by
orientation transport from det𝐿𝐴,Ψ;0 to det𝐿𝐴,Ψ;1.

Definition 5.23. Suppose thatM(Υ, 𝜂) is compact and all solutions inM(Υ, 𝜂) are irreducible
and unobstructed. Define

(5.24) #M(Υ, 𝜂) =
∑︁

[𝐴,Ψ]∈M (Υ,𝜂 )
sign(𝐴,Ψ) .

•
General Fredholm theory allows us to extend this definition to the case when the moduli

space is compact but possibly obstructed; see [CGMS02, Theorem 2.7], [Bru96, Proposition 14].

Proposition 5.25. For every (Υ, 𝜂) such thatM(Υ, 𝜂) is compact and consists of irreducible solutions
we can associate then #M(Υ, 𝜂) ∈ Z in such a way that:

(1) If all solutions inM(Υ, 𝜂) are unobstructed, then #M(Υ, 𝜂) agrees with (5.24).

(2) If (Υ𝑡 , 𝜂𝑡 )𝑡 ∈[0,1] is a continuous path such thatM(Υ𝑡 , 𝜂𝑡 ) is compact and consists of irreducible
solutions for all 𝑡 ∈ [0, 1], then

#M(Υ0, 𝜂0) = #M(Υ1, 𝜂1) .

In general, the moduli space M(Υ, 𝜂) may be non-compact. This phenomenon was studied

in [Tau13b; HW15; WZ21]. The known compactness results assume the following algebraic

property of the quaternionic representation 𝜌 : 𝐺 → 𝑉 .

Hypothesis 5.26. Given Φ ∈ 𝑉 define ΓΨ : ImH ⊗ 𝔤 → 𝑉 by ΓΨ (𝑞 ⊗ 𝜉) = 𝑞𝜌 (𝜉)𝑉 . Suppose that
there exist constants 𝛿, 𝑐 > 0 such that for every Ψ ∈ 𝑉 with |Ψ| = 1 and |𝜇 (Ψ) ⩽ 𝛿

|𝜇 (Ψ) | ⩽ 𝑐 |ΓΨ𝜇 (Ψ) |.
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Definition 5.27. Let Υ be a homogeneous perturbation. An Υ–limiting configuration is a triple

(𝐵,𝐴,Ψ) consisting of

• a nowhere dense closed subset 𝐵 ⊂ 𝐶 ,

• a 𝐺–connection 𝐴 on 𝑃 |𝐶\𝐵 ,

• a section Ψ ∈ Γ(𝐶\𝐵,V) with ∥Ψ∥𝐿2 = 1 and ∥∇𝐴Ψ∥𝐿2 < ∞,

such that

𝜕𝐴,ΥΨ = 0,

𝜇C(Ψ) = 0,

𝜇R (Ψ) = 0,

and |Ψ| extends to a Hölder continuous function on 𝐶 such that |Ψ|−1(0) = 𝐵. •
The following is an adaptation of a compactness theorem for generalized Seiberg–Witten

equations [WZ21]. The proof is postponed until Appendix D.

Theorem 5.28. Assume that the quaternionic representation 𝜌 : 𝐺 → Sp(𝑉 ) satisfies Hypothe-
sis 5.26. Let (𝐴𝑛,Ψ𝑛) be a sequence of solutions to the (Υ, 𝜂)–perturbed quaternionic vortex equation
such that |𝜂 (𝐴𝑛,Ψ𝑛) |, |∇𝐴𝑛

𝜂 (𝐴𝑛,Ψ𝑛) | are uniformly bounded.

(1) If lim sup𝑛→∞ ∥Ψ𝑛 ∥𝐿2 < ∞, then after passing to a subsequence and applying gauge trans-
formations (𝐴𝑛,Ψ𝑛) converges in 𝐶∞ to a solution (𝐴,Ψ).

(2) If lim sup𝑛→∞ ∥Ψ𝑛 ∥𝐿2 = ∞, then there exists an Υ–limiting configuration (𝐵,𝐴,Ψ) such
that after passing to a subsequence and applying gauge transformations over 𝐶\𝐵

(a) |Ψ𝑛 |/∥Ψ𝑛 ∥𝐿2 converges to |Ψ| in the 𝐶0,𝛼 topology over 𝐶 for some 𝛼 ∈ (0, 1),
(b) 𝐴𝑛 converges to 𝐴 in the weak𝑊 1,2 topology over compact subsets of 𝐶\𝐵,
(c) Ψ𝑛/∥Ψ𝑛 ∥𝐿2 converges to Ψ in the weak𝑊 2,2 topology over compact subsets of 𝐶\𝐵.

5.4 ADHM vortex equations

The moduli space M𝑟,𝑘 of framed instantons on R4
with structure group SU(𝑟 ) and charge

𝑘 is a hyperkähler orbifold. The ADHM construction exhibits M𝑟,𝑘 as a finite-dimensional

hyperkähler quotient of a quaternionic representation of U(𝑘). In this section we discuss the

quaternionic vortex equations associated with this representations. These equations were

proposed by Haydys–Walpuski in relation to gauge theory on special holonomy manifolds

[HW15]; for related discussion see [DW19].

Let 𝐺 = U(𝑘) and

𝑉 = (H ⊗C End(C𝑘 )) ⊕ (H ⊗C HomC(C𝑟 ,C𝑘 )) .

Define a quaternionic structure on 𝑉 by left quaternionic multiplication on H. Define a quater-
nionic representation 𝜌 : 𝐻 → Sp(𝑉 ) by the adjoint action of 𝐺 on End(C𝑘 ) and the standard
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action on C𝑘 , and by 𝐾 acting by right quaternionic multiplication on the first summand, and

trivially on the second summand. The quaternionic moment map for the 𝐺 action is

𝜇 : 𝑉 → R3 ⊗ 𝔲(𝑘),
𝜇 (𝜉,Ψ) = [𝜉 ∧ 𝜉]+ + (ΨΨ∗)0.

The first term combines the wedge product and the Lie bracket on 𝔲(𝑘) with the projection

Λ2R4 → Λ+R4 = R3
. The second term involves projecting ΨΨ∗

on 𝔰𝔲(2) ⊂ End(R4) and
identification 𝔰𝔲(2) � Λ4R4 = R3

using the Clifford multiplication. Let Ψ = (𝛼, 𝛽∗) under
identification H = C2

, where 𝛼 ∈ HomC(C𝑟 ,C𝑘 ) and 𝛽 ∈ HomC(C𝑘 ,C𝑟 ). The complex and real

moment maps (multiplied by 𝑖) are

𝜇C(𝜉,Ψ) = [𝜉 ∧ 𝜉] + 𝛼𝛽,
𝜇R (𝜉,Ψ) = [𝜉, 𝜉∗] + 𝛼𝛼∗ − 𝛽∗𝛽,

where in the first formula we identify Λ2C2 = C.
Theorem 5.29 (Atiyah–Hitchin–Drinfeld–Manin). The hyperkähler quotient of 𝑉 by 𝐺 is isomor-
phic to M𝑟,𝑘 if 𝑟 ⩾ 2 and to Sym

𝑘 H if 𝑟 = 1.

The ADHM representation has a natural flavor symmetry as in Hypothesis 5.7. Let

𝐾 = Sp(1) × SU(𝑟 ) and 𝐻 = 𝐺 × 𝐾.

The action of𝐺 extends to an action of Spin
𝐻 (2) with the action of𝐾 preserving the quaternionic

structure and commutingwith𝐺 . The action of Sp(1) on𝑉 is by right quaternionicmultiplication

𝑞 · 𝑣 ↦→ 𝑣𝑞−1
.

The resulting quaternionic vortex equation (5.5) is concretely described as follows. We start

with the following data:

• a Riemann surface 𝐶 ,

• a Hermitian vector bundle 𝑁 → 𝐶 of rank two, equipped with a U(2) connection,

• a covariantly constant isomorphism Λ2

C𝑁 � 𝐾𝐶 ,

• a Hermitian vector bundle 𝐸 → 𝐶 of rank 𝑟 and trivial determinant line bundle, equipped

with an SU(𝑟 ) connection, and

• a Hermitian vector bundle 𝐻 → 𝐶 of rank 𝑘 .

The equation involves a U(𝑘) connection 𝐴 on𝑈 and a section Ψ of

(5.30) V = (𝑁 ⊗C End𝐻 ) ⊕ (HomC(𝐸, 𝐻 ) (⊕(HomC(𝐻, 𝐸) ⊗ 𝐾) .

If Ψ = (𝜉, 𝛼, 𝛽), where

𝜉 ∈ Γ(𝑁 ⊗ End𝐻 ), 𝛼 ∈ Γ(HomC(𝐸, 𝐻 )), 𝛽 ∈ Ω1,0(𝐶,HomC(𝐻, 𝐸))),
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then the (unperturbed) (𝑟, 𝑘) ADHM vortex equation is

𝜕𝐴𝛼 = 0, 𝜕𝐴𝛽 = 0, 𝜕𝐴𝜉 = 0,

[𝜉 ∧ 𝜉] + 𝛼𝛽 = 0,

𝑖 ∗ 𝐹𝐴 + [𝜉, 𝜉∗] + 𝛼𝛼∗ − ∗𝛽∗𝛽 = 0.

(5.31)

In the second equation, [𝜉∧𝜉] combines the wedge product𝑁 ⊗𝑁 → Λ2

C𝑁 with the commutator

on End𝐻 , followed by the isomorphism Λ2

C𝑁 � 𝑇
∗𝐶 . In the third equation, [𝜉, 𝜉∗] combines

the Hermitian inner product on 𝑁 with the commutator on End𝐻 , so that it takes place in

Γ(End𝐻 ). The equation is equivariant with respect to the action of the groupG(𝐻 ) of unitary
gauge transformations of 𝐻 .

Our goal is to consider a perturbation of (5.31) of the form Definition 5.16, for a suitable

class of Υ and 𝜂, and use them to define chambered invariants of (Υ, 𝜂). We expect that this

is possible for all values of (𝑟, 𝑘). However, the known compactness results for quaternionic

vortex equations require the technical assumption from Hypothesis 5.26, which is satisfied only

for (𝑟, 𝑘) = (1, 2) and (𝑟, 𝑘) = (𝑘, 2). We focus on these two cases.

5.5 The (1, 2) ADHM vortex equation

In this section we define chambered invariants of real Cauchy–Riemann operators using the

ADHM vortex equation (5.31) with 𝑟 = 1 and 𝑘 = 2.

Let 𝐶 be a compact Riemann surface. Let 𝐻 be a Hermitian vector bundle of rank 2. Let

𝑁 → 𝐶 be a Hermitian vector bundle of rank 2 equipped with an isomorphism 𝛾 : 𝑁 � 𝑁 †
,

where 𝑁 † = 𝑁 ⊗C 𝐾
∗
𝐶
. Denote byCR(𝑁,𝛾) the space of real Cauchy–Riemann operator which

are self-adjoint with respect to 𝛾 . Every such operator can be written as

𝔡 = 𝜕𝑁 + Υ

where 𝜕𝑁 is a fixed self-adjoint Cauchy–Riemann operator on 𝑁 and Υ ∈ Γ(H(𝑁,𝛾)), see
Proposition 3.9. For every Υ as above and U(2) connection 𝐴 on 𝐻 denote by

𝜕𝐴,Υ = 𝜕𝑁,𝐴 + Υ ⊗ id : Γ(𝑁 ⊗C EndC𝐻 ) → Ω0,1(𝐶, 𝑁 ⊗C EndC𝐻 )

the induced real Cauchy–Riemann operator on 𝑁 ⊗C EndC𝐻 .

Definition 5.32. Let Υ ∈ Γ(H(𝑁,𝛾)) and 𝜂 = (𝜂C, 𝜂R) ∈ H
1,0(𝐶) × R. The (Υ, 𝜂)-perturbed

(1, 2) ADHM vortex equation for

𝐴 ∈ A(𝐻 ), 𝜉 ∈ Γ(𝑁 ⊗C EndC𝐻 ), 𝛼 ∈ Γ(𝐻 ), 𝛽 ∈ Ω1,0(𝐻 ∗)

reads

𝜕𝐴𝛼 = 0, 𝜕𝐴𝛽 = 0, 𝜕𝐴,Υ𝜉 = 0,

[𝜉 ∧ 𝜉] + 𝛼𝛽 = 𝜂C ⊗C id𝐻 ,

𝑖 ∗ 𝐹𝐴 + [𝜉, 𝜉∗] + 𝛼𝛼∗ − ∗𝛽∗𝛽 = (𝜂R + 𝜋 deg(𝐻 ))id𝐻 .
(5.33)
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Remark 5.34. This is the ADHM vortex equation (5.31) for (𝑟, 𝑘) = (1, 2) with homogeneous

and inhomogeneous pertubations, as in (5.14). We consider here the subset of homogeneous

perturbations given by sections ofH(𝑁,𝛾) rather than the fullH(V, 𝜌). ♣
Let W ⊂ CR(𝑁,𝛾) be the wall of failure of 2-rigidity defined in Section 3.3.

Theorem 5.35. Let 𝔡 = 𝜕𝑁 + Υ and 𝜂 ∈ H
1,0(𝐶) × R. Suppose that 𝔡 ∈ CR(𝑁, 𝑆)\W and

𝜂 ∉ {0}× (𝜋/2)Z. The signed count of solutions #M1,2(𝔡, 𝜂, 𝑑) to the (Υ, 𝜂)-perturbed (1, 2) ADHM
equation for the bundle 𝐻 with deg(𝐻 ) = 𝑑 is well-defined, as in Proposition 5.25, and defines an
element

• #M1,2(·, 𝑑) ∈ H
0(CR(𝑁,𝛾)\W;Z) if the genus of 𝐶 is positive,

• #M1,2(·, 𝑑) ∈ H
0((CR(𝑁,𝛾)\W) × (R\(𝜋/2)Z);Z) if the genus of 𝐶 is zero.

We begin with a description of limiting configurations for the (1, 2) ADHM vortex equation

(in the sense of Definition 5.27).

Proposition 5.36. Let 𝔡 = 𝜕𝑁 + Υ. If (𝐵,𝐴,Ψ) is an Υ-limiting configuration for the (1, 2) ADHM
vortex equation (5.33), then there exist a Euclidean line bundle 𝔩 over 𝐶\𝐵, a bundle inclusion

𝜌 : 𝔩 ⊗ C ↩→ (EndC𝐻 ) |𝐶\𝐵,

and sections 𝜉0 ∈ Γ(𝐶\𝐵, 𝑁 ⊗ 𝔩) and 𝜉1 ∈ Γ(𝐶, 𝑁 ) such that

(1) ∇𝐴𝜌 = 0,

(2) 𝜉0 satisfies 𝔡𝔩 (𝜉0) = 0 and is of class𝑊 1,2 on 𝐶\𝐵,

(3) |𝜉0 | extends to a Hölder continuous function on 𝐶 such that |𝜉0 |−1(0) = 𝐵,

(4) 𝜉1 satisfies 𝔡(𝜉1) = 0 on 𝐶 ,

(5) 𝜉 = 𝜌 (𝜉0) + 𝜉1 ⊗𝐶 id𝐻 .

Moreover, the set 𝐵 is finite.

Proof. Defne ˆ𝜉0 and 𝜉1 to be the trace-free and trace part of 𝜉 , so that Ψ = ( ˆ𝜉0+𝜉1, 𝛼, 𝛽). Equation
𝜇 (Ψ) = 0 implies that 𝛼 = 𝛽 = 0 and

ˆ𝜉0 has two eigenvalues ±𝜆 ∈ 𝑁 . (This is how one proves

that the hyperkähler quotient of the ADHM1,2 representation is the symmetric product Sym
4 R4

.)

Locally over 𝐶\𝐵 we can choose eigenvectors Ψ± in 𝐻 such that
ˆ𝜉Ψ± = ±𝜆Ψ± and |Ψ± | = 1.

Trace-free endomorphisms which are diagonal with respect to the basis Ψ−,Ψ+ define a line
subbundle of EndC𝐻 , which is the image of 𝜌 : 𝔩 ⊗ C → EndC𝐻 for some Euclidean line bundle

𝔩. By construction,
ˆ𝜉0 = 𝜌 (𝜉0), and equation (𝜕𝑁,𝐴 + Υ) ( ˆ𝜉0) = 0 is equivalent to 𝔡𝔩 (𝜉0) = 0. It

follows from Proposition 4.11 that 𝐵 is finite. Since 𝜉1 is a𝑊
1,2

section of 𝑁 defined over 𝐶\𝐵
and satisfying 𝔡(𝜉1) = 0, the unique continuation principle implies that 𝜉1 extends to all of 𝐶 .

The other propertiers of 𝜉0 and 𝜉1 follow from the definition of a limiting configuration. ■

54



Proof of Theorem 5.35. First, we show that if 𝜂C ≠ 0, then the moduli spaceM(𝔡, 𝜂, 𝑑) consists
of irreducible solutions. Suppose that (𝐴, 𝜉, 𝛼, 𝛽) is a reducible solution to (5.33). By considering

possible stabilizers of 𝐴 in the gauge groupG, and how these stabilizers act on (𝜉, 𝛼, 𝛽), we see
that there are two possibilities. The first is that (𝛼, 𝛽) = (0, 0); taking the trace of the second
equation shows that this is impossible. The second possibility is that there exists an orthogonal

splitting 𝐻 = 𝐿1 ⊕ 𝐿2 which is covariantly constant with respect to 𝐴 and such that 𝜉 (𝐿𝑖) ⊂ 𝐿𝑖
and 𝛼 ∈ Γ(𝐿1), 𝛽 ∈ Ω1,0(𝐿∗

1
). In that case, [𝜉 ∧ 𝜉] = 0 and 𝛼𝛽 is a bundle homomorphism

𝐻 → 𝐾𝐶 ⊗C 𝐻 of rank one, so we cannot have 𝛼𝛽 = 𝜂C ⊗ id𝐻 . Therefore, every solution is

irreducible.

(The genus zero case is proved similarly. If 𝜂C = 0 and 𝜂R ≠ 0, then (𝛼, 𝛽) ≠ (0, 0)
by integrating the third equation. On the other hand, if 𝐸 = 𝐿1 ⊕ 𝐿2 and 𝐴 = 𝐴1 ⊕ 𝐴2 as

above, then one of 𝛼 or 𝛽 must vanish by the second equation. The third equation gives us

𝑖 ∗ 𝐹𝐴2
= 𝜂R + 𝜋 deg(𝐻 ), which contradicts with 𝜂R ∉ (𝜋/2)Z.)

To prove compactness, assume that (𝐴𝑛,Ψ𝑛) is a sequence of solutions, withΨ𝑛 = (𝜉𝑛, 𝛼𝑛, 𝛽𝑛).
By Theorem 5.28, if lim sup𝑛→∞ ∥Ψ𝑛 ∥𝐿2 < ∞, then after passing to a subsequence and apply-

ing gauge transformations (𝐴𝑛,Ψ𝑛) converges to a solution. Suppose, by contradiction, that

lim𝑛 ∥Ψ𝑛 ∥𝐿2 = ∞. By Theorem 5.28 there exists a limiting configuration (𝐵,𝐴,Ψ). By Proposi-

tion 5.36, 𝐵 is finite and there exists a Euclidean line bundle 𝔩 over𝐶\𝐵 together with a non-zero

𝑊 1,2
section 𝜁0 satisfying 𝔡

𝔩 (𝜁0). This contradicts the assumption that 𝔡 is 2-rigid. Therefore,

lim sup𝑛→∞ ∥Ψ𝑛 ∥𝐿2 < ∞ for any sequence of solutions andM(𝔡, 𝜂, 𝑑) is compact. This means

that we are in a situation in which Proposition 5.25 can be applied.

If 𝐶 has positive genus, any two choices 𝜂, 𝜂′ ∈ (H1,0(𝐶) ⊕ R)\{(0, 0)} can be connected by

a path avoiding (0, 0) which shows that #M1,2(𝔡, 𝜂, 𝑑) = #M1,2(𝔡′, 𝜂′, 𝑑). Given a path (𝔡𝑡 )𝑡 ∈[0,1]
such that 𝔡𝑡 ∉ W, we can lift it to a path (Υ𝑡 , 𝜂𝑡 ) as above. The preceding discussion implies

that M(𝔡𝑡 , 𝜂𝑡 , 𝑑) is compact and consists of irreducible solutions for every 𝑡 ∈ [0, 1]. Therefore,
Proposition 5.25 implies that

#M1,2(𝔡0, 𝜂0, 𝑑) = #M1,2(𝔡1, 𝜂1, 𝑑),

so that it is constant on connected components ofCR(𝑁,𝛾)\W. The genus zero case is similar

except that H
1,0(𝐶) = 0 and we need to take 𝜂R ∉ (𝜋/2)Z. ■

5.6 The (2, 1) ADHM vortex equation

In this section we define chambered invariants of real Cauchy–Riemann operators using the

ADHM vortex equation (5.31) with (𝑟, 𝑘) = (2, 1) The construction of perturbations in this case

is somewhat more involved than in the case (𝑟, 𝑘) = (1, 2) discussed earlier, as the algebra of
the (2, 1) ADHM representation has a less direct geometric interpretation. For that reason, it is

convenient to write (5.31) in a different form than in the previous section, emphasising the role

of spinors and Dirac operators.

We begin with a discussion of spin and spin
𝑐
Dirac operators in dimension two. For a brief

summary of spinors in low dimensions and their relation to quaternions see Appendix C. Let

𝐶 be a Riemann surface and let 𝐸 → 𝐶 be a Hermitian vector bundle with structure group

SU(2) = Sp(1) equipped with an SU(2) connection. A spin structure on 𝐶 is equivalent to a
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Hermitian line bundle 𝑆+ and an isometry 𝑆+ ⊗C 𝑆
+ � 𝐾𝐶 . The spinor bundle is

𝑆 = 𝑆+ ⊕ 𝑆− with 𝑆− = 𝑆+ ⊗C 𝐾
∗ = (𝑆+)∗.

The Levi-Civita connection on 𝐾𝐶 induces a spin connection on 𝑆 . Two different spinor bundles

𝑆 and 𝑆 ′ are isomorphic as unitary bundles but as bundles with connections 𝑆 ′ = 𝑆 ⊗ 𝔩 where 𝔩

is a real line bundle with a flat {±1}–connection. Set

S = 𝐸 ⊗C 𝑆 and S± = 𝐸 ⊗C 𝑆
±

and consider the spin Dirac operator twisted by the connection on 𝐸

𝐷 : Γ(S) → Γ(S),

𝐷 =

(
0 𝜕∗

𝐸

𝜕𝐸 0

)
,

where 𝜕𝐸 is the Cauchy–Riemann operator twisted by the connection on 𝐸

𝜕𝐸 : Γ(S+) → Ω0,1(S+) = Γ(S−) .

The Dirac operator 𝐷 is C-linear and self-adjoint. Since S is the complex tensor product of two

quaternionic line bundles, it inherits a real structure

𝜏 : S → S,

which is a C-antilinear isomorphism satisfying 𝜏2 = id, defined as the tensor product of the C-
antilinear multiplication by 𝑗 on 𝐸 and 𝑆 . The Dirac operator 𝐷 commutes with 𝜏 and preserves

the spliting into ±1 eigenspaces of 𝜏 . Let

SR = Re(𝐸 ⊗C 𝑆)

be the +1 eigenspace. Denote the induced self-adjoint R-linear operator by

𝐷R : Γ(SR) → Γ(SR) .

Definition 5.37. Let End𝜏 (S) be the subbundle of self-adjoint C-linear endomorphisms which

commute with 𝜏 . For every Υ ∈ Γ(End𝜏 (S)) set

𝐷Υ = 𝐷 + Υ : Γ(S) → Γ(S)

and denote by

𝐷Υ,R : Γ(SR) → Γ(SR) .

the induced real operator. •
Remark 5.38. The bundle End𝜏 (S) does not depend on the choice of the spin structure. Therefore,
Υ ∈ Γ(End𝜏 (S)) defines a perturbation of the spin Dirac operator for every spin structure. ♣

The next proposition follows from linear algebra discussed in Appendix C.

56



Proposition 5.39. Define an operator 𝔡Υ by the commutative diagram

Γ(SR) Γ(SR)

Γ(S+) Γ(S−)

𝐷Υ,R

𝔡Υ

where the vertical arrows are induced by the projections S → S±. Then 𝔡Υ is a real Cauchy–Riemann
operator on S+ which is self-adjoint with respect to the isomorphism

𝛾 : S+ → (S+)∗ ⊗C 𝐾𝐶

induced by 𝑆+ ⊗C 𝑆
+ � 𝐾𝐶 and Λ2

C𝐸 � C. Conversely, every 𝛾-self-adjoint real Cauchy–Riemann
operator on S+ is of this form for a unique Υ ∈ Γ(End𝜏 (S)).

Proof. For Υ = 0 this follows from the relation between the Dirac operator and the Cauchy–

Riemann operator in dimension 2, see Proposition C.1. The general case then follows from the

isomorphism End𝜏 (S) � Hom(S+, S−) described in Proposition C.2. ■

From now on, we will implicitly identify the spaceCR(S+, 𝛾) of 𝛾-self-adjoint real Cauchy–
Riemann operators on S+ with the space of Dirac operators on SR of the form 𝐷Υ,R. This is an

affine space modeled on Γ(End𝜏 (S)).
Remark 5.40. The section Υ can be recovered from 𝔡Υ as follows. Let 𝔡Υ = 𝜕𝐸 + 𝔫 for 𝔫 ∈
Γ(Hom(S+, S−)). Let 𝔫 = 𝔫𝑐 + 𝔫𝑎 be the decomposition into C-linear and C-antilinear parts.
Denote by

𝛾 : S → S

the C-antilinear isomorphism which combines multiplication by 𝑗 on 𝐸 with the isomorphism

𝑆± � 𝑆± given by the Hermitian metric. Then Υ is expressed in terms of 𝔫 by

Υ =

(
−𝛾𝔫𝑎 𝛾𝔫𝑐𝛾

𝔫𝑐 −𝔫𝑎𝛾

)
. ♣

Next, we discuss spin
𝑐
structures on 𝐶; such a structure corresponds to the choice of a

Hermitian line bundle det(𝑊 ) → 𝐶 of even degree. If𝑊 =𝑊 + ⊕𝑊 −
is the spinor bundle, then

𝑊 − = 𝐾∗ ⊗C𝑊
+

and det(𝑊 ) = 𝐾∗ ⊗C (𝑊 +)2.

A U(1) connection 𝐴 on det(𝑊 ) induces a unique spin𝑐 connection on𝑊 such that the induced

connection on det(𝑊 ) agrees with 𝐴. Set

W = 𝐸 ⊗C𝑊 and W± = 𝐸 ⊗C𝑊
±.

Given such 𝐴 and a connection on 𝐸, the corresponding twisted Dirac operator onW is

𝐷𝐴 : Γ(W) → Γ(W),

𝐷𝐴 =

(
0 𝜕∗

𝐴

𝜕𝐴 0

)
,
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where

𝜕𝐴 : Γ(W+) → Ω0,1(𝐶,W+) = Γ(W−)

is the Cauchy–Riemann operator twisted by 𝐴 and the connection on 𝐸. This operator can be

perturbed in the following way.

Definition 5.41. Fix a spin structure on 𝐶 with spinor bundle 𝑆 . Since𝑊 is obtained from 𝑆 by

tensoring by a complex line bundle, a section Υ of End𝜏 (S) can be interpreted as a section of

the bundle of C-linear self-adjoint endomorphisms ofW. Given a connection 𝐴 on det𝑊 , let

𝐷𝐴,Υ = 𝐷𝐴 + Υ : Γ(W) → Γ(W) . •

Definition 5.42. Let𝐶 be a Riemann surface, let 𝐸 → 𝐶 be a complex vector bundle with structure

group SU(2), and let𝑊 → 𝐶 be a spin
𝑐
structure. Let Υ ∈ Γ(End𝜏 (S)) and 𝜂 = (𝜂C, 𝜂R) where

𝜂 ∈ H
1,0(𝐶) and 𝜂R ∈ R. The (Υ, 𝜂)-perturbed (2, 1) ADHM vortex equation for

𝐴 ∈ A(det𝑊 ), and Ψ = (𝛼, 𝛽) ∈ Γ(W),

reads

𝐷𝐴,ΥΨ = 0,

𝜇C(Ψ) = 𝜂C,
∗𝐹𝐴 + 𝑖𝜇R (Ψ) = 𝜂R + 2𝜋 deg(𝑊 ),

(5.43)

where

𝜇C(Ψ) = 𝛼∗𝛽, and 𝜇R (Ψ) = 𝑖 ( |𝛼 |2 − |𝛽 |2). •

Remark 5.44. These equations are equivalent to a perturbation of the ADHM vortex equation

(5.31) for 𝑟 = 2, 𝑘 = 1. The equations for 𝜉 in (5.31) decouple so that 𝜉 can be ignored. The

remaining equations can be identified with (5.43) by taking𝑊 + = 𝑆+ ⊗𝐻 , replacing 𝐸 by 𝐸∗, and
𝛽 by 𝛽∗. The point of that last conjugation is thatH can be considered asC2

in two different ways

by left- or right-multiplication by 𝑖 , so that the associated bundle S has two natural complex

structures; the description used in (5.14) corresponds to one of them, and in (5.43) to the other.

As for perturbations, by Proposition 5.39 we can consider Γ(End𝜏 (S)) as a subspace of the space
of homogeneous perturbations introduced in Definition 5.9. We use Dirac operators as they

interact with the algebraic structure of the (2, 1) ADHM representation in a more natural way

than Cauchy–Riemann operators. ♣
Let W ⊂ CR(S+, 𝛾) be the wall of failure of 2-rigidity defined in Section 3.3.

Theorem 5.45. Let 𝔡 ∈ CR(S+, 𝛾)\W. Let 𝐷Υ,R be the Dirac operator corresponding to 𝔡 under
Proposition 5.39. Let 𝜂 ∈ H

1,0(𝐶) × R\{(0, 0)}. The signed count of solutions #M2,1(𝔡, 𝜂, 𝑑) to the
(Υ, 𝜂)-perturbed (2, 1) ADHM equation for the spin𝑐 structure with deg𝑊 + = 𝑑 is well-defined, as
in Proposition 5.25, and defines an element

• #M1,2(·, 𝑑) ∈ H
0(CR(S+, 𝛾)\W;Z) if the genus of 𝐶 is positive,

• #M1,2(·, 𝑑) ∈ H
0((CR(S+, 𝛾)\W) × (R\{0});Z) if the genus of 𝐶 is zero.
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Since the proof uses Theorem 5.28, we need to understand limiting configurations for the

(2, 1) ADHM vortex equation.

Proposition 5.46. If (𝐵,𝐴,𝜓 ) is an Υ-limiting configuration for the (2, 1) ADHM vortex equation
(5.43), then there exist a Euclidean line bundle 𝔩 over 𝐶\𝐵 and an isomorphism

𝜌 : 𝑊 |𝐶\𝐵 → 𝑆 |𝐶\𝐵 ⊗ 𝔩

such that ∇𝐴𝜌 = 0 and the section ΨR = (id𝐸 ⊗C 𝜌)Ψ has the following properties:

(1) ΨR takes values in SR ⊗ 𝔩,

(2) ΨR is of class𝑊 1,2 on 𝐶\𝐵,

(3) |ΨR | extends to a Hölder continuous function on 𝐶 such that |ΨR |−1(0) = 𝐵,

(4) 𝐷 𝔩
ΥΨR = 0.

Moreover, the set 𝐵 is finite.

Remark 5.47. The bundle 𝑆 ⊗ 𝔩 is the spinor bundle of a spin structure on 𝐶\𝐵. Therefore, a
limiting configuration induces a reduction of the spin

𝑐
structure𝑊 to a spin structure outside

𝐵. In particular, deg𝑊 is equal to a signed count of points in 𝐵. This is a 2-dimensional analog

of [Hay19, Theorem 4]. ♣

Proof. This is a special case of a theorem of Haydys describing limiting configurations of

generalized Seiberg–Witten equations [Hay14]; see also [DW20, Section 2.3]. Let 𝐿 be the

complex line bundle satisfying𝑊 = 𝑆 ⊗ 𝐿. Trivialize 𝐿 locally over a contractible subset

𝑈 ⊂ 𝐶\𝐵 so that Ψ is identified with a section of S. Since the hyperkähler quotient of C2 ⊗C H
by U(1) is Re(C2 ⊗CH)/Z2, there is a gauge transformation of 𝐿 |𝑈 which maps Ψ to Re(S). This
gauge transformation is unique up to ±1. Change the trivialization by that gauge transformation.

In the new trivialization, let

𝐴 = d − 𝑎∗ + 𝑎 with 𝑎 ∈ Ω0,1(𝑈 ),

so that

𝐷𝐴,Υ = 𝐷Υ + 𝛾 (𝑎) with 𝛾 (𝑎) =
(
0 𝑎∗

𝑎 0

)
.

Since 𝐷Υ preserves Re(S) and 𝛾 (𝑎) maps Re(S) to Im(S), equation 𝐷𝐴,ΥΨ = 0 implies that 𝑎 = 0.

Therefore, locally 𝐴 agrees with the spin connection on 𝑆 . Globally, by patching these local

trivializations together, we obtain a real line bundle 𝔩 → 𝐶\𝐵 with monodromy ±1, together

with an isomorphism 𝜌 : 𝑊 |𝐶\𝐵 → 𝑆 |𝐶\𝐵 ⊗ 𝔩 which is covariantly constant with respect to 𝐴

and such that ΨR = (id𝐸 ⊗C 𝜌)Ψ is real. The other three properties follow from the analogous

properties of Ψ. It follows from Proposition 4.11 that 𝐵 is finite. ■

Proof of Theorem 5.45. The proof is the same as that of Theorem 5.35. Given (Υ, 𝜂) as above,
we need to show that the moduli space of solutions M1,2(𝔡, 𝜂, 𝑑) is compact and consists of

irreducible solutions, in which case #M1,2(𝔡, 𝜂, 𝑑) ∈ Z is well-defined and invariant under
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deformations (𝔡𝑡 , 𝜂𝑡 ) with the same properties. If (𝐴,Ψ) is a solution to (5.43), it follows from

the second and third equation (by integrating) that for 𝜂 ≠ 0 we have Ψ ≠ 0. Therefore, every

solution in #M1,2(𝔡, 𝜂, 𝑑) is irreducible. To prove that M1,2(𝔡, 𝜂, 𝑑) is compact if 𝔡 ∉ W we

proceed in the sameway as in the proof of Theorem 5.35, using Theorem 5.28 and Proposition 5.36

which relates limiting configurations to the (2, 1) ADHM vortex equations to elements of ker𝔡𝔩

for some ramified Euclidean line bundle 𝔩. ■

A Proof of the index formula for 𝔡𝔩

Here is the extension of Theorem 3.44 promised in Remark 3.45.

Theorem A.1. Let 𝐶 be a closed connected Riemann surface. Let 𝑉 be a complex vector bundle over
𝐶 . If 𝔡 is a real Cauchy–Riemann operator on 𝑉 and 𝔩 is a ramified Euclidean line bundle over 𝐶 ,
then 𝔡𝔩 : 𝑊 1,2Γ( ˚𝐶,𝑉 ⊗ 𝔩) → 𝐿2Ω0,1( ˚𝐶,𝑉 ⊗ 𝔩) is Fredholm with

index𝔡𝔩 = 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) − #Br(𝔩) · rkC𝑉 .

The discussion in Section 3.4.2 already shows that 𝔡𝔩 is Fredholm. The proof of the index

formula relies on the following.

Proposition A.2. Let 𝔩 is a ramified Euclidean line bundle over 𝐶 .

(1)
˚L := 𝔩 ⊗ C be a holomorphic line bundle over ˚𝐶 (with Dolbeault operator obtained by
twisting the trivial Dolbeault operator by 𝔩).

(2) The unique(!) orientation-preserving isometry 𝔩2 � R determines a ˚𝛽 ∈ H
0( ˚𝐶, ˚L2).

(3)
˚L extends to a holomorphic line bundleL over 𝐶 such that: ˚𝛽 extends to 𝛽 ∈ H

0(𝐶,L2),
and 𝛽 is transverse to the zero section; moreover: L is unique up to unique isomorphism.

(4) If 𝜕 is a Dolbeault operator on𝑉 andV denotes the corresponding holomorphic vector bundle,
then

ker 𝜕𝔩 � H
0(𝐶,V ⊗C L(−Br(𝔩)) � H

0(𝐶,V ⊗C L∗).

Proof. (1) and (2) are obvious.

It suffices to prove (3) for the ramified Euclidean line bundle 𝔪 over 𝐷 from the proof

of Proposition 3.33. The isomorphism 𝜏 : 𝔪 ⊗ C � C of complex line bundles defined by

𝜏 ((𝑧,𝑤) ⊗ 𝜆) := (𝑧, 𝜆𝑤) is an isomorphism of holomorphic line bundles. Identifying 𝔪 ⊗ C = C
and C⊗2 = C, ˚𝛽 (𝑧) = 𝑧 ∈ H

0( ˚𝐷,C). Evidently, C and
˚𝛽 extend from

˚𝐷 to 𝐷 .

To prove (4), observe that if 𝑠 ∈ ker(𝜕𝔩 : 𝑊 1,2Γ( ˚𝐷, 𝔩 ⊗ C) → 𝐿2Ω0,1( ˚𝐷, 𝔩 ⊗ C)), then 𝑠 (𝑧) =
𝑧1/2 ⊗ (𝑧1/2 · 𝑓 (𝑧)) with 𝑓 : 𝐷 → C holomorphic; therefore: 𝜏∗𝑠 (𝑧) = 𝑧𝑓 (𝑧). Consequently, the
obvious inclusion ker 𝜕𝔩 ↩→ H

0(𝐶,V ⊗C L) factors through an isomorphism

ker 𝜕𝔩 � H
0(𝐶,V ⊗C L(−Br(𝔩))).

Since 𝛽 vanishes transversely in Br(𝔩),L2 � OC(Br(𝔩)). Therefore,

L(−Br(𝔩)) � L ⊗C (L2)∗ � L∗. ■
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Proof of Theorem A.1: index formula. By Proposition 3.3, it suffices to prove the index formula

if 𝔡 = 𝜕 is a Dolbeault operator. Denote by V the holomorphic vector bundle corresponding to

(𝑉 , 𝜕). By Riemann–Roch and withL as in Proposition A.2 (3),

dim H
0(𝐶,V ⊗C L∗) − dim H

1(𝐶,V ⊗C L∗) = 2 deg𝑉 + rkC𝑉 · 𝜒 (𝐶) − #Br(𝔩) · rkC𝑉 .

By Proposition A.2 (4), ker 𝜕𝔩 � H
0(𝐶,V ⊗ L∗). By Serre duality,

H
1(𝐶,V ⊗C L∗) = H

0(𝐶,V† ⊗C L∗(Br(𝔩))

withV†
:= V∗ ⊗C 𝐾𝐶 . H

0(𝐶,V† ⊗C L
∗(Br(𝔩)) consists of meromorphic sections ofV† ⊗C L

∗

with at most simple poles at Br(𝔩). Therefore, there is an inclusion

H
0(𝐶,V† ⊗C L∗(Br(𝔩)) ↩→ ker 𝜕

†,𝔩
𝐿2
.

In fact, Proposition 3.49 implies that this map is an isomorphism. This proves the index

formula. ■

Remark A.3. Proposition A.2 has a partial converse: ifL is a holomorphic bundle over 𝐶 and

𝛽 ∈ H
0(𝐶,L2) is transverse to the zero section, then

𝔩 := {(𝑥, 𝑣) ∈ L : 𝑣2 ∈ R⩾0 · 𝛽 (𝑥)}

with the Euclidean inner product ⟨(𝑥, 𝑣), (𝑥,𝑤)⟩ := 𝑣𝑤
𝛽 (𝑥 ) is a ramified Euclidean line bundle over

𝐶 with Br(𝔩) = 𝑍 (𝛽). ♣
Remark A.4. Here is a description of holomorphic maps 𝜋 :

˜𝐶 → 𝐶 of degree two (alternative

to Proposition 3.33 and familiar from algebraic geometry):

(1) If L is a holomorphic bundle over 𝐶 and 𝛽 ∈ H
0(𝐶,L2) is transverse to the zero section,

then

˜𝐶 := {(𝑥, 𝑣) ∈ L : 𝑣2 = 𝛽 (𝑥)}
is a Riemann surface, and 𝜋 :

˜𝐶 → 𝐶 defined by 𝜋 (𝑥, 𝑣) := 𝑥 is a holomorphic map of

degree two. A moment’s thought reveals that

(A.5) 𝜋∗O ˜𝐶 = O𝐶 ⊕ L∗.

The summands are (anti-)invariant under the action of the involution 𝜏 of ˜𝐶 defined by

𝜏 (𝑥, 𝑣) := (𝑥,−𝑣).

(2) If 𝜋 :
˜𝐶 → 𝐶 is a holomorphic map of degree two, then it is a branched double cover.

In particular, there is an involution 𝜏 of 𝐶 which swaps the sheets of 𝜋 . Consider the

anti-invariant subbundle

L∗
:= (𝜋∗O𝐶̃ )

− .

Set L := (L∗)∗. The holomorphic section 𝛽 ∈ H
0(𝐶,L2) defined by

𝛽 (𝑥) (𝜆2) := (𝜆(𝑥))2 ∈ C for 𝑥 ∈ 𝜋−1(𝑥)

is transverse to the zero section. Moreover, the map 𝜙 :
˜𝐶 → {(𝑥, 𝑣) ∈ L : 𝑣2 = 𝛽 (𝑥)}

defined by 𝜙 (𝑥) := (𝜋 (𝑥), ev𝑥̃ ) is biholomorphic.
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Proposition A.2 and Remark A.3 bridge the above discussion and Proposition 3.33. Moreover,

(A.5) provides a further (perspective on the) proof of Proposition A.2 (4):

ker 𝜕𝔩 � (ker𝜋∗𝜕)− � H
0( ˜𝐶, 𝜋∗V)− � H

0(𝐶,V ⊗C L∗). ♣

B Local wall-crossing formulae

The following explains the analogue of Example 2.4 ifW ⊂ P is a proper wall.

Theorem B.1. LetP be a Banach manifold. LetW ⊂ P be a proper wall inP. Let 𝜋 : E → P,
𝜈 : N →E and 𝜎 : S →E be as in Definition 2.6. Set

W∗
:= W\B with B := (im(𝜋 ◦ 𝜈) ∪ im(𝜋 ◦ 𝜎) ∪ 𝜋 (Crit(𝜋))) .

Denote by 𝔬 the local system on W∗ induced by the local system 𝔬̃ of orientations of det𝑇𝜋 onE.
The following hold:

(1) There is a homomorphism

♯ : H
0(W∗

;𝐺 ⊗Z 𝔬) → Hom(H1(P,P\W),𝐺) � H
1(P,P\W;𝐺)

such that (2.5) holds for every 𝐶1 path p : [0, 1] → P is a 𝐶1 with p(0), p(1) ∉ W and
transverse to 𝜋 , 𝜋 ◦ 𝜈 , and 𝜋 ◦ 𝜎 . (The sum in (2.5) is finite because of Proposition 2.7.)

(2) There is an injective homomorphism

WCF(P,W;𝐺)
Δ

loc

↩→ H
0(W∗

;𝐺 ⊗Z 𝔬)

such that the following diagram commutes

WCF(P,W;𝐺) H
0(W∗

;𝐺 ⊗Z 𝔬)

H
1(P,P\W;𝐺) .

Δ
loc

Δ
♯

(3) Δloc and ♯ assemble into the exact sequence

WCF(P,W;𝐺)
Δ

loc

↩→ H
0(W;𝐺 ⊗Z 𝔬)

♯
→ H

1(P;𝐺).

Remark B.2. The homomorphism Δloc can be computed as follows. Let 𝑝 ∈ W∗
. Choose a

𝐶1
path p : [−1, 1] → P transverse to 𝜋 , 𝜋 ◦ 𝜈 , and 𝜋 ◦ 𝜎 . There is an 𝜀 ∈ (0, 1] such that

p−1(W) ∩ [−𝜀, 𝜀] = 0 and

Δloc( [CI]) (𝑝) = Δ( [CI]) ( [p]) = CI(p(𝜀)) − CI(p(−𝜀)). ♣
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Remark B.3. An exercise in sheaf theory constructs a sheafF onW and an exact sequence with

H
0(W;F) in place of H

0(W∗
;𝐺 ⊗Z 𝔬) without any hypothesis onW. From this perspective,

the point of Theorem B.1 is to give a manageable description of this wall-crossing sheaf F

assuming W is a proper wall inP. ♣
Theorem B.1 would follow from Example 2.4 ifB were closed. SinceB might not be closed,

the proof of Theorem B.1 requires the following preparations.

Lemma B.4. Assume the situation of Theorem B.1. Let 𝑝 ∈ W∗. Set {𝑒} := 𝜋−1(𝑝). There are open
neighborhoods 𝑝 ∈ 𝑈 ⊂ P, 𝑒 ∈ 𝑉 ⊂ E such that:

(1) 𝜋 |𝑉 : 𝑉 → 𝑈 is an embedding.

(2) Every connected component of 𝜋 (𝑉 ) intersectsW∗.

(3) 𝜋−1(𝑈 )\𝑉 ⊂ im𝜈 ∪ im𝜎 .

Proof. Since 𝑇𝑒𝜋 : 𝑇𝑒E → 𝑇𝑝P is injective, there are open neighborhoods 𝑝 ∈ 𝑈 ⊂ P, 𝑒 ∈ 𝑉 ⊂
E such that (1) and (2) holds.

If (3) cannot be arranged to hold by shrinking 𝑈 and 𝑉 , then there is a sequence (𝑒𝑛)
in E\(im𝜈 ∪ im𝜎) which does not converge to 𝑒 but with (𝜋 (𝑒𝑛)) converging to 𝑝 . Since

𝜋 |E\(im 𝜈∪im𝜎 ) : E\(im𝜈 ∪ im𝜎) → P\(im(𝜋 ◦ 𝜈) ∪ im(𝜋 ◦ 𝜎)) is proper, after passing to a

subsequence, (𝑒𝑛) converges to 𝑒′ ∈ E. Since 𝜋 (𝑒′) = 𝑝 and 𝜋 |E\(im 𝜈∪im𝜎 ) is injective, 𝑒
′ = 𝑒 : a

contradiction. ■

Proposition B.5. Suppose that 𝑈 ,𝑉 satisfy (1), (2), (3) from Lemma B.4. Set 𝑈 ∗
:= 𝑈 \B. The

following hold:

(1) The homomorphisms H
0(𝑈 ;𝐺) → H

0(𝑈 ∗
;𝐺) and H

0(𝑈 \𝜋 (𝑉 );𝐺) → H
0(𝑈 ∗\W∗

;𝐺) are
isomorphisms.

(2) There is an isomorphism

𝑡 : coker(H0(𝑈 ;𝐺) → H
0(𝑈 \𝜋 (𝑉 );𝐺)) � H

0(𝑉 ,𝐺 ⊗Z 𝔬̃) .

(3) The homomorphism H
0(𝑉 ,𝐺 ⊗Z 𝔬̃) → H

0(W∗ ∩𝑈 ;𝐺 ⊗Z 𝔬) is injective.
Moreover, if𝑈1,𝑉1 and𝑈2,𝑉2 satisfy (1), (2), (3) from Lemma B.4, then the following hold:

(4) 𝑈12
:= 𝑈1 ∩𝑈2, 𝑉12

:= 𝑉1 ∩𝑉2 satisfy (1), (2), (3) from Lemma B.4.

(5) The diagram

H
0(P\W;𝐺) H

0(𝑈1\𝜋 (𝑉1);𝐺) H
0(𝑉1;𝐺 ⊗Z 𝔬̃)

H
0(𝑈2\𝜋 (𝑉2);𝐺) H

0(𝑈12\𝜋 (𝑉12);𝐺)

H
0(𝑉2;𝐺 ⊗Z 𝔬̃) H

0(𝑉12;𝐺 ⊗Z 𝔬̃)

commutes.
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Proof. (1) follows from the Sard–Smale Theorem.

(2) is the elementary instance of the Thom isomorphism mention in Example 2.4 (2).

(3) holds by construction.

(4) and (5) are obvious. ■

Proof of Theorem B.1. Set P := P\B. By the Sard–Smale Theorem, H
0(P;𝐺) → H

0(P∗
;𝐺) is

an isomorphism. Therefore,

WCF(P,W;𝐺) � WCF(P∗,W∗
;𝐺) .

Let {𝑈𝛼 ⊂ P : 𝛼 ∈ 𝐴} be a set of open subsets withW∗ ⊂ ⋃
𝛼∈𝐴𝑈𝛼 . Set𝑈

∗
𝛼 := 𝑈𝛼\B. SinceW

is closed, {P\W} ∪ {𝑈𝛼 ⊂ P : 𝛼 ∈ 𝐴} is an open cover ofP∗
. A diagram chase in

H
0(P∗

;𝐺) H
0(P∗\W∗

;𝐺) WCF(P∗,W∗
;𝐺)

∏
𝛼∈𝐴

H
0(𝑈 ∗

𝛼 ;𝐺) ∏
𝛼∈𝐴

H
0(𝑈 ∗

𝛼\W∗
;𝐺) ∏

𝛼∈𝐴
coker(H0(𝑈 ∗

𝛼 ;𝐺) → H
0(𝑈 ∗

𝛼\W∗
;𝐺))

∏
𝛼,𝛽∈𝐴

H
0(𝑈 ∗

𝛼𝛽
;𝐺) ∏

𝛼,𝛽∈𝐴
H

0(𝑈 ∗
𝛼𝛽
\W∗

;𝐺)

Δ̃
loc

reveals that Δ̃loc is injective.

By Lemma B.4, it is possible to choose {𝑈𝛼 : 𝛼 ∈ 𝐴} and {𝑉𝛼 : 𝛼 ∈ 𝐴} such that 𝑈𝛼 , 𝑉𝛼
satisfy (1), (2), and (3). Set𝑊𝛼 := W∗ ∩𝑈𝛼 . By Proposition B.5, this induces an injective linear

map

WCF(P∗,W∗
;𝐺) ↩→

∏
𝛼∈𝐴

H
0(𝑊𝛼 ;𝐺 ⊗Z 𝔬)

which lifts along H
0(W∗

;𝐺 ⊗Z 𝔬) ↩→
∏
𝛼∈𝐴 H

0(𝑊𝛼 ;𝐺 ⊗Z 𝔬). ■

C Spinors and quaternions

This appendix summarizes algebraic properties of spinors in dimension 3 used in Section 5.

Let 𝑆 be the spinor representation of Spin(3). We identify 𝑆 with the space of quaternions

H and Spin(3) with the group of unit quaternions Sp(1) ⊂ H in the following way. The

double cover Sp(1) → SO(3) is given by the right action of Sp(1) on imaginary quaternions

ImH = R3
by 𝑞(𝑥) = 𝑞−1𝑥𝑞. The right action of Sp(1) on 𝑆 = H is by right quaternionic

multiplication. It preserves three complex structures given by left multiplication by 𝑖, 𝑗, 𝑘 . The

Clifford multiplication 𝛾 : R3 → End(𝑆) is given by

𝛾 (𝑒1)𝑥 = 𝑥𝑖, 𝛾 (𝑒2)𝑥 = 𝑥 𝑗, 𝛾 (𝑒3)𝑥 = 𝑥𝑘.

With these conventions, the Clifford multiplication by the volume form is

𝛾 (𝑒1 ∧ 𝑒2 ∧ 𝑒3) = 𝛾 (𝑒1)𝛾 (𝑒2)𝛾 (𝑒3) = 𝑘 𝑗𝑖 = 1.
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Fix the complex structure onH given by left multiplication by 𝑖 . We have a complex isomorphism

C2 → H
(𝑧,𝑤) ↦→ 𝑧 +𝑤 𝑗 .

With respect to this identification, left multiplication by 𝑗 is

𝑗 (𝑧,𝑤) = (−𝑤̄, 𝑧),

and the action of Sp(1) agrees with the standard right representation of SU(2). The Clifford
multiplication is given by the Pauli matrices

𝛾 (𝑒1) =
(
𝑖 0

0 −𝑖

)
, 𝛾 (𝑒2) =

(
0 −1

1 0

)
𝛾 (𝑒3) =

(
0 𝑖

𝑖 0

)
.

The Dirac operator acting on maps R3 → C2
is

𝐷 = 𝛾 (𝑒1)𝜕1 + 𝛾 (𝑒2)𝜕2 + 𝛾 (𝑒3)𝜕3

We can relate the spinors in dimension 3 to spinors in dimension 2 by considering the subgroup

U(1) ⊂ Sp(1) of unit complex numbers. The right action of U(1) on H = C2
is

𝜆(𝑧,𝑤) = (𝜆𝑧, 𝜆−1𝑤) for 𝜆 ∈ U(1) .

The restriction of the right action of Sp(1) on ImH to U(1) is given by

𝜆(𝑥1𝑖 + 𝑥2 𝑗 + 𝑥3𝑘) = 𝑥1𝑖 + 𝜆−2𝑥2 𝑗 + 𝜆−2𝑥3𝑘,

so if we identify

R ⊕ C = ImH,
(𝑡, 𝑧) ↦→ 𝑡𝑖 + 𝑧 𝑗,

then the action of U(1) is
𝜆(𝑡, 𝑧) = (𝑡, 𝜆−2𝑧),

Proposition C.1. Writing a map R × C → C2 as a pair of maps R × C → C and using coordinates
𝑡 on R and 𝑧 = 𝑥 + 𝑖𝑦 on C, the Dirac operator is

𝐷 =

(
𝑖𝜕𝑡 −𝜕𝑥 + 𝑖𝜕𝑦

𝜕𝑥 + 𝑖𝜕𝑦 −𝑖𝜕𝑡

)
=

(
𝑖𝜕𝑡 −𝜕𝑧
𝜕𝑧 −𝑖𝜕𝑡

)
.

The following facts about real structures are used in the discussion of the (2, 1) ADHMvortex

equation in Section 5.6, Let 𝐸 and 𝑆 be quaternionic Hermitian vector spaces of quaternionic

dimension one. Their complex tensor product has a real structure 𝜏 : 𝐸 ⊗ 𝑆 → 𝐸 ⊗ 𝑆 , that is a
complex antilinear map such that 𝜏2 = id, given by

𝜏 = 𝑗𝐸 ⊗ 𝑗𝑆 ,
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where 𝑗𝐸 and 𝑗𝑆 are multiplication by 𝑗 on 𝐸 and 𝑆 . Let

Re(𝐸 ⊗ 𝑆) = {𝜓 ∈ 𝐸 ⊗ 𝑆 : 𝜏 (𝜓 ) = 𝜓 }.

be the real part of 𝐸 ⊗ 𝑆 . As a real vector space 𝐸 ⊗ 𝑆 decomposes into

𝐸 ⊗ 𝑆 = Re(𝐸 ⊗ 𝑆) ⊕ 𝑖 Re(𝐸 ⊗ 𝑆) .

Let 𝑆 = 𝑆+ ⊕ 𝑆− for a complex line 𝑆+ and 𝑆− = (𝑆+)∗, with the quaternionic structure given by

𝑗𝑆 : 𝑆+ ⊕ 𝑆− → 𝑆+ ⊕ 𝑆−

𝑗𝑆 (𝛼, 𝛽) = (−𝛽∗, 𝛼∗)

with the star denoting the metric dual 𝑆± → 𝑆∓ with respect to the Hermitian inner product.

Extend 𝑗𝐸 : 𝐸 → 𝐸 to complex antilinear maps

𝛾 : 𝐸 ⊗ 𝑆± → 𝐸 ⊗ 𝑆∓

by taking tensor product with the metric dual. They satisfy 𝛾2

= −id. The real structure is

𝜏 : (𝐸 ⊗ 𝑆+) ⊕ (𝐸 ⊗ 𝑆−) → (𝐸 ⊗ 𝑆+) ⊕ (𝐸 ⊗ 𝑆−)

𝜏 =

(
0 −𝛾
𝛾 0.

)
Proposition C.2.

(1) We have

Re(𝐸 ⊗ 𝑆) = {(𝛼, 𝛽) ∈ (𝐸 ⊗ 𝑆+) ⊕ (𝐸 ⊗ 𝑆−) : 𝛽 = 𝛾 (𝛼)},
= {(𝛼, 𝛽) ∈ (𝐸 ⊗ 𝑆+) ⊕ (𝐸 ⊗ 𝑆−) : 𝛼 = −𝛾 (𝛽)},

and the projections Re(𝐸 ⊗ 𝑆) → 𝐸 ⊗ 𝑆± are isomorphisms of R–vector spaces.

(2) A C–linear map Υ : 𝐸 ⊗ 𝑆 → 𝐸 ⊗ 𝑆 which commutes with 𝜏 is uniquely determined by the
induced R–linear map

ΥR : 𝐸 ⊗ 𝑆+ � Re(𝐸 ⊗ 𝑆) → Re(𝐸 ⊗ 𝑆) � 𝐸 ⊗ 𝑆− .

Moreover, Υ is self-adjoint with respect to the Hermitian inner product on 𝐸 ⊗ 𝑆 if and only
if 𝛾ΥR is self-adjoint with respect to the Euclidean inner product on 𝐸 ⊗ 𝑆+.

Proof. Ageneral map 𝑃 : 𝐸 ⊗ 𝑆 → 𝐸 ⊗ 𝑆 can be written as

Υ =

(
Υ++ Υ+−
Υ−
+ Υ−

−

)
with respect to decomposition 𝑆 = 𝑆+ ⊕ 𝑆− . Such a map preserves 𝜏 if and only if

Υ++𝛾 = 𝛾Υ−
− and Υ+−𝛾 = −𝛾Υ−

+ .
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The induced real operator is

ΥR : 𝐸 ⊗ 𝑆+ → 𝐸 ⊗ 𝑆−,
ΥR = Υ−

+ + Υ−
−𝛾 .

If Υ is C–linear then it can be reconstructed from ΥR in the following way. Decompose ΥR : 𝐸 ⊗
𝑆+ → 𝐸 ⊗ 𝑆− into C–linear and C–antilinear parts ΥR = Υ𝑐 + Υ𝑎 . Then

Υ =

(
−𝛾Υ𝑎 𝛾Υ𝑐𝛾
Υ𝑐 −Υ𝑎𝛾

)
. ■

D Compactness for generalized Seiberg–Witten equations

The quaternionic vortex equation is a dimensional reduction of the three-dimensional general-

ized Seiberg–Witten equation over𝑀 = 𝐶 × 𝑆1
[Doa17, Section 3]. We will prove Theorem 5.28

by extending the compactness theorem for generalized Seiberg–Witten equations [WZ21]. Un-

fortunately, this extension requires discussing some technical details of [WZ21]; the method of

the proof still works but some of the estimates and statements have to be adjusted. Rather than

rewriting the full proof, we will assume that the reader is familiar with [WZ21] and comment

on the necessary modifications. In particular, we will use the notation introduced in [WZ21,

Section 1.1] and cite propositions, theorems, equations, or definitions with a number x.xx from

[WZ21] simply as [WZ x.xx].

Throughout this section, let 𝜌 : 𝐺 → Sp(𝑉 ) be a quaternionic representation as in Section 5.1.
Moreover, we assume Hypothesis 5.3, Hypothesis 5.7, and Hypothesis 5.26. Let𝑀 be a closed

oriented 3-manifold. Given a spin
𝐻
structure on𝑀 , we associate with it a principal 𝐺-bundle

𝑃 → 𝑀 and a vector bundle V → 𝑀 with fiber 𝑉 , similarly to the 2-dimensional construction

in Section 5.1. A connection 𝐴 on 𝑃 defines the induced Dirac operator

𝐷𝐴 : Γ(V) → Γ(V)

and we have a quaternionic moment map

𝜇 : V → Λ2𝑇 ∗𝑀 ⊗ ad 𝑃 .

For details, see [WZ21, Section 1.1].

Definition D.1. The generalized Seiberg–Witten equation for a triple

𝐴 ∈ A(𝑃), Ψ ∈ Γ(V), 𝜁 ∈ Γ(ad 𝑃)

reads

(𝐷𝐴 + 𝜌 (𝜁 ))Ψ = 0,

𝐹𝐴 + ∗d𝐴𝜁 = 𝜇 (Ψ) .

•
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The following perturbation of the equation is relevant to the discussion of quaternionic

vortex equations.

Definition D.2. Let G be the gauge group of 𝑃 . Suppose that Υ : A(𝑃) × Γ(V) → End(V) is
G-invariant, 𝜂 : A(𝑃) × Γ(V) → Ω2(ad 𝑃) isG-equivariant, and

(1) Υ(𝐴,Ψ) is self-adjoint and commutes with the action of the gauge group,

(2) d𝐴𝜂 (𝐴,Ψ) = 0,

(3) |Υ(𝐴,Ψ) |, |∇𝐴Υ(𝐴,Ψ) |, |𝜂 (𝐴,Ψ) |, |∇𝐴𝜂 (𝐴,Ψ) | are uniformly bounded.

(Note that ∇𝐴Υ = ∇𝐴0
Υ for any fixed connection 𝐴0 because Υ commutes with ad 𝑃 .)

The (Υ, 𝜂)–perturbed generalized Seiberg–Witten equation for (𝐴,Ψ, 𝜁 ) reads

(𝐷𝐴 + Υ(𝐴,Ψ) + 𝜌 (𝜁 ))Ψ = 0,

𝐹𝐴 + ∗d𝐴𝜁 + 𝜂 (𝐴,Ψ) = 𝜇 (Ψ) .
(D.3)

•
It is necessary to include the field 𝜁 to make the equation elliptic modulo the action of the

gauge group. However, the next proposition shows that without loss of generality we may

assume that 𝜁 = 0.

Proposition D.4. If (𝐴,Ψ, 𝜁 ) satisfies (D.3), then

𝜌 (𝜁 )Ψ = 0 and d𝐴𝜁 = 0.

In particular, if (𝐴,Ψ) is irreducible, then 𝜁 = 0.

Proof. Apply d𝐴 to the second equation. By the Bianchi identity and [DW20, Proposition B.4],

d
∗
𝐴d𝐴𝜁 − 𝜌∗((𝐷𝐴Ψ)Ψ∗) = 0.

Therefore, by the first equation,

d
∗
𝐴d𝐴𝜁 + 𝜌∗((𝜌 (𝜁 )Ψ)Ψ∗ + (ΥΨ)Ψ∗) = 0.

Taking the inner product with 𝜁 and integrating yields

∥d𝐴𝜁 ∥2

𝐿2
+ ∥𝜌 (𝜁 )Ψ∥2

𝐿2
+ ⟨ΥΨ, 𝜌 (𝜁 )Ψ⟩𝐿2 = 0.

The third term is zero because 𝜌 (𝜁 )Υ is a skew-adjoint operator:

(𝜌 (𝜁 )Υ)∗ = Υ∗𝜌 (𝜁 )∗ = −Υ𝜌 (𝜁 ) = −𝜌 (𝜁 )Υ. ■

Set 𝜁 = 0 in (D.3). If Ψ ≠ 0, then after rescaling the equation by 𝜀 = ∥Ψ∥−1

𝐿2
we can write it

as an equation for the triple (𝐴,Ψ, 𝜀):

(𝐷𝐴 + Υ(𝐴,Ψ))Ψ = 0,

𝜀2(𝐹𝐴 + 𝜂 (𝐴,Ψ)) = 𝜇 (Ψ),
∥Ψ∥𝐿2 = 1.

(D.5)

The following generalizes the compactness theorem [WZ21, Theorem 1.28] to the perturbation

(D.5) of the generalized Seiberg–Witten equation.
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Proposition D.6. If (𝐴𝑛,Ψ𝑛, 𝜀𝑛) is a sequence of solutions of (D.5), then, after passing to a subse-
quence and applying gauge transformations, (𝐴𝑛,Ψ𝑛, 𝜀𝑛) converges in the𝐶∞ topology to a solution
(𝐴,Ψ, 𝜀) of (D.5).
Theorem D.7. If (𝐴𝑛,Ψ𝑛, 𝜀𝑛) is a sequence of solutions to (D.5) such that Hypothesis 1.22 from
[WZ21] holds and 𝜀𝑛 → 0, then there exist a closed, nowhere dense subset 𝑍 ⊂ 𝑀 , a connection 𝐴
over𝑀\𝑍 , and section a Ψ ∈ Γ(𝑀\𝑍,V) with the following properties.

(1) 𝐴 and Ψ satisfy

(𝐷𝐴 + Υ(𝐴,Ψ))Ψ = 0,

𝜇 (Ψ) = 0,

∥Ψ∥𝐿2 = 1.

(2) The function |Ψ| extends to a Hölder continuous on𝑀 such that 𝑍 = |Ψ|−1(0).

(3) After passing to a subsequence and applying gauge transformations over𝑀\𝑍 ,

(a) |Ψ𝑛 | converges to |Ψ| in the 𝐶0,𝛼 topology over𝑀 for some 𝛼 ∈ (0, 1),
(b) 𝐴𝑛 converges to 𝐴 in the weak𝑊 1,2 topology over every compact subset of𝑀\𝑍 ,
(c) Ψ𝑛 converges to Ψ in the weak𝑊 2,2 topology over every compact subset of𝑀\𝑍 .

Theorem D.7 implies a compactness theorem for quaternionic vortex equations.

Proof of Theorem 5.28 assuming Theorem D.7. Let𝑀 = 𝑆1×𝐶 . Without loss of generality assume

that solutions (𝐴𝑛,Ψ𝑛) on 𝐶 are irreducible solutions such that lim𝑛→∞ ∥Ψ𝑛 ∥𝐿2 = ∞. Set

Ψ̂𝑛 = Ψ𝑛/∥Ψ𝑛 ∥𝐿2 . Consider the pull-back of (𝐴𝑛, Ψ̂𝑛) to 𝑆1 × 𝐶 (which, by abuse of notation,

we denote by the same symbols) as a sequence of solutions to (D.5) with 𝜀𝑛 = 1/∥Ψ𝑛 ∥𝐿2 These

solutions satisfy the 𝑆1
-invariance property

(D.8) ∇𝑡 (𝐴 −𝐴0) = 0 and ∇𝑡 Ψ̂ = 0,

where 𝑡 is the coordinate on 𝑆1
and 𝐴0 is a fixed connection pulled back from 𝐶 .

By Theorem D.7, there exist a closed, nowhere dense subsetZ ⊂ 𝑀 , a connection 𝐴 over

𝑀\Z, and a section Ψ ∈ Γ(𝑀\Z,V) with the following properties:

(1) 𝐴 and Ψ satisfy

D𝐴,ΥΨ = 0,

𝜇 (Ψ) = 0,

∥Ψ∥𝐿2 = 1,

where

D𝐴,Υ = 𝑖∇𝑡 + 𝐷𝐴 + Υ(𝐴,Ψ)

is the 3-dimensional Dirac operator acting on sections of V over𝑀 .

69



(2) The function |Ψ| extends to a Hölder continuous on𝑀 such thatZ = |Ψ|−1(0).

(3) After passing to a subsequence and applying gauge transformations over𝑀\Z,

(a) |Ψ𝑛 | converges to |Ψ| in the 𝐶0,𝛼
topology over𝑀 for some 𝛼 ∈ (0, 1),

(b) 𝐴𝑛 converges to 𝐴 in the weak𝑊 1,2
topology over every compact subset of𝑀\Z,

(c) Ψ𝑛 converges to Ψ in the weak𝑊 2,2
topology over every compact subset of𝑀\Z.

The weak convergence implies that for every 𝑎 and ˆ𝜓 ,

⟨∇𝑡 (𝐴 −𝐴0), 𝑎⟩𝐿2 = lim

𝑛→∞
⟨∇𝑡 (𝐴𝑛 −𝐴0), 𝑎⟩𝐿2 = 0,

⟨∇𝑡Ψ, ˆ𝜓 ⟩𝐿2 = lim

𝑛→∞
⟨∇𝑡Ψ𝑛, ˆ𝜓 ⟩𝐿2 = 0,

so that (𝐴,Ψ) satisfy (D.8) and thatZ = 𝑍 ×𝑆1
for a closed subset𝑍 ⊂ 𝐶 . After applying a gauge

transformation which puts 𝐴 in a temporal gauge, (𝐴,Ψ) are pulled back from a configuration

on 𝐶 . ■

In the remaining part of this section we discuss how to adapt the proof of [WZ21, Theorem

1.28] to the perturbed equation. The main tool in the proof of [WZ21, Theorem 1.28] is the

Lichnerowicz–Weitzenböck formula. The perturbation terms Υ = Υ(𝐴,Ψ) and 𝜂 = 𝜂 (𝐴,Ψ)
contribute to new terms in this formula.

Proposition D.9. For every (𝐴,Ψ),

(𝐷𝐴 + Υ)2Ψ = ∇∗
𝐴∇𝐴Ψ + 𝛾 (𝐹𝐴)Ψ +ℜΨ + 𝐷𝐴 (ΥΨ) + Υ(𝐷𝐴 + Υ)Ψ,

whereℜ is the zeroth order operator defined in [WZ21, Definition2.1] and depending on the Riemann
curvature of𝑀 . In particular, if (𝐴,Ψ) is a solution to (D.5), then

∇∗
𝐴∇𝐴Ψ − 𝛾 (𝜂)Ψ + 𝜀−2𝛾 (𝜇 (Ψ))Ψ +ℜΨ + 𝐷𝐴 (ΥΨ) = 0,

Proof. We have

0 = (𝐷𝐴 + Υ)2Ψ = 𝐷2

𝐴Ψ + 𝐷𝐴 (ΥΨ) + Υ(𝐷𝐴 + Υ)Ψ

and the formula follows from the standard Weitzenböck formula for the Dirac operator and the

second equation in (D.5), see [WZ21, Proposition 2.2]. ■

The new term involving 𝜂 is harmless. The term involving Υ is more problematic at it

involes the first derivative of Ψ. It can be estimated pointwise using Young’s inequality

(D.10) |𝐷𝐴 (ΥΨ) | ≲ 𝛿 |∇𝐴Ψ|2 + 𝛿−1 |Ψ|2

for any 𝛿 > 0. Alternatively, using integration by parts, we can trade the integral of the

derivative term for a boundary integral.
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Proposition D.11. If (𝐴,Ψ) satisfies

(𝐷𝐴 + Υ)Ψ = 0,

then for every open set𝑈 ⊂ 𝑀 with smooth boundary
ˆ
𝑈

⟨𝐷𝐴 (ΥΨ),Ψ⟩ ≲
ˆ
𝑈

|Ψ|2 +
ˆ
𝜕𝑈

|Ψ|2.

Proof. Let 𝑒1, 𝑒2, 𝑒3 be a local orthonormal frame of 𝑇𝑀 and set ∇𝐴,𝑖 = ∇𝐴,𝑒𝑖 .ˆ
𝑈

⟨𝐷𝐴 (ΥΨ),Ψ⟩ = −
∑︁
𝑖

ˆ
𝑈

⟨∇𝐴,𝑖 (ΥΨ), 𝛾 (𝑒𝑖)Ψ⟩

=
∑︁
𝑖

ˆ
𝑈

⟨ΥΨ,∇𝐴,𝑖 (𝛾 (𝑒𝑖)Ψ)⟩ −
∑︁
𝑖

ˆ
𝜕𝑈

⟨ΥΨ, 𝛾 (𝑒𝑖)Ψ⟩(𝑒𝑖⌟vol)

=

ˆ
𝑈

⟨ΥΨ, 𝐷𝐴Ψ + 𝑅Ψ⟩ −
∑︁
𝑖

ˆ
𝜕𝑈

⟨ΥΨ, 𝛾 (𝑒𝑖)Ψ⟩(𝑒𝑖⌟vol)

≲
ˆ
𝑈

|Ψ|2 +
ˆ
𝜕𝑈

|Ψ|2,

where 𝑅 = 𝛾 (∑𝑖 ∇𝑖𝑒𝑖) is a Riemannian curvature term and in the last line we use 𝐷𝐴Ψ = −ΥΨ
and |Υ | ⩽ 𝐶 . ■

In what follows, let (𝐴,Ψ, 𝜀) be a solution of (D.5). In the case Υ = 0 and 𝜂 = 0, section 2

of [WZ21] establishes a priori bounds on 𝐴 and Ψ in terms of the frequency function defined

below.

Definition D.12. Let 𝑟0 be the injectivity radius of𝑀 . Given 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0] let 𝐵𝑟 (𝑥) ⊂ 𝑀

be the geodesic ball of radius 𝑟 centered at 𝑥 . Define

𝑚𝑥 (𝑟 ) =
1

4𝜋𝑟 2

ˆ
𝜕𝐵𝑟 (𝑥 )

|Ψ|2,

𝐷𝑥 (𝑟 ) =
1

4𝜋𝑟

ˆ
𝐵𝑟 (𝑥 )

|∇𝐴Ψ|2 + 2𝜀−2 |𝜇 (Ψ) |2.

The frequency function associated with (𝐴,Ψ, 𝜀) is

𝑁𝑥 (𝑟 ) =
𝐷𝑥 (𝑟 )
𝑚𝑥 (𝑟 )

.

•
Proposition D.13. Let (𝐴,Ψ, 𝜀) be a solution of (D.5). The a priori bounds on 𝐴 and Ψ in terms of
𝑚 and 𝑁 from [WZ21, Propositions 2.9–2.23], proved in the case Υ = 0 and 𝜂 = 0, hold also in the
general case.
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Proof. Most of the proofs in [WZ21, Section 2] rely on the Lichnerowicz–Weitzenböck formula,

and therefore are affected by the new terms appearing in Proposition D.9. The new terms are

estimated using the bounds on 𝜂 and Υ, (D.10), Proposition D.11, and rearranging some of the

inequalities. Below we comment on the necessary modifications in the proof of every estimate

in [WZ21, Section 2].

[WZ 2.9] The Lichnerowicz–Weitzenbock formula from Proposition D.9 produces extra

terms corresponding to Υ and 𝜂, which can be estimated using (D.10), Proposition D.11, and the

𝐿∞ bound on 𝜂. This leads to

d

d𝑟

ˆ
𝜕𝐵𝑟 (𝑥 )

|Ψ|2 ⩾
ˆ
𝜕𝐵𝑟 (𝑥 )

(
2

𝑟
− 𝑐1𝑟 − 𝑐2

)
|Ψ|2 +

ˆ
𝐵𝑟 (𝑥 )

(2 − 𝑐3𝑟
2)
ˆ
𝐵𝑟 (𝑥 )

|∇𝐴Ψ|2,

for constants 𝑐1, 𝑐2, 𝑐3. The right-hand side is positive for small 𝑟 , which completes the proof.

[WZ 2.10] In this proof, we multiply the Lichnerowicz–Weitzenböck formula by the function

𝜒2𝐺𝑦 where 𝜒 is a cut-off function and 𝐺𝑦 = 𝐺 (𝑦, 𝑥) with 𝐺 being the Green kernel for the

Laplacian on 𝐵𝑟 (𝑥) and 𝑦 ∈ 𝐵𝑟/2(𝑥). Proposition D.9 again produces two extra terms:

ˆ
𝐵𝑟 (𝑥 )

𝜒2𝐺𝑦 ⟨𝛾 (𝜂)Ψ,Ψ⟩ ⩽ 𝑐𝑟 2∥𝜒Ψ∥2

𝐿∞,

and, using (D.10),

ˆ
𝐵𝑟 (𝑥 )

𝜒2𝐺𝑦 ⟨𝐷𝐴 (ΥΨ),Ψ⟩ ≲ 𝛿

ˆ
𝐵𝑟 (𝑥 )

𝜒2𝐺𝑦 |∇𝐴Ψ|2 + 𝛿−1

ˆ
𝐵𝑟 (𝑥 )

𝜒2𝐺𝑦 |Ψ|2

⩽ 𝛿

ˆ
𝐵𝑟 (𝑥 )

𝜒2𝐺𝑦 |∇𝐴Ψ|2 + 𝛿−1𝑟 2∥𝜒Ψ∥2

𝐿∞ .

For 𝛿 sufficiently small, the first term on the right-hand side can be rearranged and absorbed by

the integral ˆ
𝐵𝑟 (𝑥 )

𝜒2𝐺𝑦 |∇𝐴Ψ|2

which appears on the left-hand side of the main inequality in the proof of Proposition 2.10.

[WZ 2.11] The original proof uses [WZ 2.12], [WZ 2.14], and [Doa17, Proposition B.4]. While

[WZ 2.14] is independent of the equation, the other two formulae obtain additional terms from

the Lichnerowicz–Weitzenbock formula and the 𝜂 term in 𝐹𝐴 = 𝜇 (Ψ) −𝜂. To prove the estimate,

we arrange the term in a different way than in the proof of [WZ 2.12]. We use the following

convention: 𝑅 is any remainder term satisfying

|𝑅 | ≲ |Ψ| + |∇𝐴Ψ|

and 𝐴 ∗ 𝐵 denotes any bilinear algebraic operation involving tensors 𝐴 and 𝐵. Both 𝑅 and ∗ can
denote different terms and operations in different lines. By [WZ 2.14],

[∇∗
𝐴∇𝐴,∇𝐴]Ψ = 𝜌 (d∗𝐴𝐹𝐴)Ψ + 𝐹𝐴 ∗ ∇𝐴Ψ + 𝑅.
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Therefore, by Proposition D.9,

∇∗
𝐴∇𝐴∇𝐴Ψ = [∇∗

𝐴∇𝐴,∇𝐴]Ψ − 𝛾 (𝐹𝐴)∇𝐴Ψ − 𝛾 (∇𝐴𝐹𝐴)Ψ − ∇𝐴 (𝐷𝐴 (ΥΨ)) + 𝑅
= 𝜌 (d∗𝐴𝐹𝐴)Ψ + 𝐹𝐴 ∗ ∇𝐴Ψ − 𝛾 (𝐹𝐴)∇𝐴Ψ − 𝛾 (∇𝐴𝐹𝐴)Ψ − ∇𝐴 (𝐷𝐴 (ΥΨ)) + 𝑅.

(D.14)

Next, we take the inner product (D.14) with ∇𝐴Ψ and estimate all terms. By [Doa17, Proposition

B.4],

⟨𝜌 (d∗𝐴𝐹𝐴)Ψ,∇𝐴Ψ⟩ = ⟨d∗𝐴𝐹𝐴, 𝜌∗(∇𝐴ΨΨ∗)⟩
= −⟨d∗𝐴𝐹𝐴, d∗𝐴𝜇 (Ψ)⟩ + ⟨d∗𝐴𝐹𝐴, 𝐷𝐴Ψ ∗ Ψ⟩
= −𝜀2 |d∗𝐴𝐹𝐴 |2 − 𝜀2⟨d∗𝐴𝐹𝐴, 𝜂⟩ − ⟨d∗𝐴𝐹𝐴, ΥΨ ∗ Ψ⟩
≲ −𝜀2 |d∗𝐴𝐹𝐴 |2 + |𝐹𝐴 | |Ψ|2 + |𝐹𝐴 |.

We similarly estimate

−⟨𝛾 (∇𝐴𝐹𝐴)Ψ,∇𝐴Ψ⟩ = −⟨∇𝐴𝐹𝐴,∇𝐴𝜇 (Ψ)⟩
= −𝜀2 |∇𝐴𝐹𝐴 |2 − 𝜀2⟨∇𝐴𝐹𝐴,∇𝐴𝜂⟩
≲ −𝜀2 |∇𝐴𝐹𝐴 |2 + 1.

The term involving Υ can be estimated by

⟨∇𝐴 (𝐷𝐴 (ΥΨ)),∇𝐴Ψ⟩ ≲ |∇2

𝐴Ψ| |∇𝐴Ψ| + |∇𝐴Ψ|2 + |Ψ| |∇𝐴Ψ|
≲ 𝛿 |∇2

𝐴Ψ|2 + 𝛿−1 |∇𝐴Ψ|2 + |Ψ| |∇𝐴Ψ|.

We choose 𝛿 > 0 small. Let 𝑥 ∈ 𝑀 , 𝑟 > 0, and let 𝜒 be a cut-off function supported in 𝐵𝑟/2(𝑥) as
in the proof of [WZ 2.11]. Taking the inner product of (D.14) with ∇𝐴Ψ, multiplying by 𝑟 𝜒2

and

integrating over 𝐵𝑟 (𝑥), we obtain

𝑟

ˆ
𝐵𝑟 (𝑥 )

𝜒2( |∇2

𝐴Ψ|2+𝜀2 |∇𝐴𝐹𝐴 |2+𝜀2 |d∗𝐴𝐹𝐴 |2 ≲ 𝑟

ˆ
𝐵𝑟 (𝑥 )

𝜒2(1+|Ψ|2+|∇Ψ|2+|𝐹𝐴 | |∇𝐴Ψ|2+𝛿 |∇2

𝐴Ψ|2) .

Only the last two terms on the right-hand side are problematic. The one involving 𝐹𝐴 is estimated

in the same way as in the proof of [WZ 2.11]. The second term can be moved to the left-hand

side provided 𝛿 is sufficiently small. This leads to the desired inequality from [WZ 2.11].

[WZ 2.17], [WZ 2.18] follow once [WZ 2.10], [WZ 2.11] are proved.

[WZ 2.19] follows from the previous estimates combined with [WZ 2.20]. The proof of

[WZ 2.20] uses [WZ 2.21] and [WZ 2.23]. [WZ 2.23] does not use the equation so it still holds.

However, the proof of [WZ 2.21] relies on the Lichnerowicz–Weitzenbock formula which now

acquires additional terms. The first term involving Υ is

𝜇 (𝐷𝐴 (ΥΨ),Ψ)

whose contribution to the proof of [WZ 2.20] can be estimated by

(D.15) 𝑟

ˆ
𝐵𝑟 (𝑥 )

𝜒2( |𝐹𝐴 | + |𝜂 |) |Ψ| ( |Ψ| + |∇𝐴Ψ|) .
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where 𝑥 , 𝑟 , and 𝜒 are as before. One of the assumptions of [WZ 2.20] is that𝑚𝑥 (𝑟 ) = 1 which

implies that |Ψ| is bounded. The term |𝐹𝐴 | |∇𝐴Ψ|2 is estimated as before. The other terms in

(D.15) are harmless and do not affect the proof of [WZ 2.20]. Similarly, the new term in [WZ

2.21] involving 𝜂 has the form

2𝜀−2𝜇 (𝛾 (𝜂)Ψ,Ψ)

and can be estimated by |Ψ|.
Finally, in the proof of [WZ 2.20] we use the formula for ∇∗

𝐴
∇𝐴𝜇 (Ψ) from [WZ 2.19] and

use the original equation 𝜇 (Ψ) = 𝐹𝐴 In our setup, 𝜇 (Ψ) = 𝐹𝐴 + 𝜂, so to obtain estimate on the

integral of ΓΨ𝐹𝐴 we use

|ΓΨ𝐹𝐴 |2 ≲ |ΓΨ (𝐹𝐴 + 𝜂) |2 + |ΓΨ𝜂 |2.

The estimate on the first term follows from [WZ 2.19] as in the original proof while the second

term is uniformly bounded.

■

The key step in the proof of the compactness theorem in [WZ21] is the monotonicity

formulae [3.5, 3.12, 3.13] for the functions𝑚 and 𝑁 . In the perturbed setup, the monotonicity

formulae have to be modified.

Proposition D.16. There exist constants 𝑟0, 𝑐 > 0 with the following property. Let (𝐴,Ψ, 𝜀) be a
solution of (D.5). For every 𝑥 ∈ 𝑀 and 0 ⩽ 𝑠 ⩽ 𝑟 ⩽ 𝑟0, the functions𝑚𝑥 and 𝑁𝑥 satisfy

𝑚𝑥 (𝑠) ⩽ 2𝑚𝑥 (𝑟 ),(D.17)

𝑁𝑥 (𝑠) ⩽ 2𝑁𝑥 (𝑟 ) + 𝑐𝑟,(D.18)

and

(D.19)

1

2

(𝑟
𝑠

)𝑁𝑥 (𝑠 )−𝑐𝑟
𝑚𝑥 (𝑠) ⩽ 𝑚𝑥 (𝑟 ) ⩽ 2

(𝑟
𝑠

)
4𝑁𝑥 (𝑟 )+𝑐𝑟

𝑚𝑥 (𝑠) .

Proof. The proof of the monotonicity formula [WZ 3.5] relies on formulae [WZ 3.6, 3.10, 3.11].

Similar formulae hold in the general case, except the estimates on the remainder terms 𝔯𝐷 ′, 𝔯𝐷 , 𝔯𝑚′

appearing in these formulae are weaker.

[WZ 3.6] The remainder term is now estimated by

(D.20) |𝔯𝐷 ′ | ≲ 𝐷𝑥 (𝑟 ) +𝑚𝑥 (𝑟 ) .

Indeed, we use the same argument as in the proof of [WZ 3.6] using the tensor 𝑇 defined

therein. In our setup, the estimate on |∇∗𝑇 |, based on the Lichnerowicz–Weitzenböck formula,

has new contributions from 𝜂 and Υ, which are estimated as follows. The terms involving 𝜂 do

not pose any problem as the contribution to ∇∗𝑇 (𝑒𝑖) is bounded by

⟨𝛾 (𝜂)Ψ +
∑︁
𝜌

(𝜂 (𝑒𝑖 , 𝑒 𝑗 ))Ψ,∇𝐴,𝑒 𝑗Ψ⟩ ≲ |Ψ| |∇𝐴Ψ|,

which is the same as the original bound on |∇∗𝑇 | in [WZ 3.8]. The contribution of Υ to ∇∗𝑇 is

⟨𝐷𝐴 (ΥΨ),∇𝐴Ψ⟩ ≲ |Ψ| |∇𝐴Ψ| + |∇𝐴Ψ|2.
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Therefore, the total contribution to the integral

1

4𝜋𝑟 2

ˆ
𝐵𝑟 (𝑥 )

2𝑟𝑥∇∗𝑇 (𝜕𝑟 )

is estimated, up to a constant, by

1

𝑟

ˆ
𝐵𝑟 (𝑥 )

|∇Ψ|2 + |Ψ|2 ≲ 𝐷𝑥 (𝑟 ) + 𝑟 2𝑚𝑥 (𝑟 ),

where to estimate the integral of |Ψ|2 we use [WZ 2.9].

[WZ 3.10] The same formula holds but now the remainder term is estimated by

|𝔯𝐷 | ≲ 𝑟𝑚𝑟 (𝑥) .

Indeed, we follow the same proof as in [WZ 3.10] and estimate the new terms involving 𝜂

and Υ. By Proposition D.11, their contribution to the formula is bounded, up to a constant, by

1

𝑟

ˆ
𝐵𝑟 (𝑥 )

|Ψ|2 + 1

𝑟

ˆ
𝜕𝐵𝑟 (𝑥 )

|Ψ|2 ≲ 𝑟 2𝑚𝑥 (𝑟 ) + 𝑟𝑚𝑥 (𝑟 ),

where we use [WZ 2.9] and the definition of𝑚𝑥 (𝑟 ).
[WZ 3.11] The same formula holds but now the remainder term is estimated by

|𝔯𝑚′ | ≲ 𝑚𝑥 (𝑟 )

This is because the proof uses [WZ 3.10] which now has an estimate with a lower power of 𝑟 .

In particular, we have

𝑚′
𝑥 (𝑟 ) ⩾ −𝑐𝑚𝑥 (𝑟 ).

Therefore, 𝑒𝑐𝑟𝑚𝑥 is a non-decreasing function of 𝑟 , which implies (D.17).

To prove (D.18), we proceed as in the proof of [WZ 3.3] and use the modified estimates on

the remainder terms:

𝑁 ′
𝑥 (𝑟 ) ⩾

𝔯𝐷 ′

𝑚𝑥 (𝑟 )
− 4𝔯𝐷𝑁𝑥 (𝑟 )

𝑟𝑚𝑥 (𝑟 )
− 𝔯𝑚′𝑁𝑥 (𝑟 )

𝑚𝑥 (𝑟 )
⩾ −𝑐 (1 + 𝑁𝑥 (𝑟 )) .

Therefore,

(𝑒𝑐𝑟𝑁𝑥 )′(𝑟 ) = 𝑒𝑐𝑟 (𝑐𝑁𝑥 (𝑟 ) + 𝑁 ′
𝑥 (𝑟 )) ⩾ −𝑐𝑒𝑐𝑟 ⩾ −𝑐,

which implies that the function

𝑟 ↦→ 𝑒𝑐𝑟𝑁𝑥 (𝑟 ) + 𝑐𝑟

is non-decreasing on [0, 𝑟0]. If 0 < 𝑠 ⩽ 𝑟 ⩽ 𝑟0 and 𝑟0 is small, then

𝑁𝑥 (𝑠) ⩽ 𝑒𝑐 (𝑟−𝑠 )𝑁𝑥 (𝑟 ) + 𝑐 (𝑟 − 𝑠) ⩽ 2𝑁𝑥 (𝑟 ) + 𝑐𝑟 .
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Finally, to prove (D.19), we use [WZ 3.11] with a weaker estimate on the remainder established

above. For every 𝑡 ∈ [𝑠, 𝑟 ],

(log𝑚𝑥 )′(𝑡) =
𝑚′
𝑥 (𝑡)

𝑚𝑥 (𝑡)
=

2𝑁𝑥 (𝑡)
𝑡

+ 𝔯𝑚′ (𝑡)
𝑚𝑥 (𝑡)

⩽
4𝑁𝑥 (𝑟 ) + 𝑐𝑟

𝑡
+ 𝑐.

Integrating over 𝑡 ∈ [𝑠, 𝑟 ] and exponentiating yields

𝑚𝑥 (𝑟 )
𝑚𝑥 (𝑠)

⩽ 𝑒𝑐 (𝑟−𝑠 )
(𝑟
𝑠

)
4𝑁𝑥 (𝑟 )+𝑐𝑟

⩽ 2

(𝑟
𝑠

)
4𝑁𝑥 (𝑟 )+𝑐𝑟

,

which implies the upper bound on 𝑚𝑥 (𝑟 ). The lower bound is proved in the same way by

integrating

(log𝑚𝑥 )′(𝑡) =
𝑚′
𝑥 (𝑡)

𝑚𝑥 (𝑡)
=

2𝑁𝑥 (𝑡)
𝑡

+ 𝔯𝑚′ (𝑡)
𝑚𝑥 (𝑡)

⩾
𝑁𝑥 (𝑠) − 𝑐𝑟

𝑡
− 𝑐.

■

The monotonicity formula is used in [WZ21] to prove a lower bound in terms of |Ψ(𝑥) | on
the regularity scale

𝑟𝐴 (𝑥) = sup

{
𝑟 ∈ [0, 𝑟0] : 𝑟

ˆ
𝐵𝑟 (𝑥 )

|𝐹𝐴 |2 ⩽ 𝑐𝐹

}
,

where 𝑐𝐹 > 0 is a fixed positive constant chosen so that the a priori estimates from [WZ21,

section 3] hold. This lower bound is the content of [WZ 3.2]. This is the key step in the proof of

the compactness theorem. Together with [WZ 2.11], it implies a uniform upped bound on the

Hölder norm of |Ψ| and the convergence of 𝐴, Ψ on𝑀\𝑍 , where 𝑍 is the zero set of the limit of

|Ψ𝑛 | in the Hölder norm.

Since [WZ 2.11] holds in our setting by Proposition D.13, the same argument can be used

provided that that [WZ 3.2] holds as well. In addition to [WZ 2.9], which is still true by

Proposition D.13, the proof of [WZ 3.2] uses [WZ 3.15] and [WZ. 3.16]. While the statements of

these propositions have to be modified, the proofs are the same as those of [WZ 3.15] and [WZ

3.16] except that we have to use (D.19).

Proposition D.21. For all 0 < 𝑠 ⩽ 𝑟 ⩽ 𝑟0 and 𝛿 > 0, if

𝑠 ⩽ 𝑟

(
|Ψ(𝑥) |2
𝑐𝑚𝑥 (𝑟 )

)
1/𝛿
,

then
𝑁𝑥 (𝑠) ⩽ 𝛿 + 𝑐𝑟 .

Proposition D.22. For every 𝑟 ∈ (0, 𝑟0/4], 𝑠 ∈ (0, 2𝑟 ], and 𝑦 ∈ 𝐵𝑟 (𝑥), if

𝑁𝑥 (4𝑟 ) ⩽ 1,

then
𝑁𝑦 (𝑠) ⩽ 𝑐 (𝑁𝑥 (4𝑟 ) + 𝑟 ).
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With these modifications to [WZ 3.15] and [WZ 3.16], the rest of the proof of [WZ 3.2]

follows, and therefore also [WZ 3.20] and the convergence of |Ψ𝑛 |, 𝐴𝑛 , and Ψ𝑛 . Finally, the
proof [WZ 4.1], which implies that 𝑍 is nowhere dense, is almost unchanged. It uses of the

Lichnerowicz–Weitzenböck formula by integrating ⟨∇∗
𝐴
∇𝐴Ψ,Ψ⟩ over a neighborhood 𝑍𝜀 of 𝑍 .

The new terms, however, do not change the final inequality because they are estimated by

integrals ˆ
𝑍2𝜀

|𝜂 | |Ψ|2 + |𝐷𝐴 (ΥΨ) | |Ψ| ≲
ˆ
𝑍2𝜀

|Ψ|2 + |∇𝐴Ψ| |Ψ|

which already appear on the right-hand side of the inequality in the proof of [WZ 4.1].
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