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Abstract

We prove an analogue of the Donaldson–Uhlenbeck–Yau theorem for asymptotically cylindri-

cal (ACyl) Kähler manifolds: If E is a re�exive sheaf over an ACyl Kähler manifold, which

is asymptotic to a µ–stable holomorphic vector bundle, then it admits an asymptotically

translation-invariant projectively Hermitian Yang–Mills metric (with curvature in L2

loc
across

the singular set). Our proof combines the analytic continuity method of Uhlenbeck and Yau

[UY86] with the geometric regularization scheme introduced by Bando and Siu [BS94].

1 Introduction

In this paper we construct (singular) projectively Hermitian Yang–Mills (PHYM) metrics over a

certain class of complete non-compact Kähler manifolds.

In the compact case this problem has been extensively studied. Its solution provides a particu-

larly beautiful example of the relation between canonical metrics and algebro-geometric notions

of stability: a holomorphic vector bundle over a compact Kähler admits a PHYM metric if and

only if it is µ–polystable. This was �rst proved for curves by Narasimhan and Seshadri [NS65],

for algebraic surfaces by Donaldson [Don85], and for arbitrary compact Kähler manifolds by

Uhlenbeck and Yau [UY86].

It is an interesting and important question to ask: under which hypothesis does a holomorphic

vector bundle over a complete non-compact Kähler manifolds admit a PHYM metric?1 The answer

to this question is not completely understood, but a number of partial results have been obtained.

For asymptotically conical Kähler manifolds, Bando proved the existence of PHYM metrics on

holomorphic vector bundles which are �at at in�nity [Ban93]. Ni and Ren [NR01] proved that a

holomorphic vector bundle over a complete non-compact Kähler manifold with a spectral gap

admits a PHYM metric if and only if it admits a metric whose failure to be PHYM is in Lp for

p > 1 (using an argument similar to Donaldson’s solution of the Dirichlet problem for the PHYM

equation [Don92]). Ni [Ni02] showed that the same conclusion holds, for example, if the Kähler

1This question was also raised in Yau’s 2015 Shanks Lecture [Yau15, p. 66].
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manifold satis�es a L2
Sobolev inequality and p ∈ [1,n/2), or if it is non-parabolic (i.e., admits a

positive Green’s function) and p = 1.

Main result In this article we concentrate on the asymptotically cylindrical case, and in view of

the applications we have in mind we work with re�exive sheaves (not just holomorphic vector

bundles).

Theorem 1.1. Let V be an asymptotically cylindrical (ACyl) Kähler manifold with asymptotic cross-
section D. LetED be a µ–stable vector bundle over D, andE a re�exive sheaf asymptotic toED .

Then there exists an asymptotically translation-invariant Hermitian metricH onE which satis�es
the projective Hermitian Yang–Mills (PHYM) equation

(1.2) KH B iΛFH −
tr(iΛFH )

rkE
· idE = 0,

and |FH | ∈ L2

loc
(V ).

Remark 1.3. A PHYM metric H on E is Hermitian Yang–Mills (HYM) if and only if the induced

metric h on detE is HYM, that is, iΛFh =
tr(iΛFH )

rkE
is constant. Every asymptotically translation-

invariant line bundle over an ACyl Kähler manifold has a HYM metric; however, this metric will

typically not be asymptotically translation invariant. See Section 2.3 for a detailed discussion.

Remark 1.4. The de�nition of asymptotically cylindrical Kähler manifolds we work with is given

in De�nition 2.1; it includes being asymptotically �bred.

Remark 1.5. The question of the existence of HYM metrics on holomorphic bundles (with trivial

determinant) over ACyl Calabi–Yau 3–folds was studied earlier by Sá Earp [Sá 15] (using the Yang–

Mills heat �ow). Our result improves on his in that we consider general ACyl Kähler manifolds

and handle re�exive sheaves; moreover, we give a complete proof of the exponential decay to a

PHYM metric over D (which is crucial for applications).

Remark 1.6. In dimension four, there is prior work on the relation between ASD instantons and

holomorphic vector bundles over cylindrical manifolds by Guo [Guo96] and Owens [Owe01].

Remark 1.7. Theorem 1.1 does not make any statement about the behavior of H near singularities.

Jacob, Sá Earp, and Walpuski [JSW18] and Chen and Sun [CS17] have studied this behavior in the

case of isolated singularities.

Examples and applications There are plenty of examples of ACyl Kähler manifolds and re�exive

sheaves on them. Given any smooth projective variety Z containing a smooth divisor D and �bred

by |D |, V B Z\D can be given the structure of an ACyl Kähler manifold [HHN15, Section 4.2, Part

1]. Theorem 1.1 can be applied to any holomorphic vector bundleE on Z such thatE |D is µ–stable.

One often wants to construct E by extending a holomorphic vector bundle ED on D to all of Z .

This can always be achieved withE being a re�exive sheaf—by �rst extendingED as a torsion-free

sheaf and then taking the re�exive hull. Whether or not this extension can be arranged to be a
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holomorphic vector bundle is a subtle question. This is one of the reasons why it is desirable to

allow re�exive sheaves.

ACyl Calabi–Yau 3–folds are an important ingredient in the construction of twisted connected

sum G2–manifolds [Kov03; KL11; CHNP15]. Building on [Sá 15], Sá Earp and the second named

author gave a construction of a class of Yang–Mills connections, called G2–instantons, over such

twisted connected sums [SW15]; see [Wal15] for a concrete example. We hope that the current

work will be a �rst step towards the construction of singular G2–instantons on twisted connected

sums. G2–instantons play a central role in Donaldson and Thomas’ vision of gauge theory in

higher dimensions [DT98], and understanding singularities and their formation is an important

part of making their ideas rigorous; see, e.g., [Wal13; Wal17; HW15].

Proof idea We �rst prove Theorem 1.1 for holomorphic vector bundles. After a suitiable choice

of an initial Hermitian metric H0 on E, we construct a PHYM metric using the Uhlenbeck–Yau

continuity method. The di�cult part is the a prioriC0
estimate on the endomorphism s relating H0

and the Hermitian metric Ht = H0e
s

along the continuity path. Unlike in [Ban93; Ni02], a solution

to the Poisson equation ∆f = |KH0
| can not act as a barrier, since on V such a solution does not

have exponential decay—in fact, it decreases linearly along the cylindrical end. Instead, we use

an adaptation to our setup of Sá Earp’s argument in [Sá 15]: his proof �rst exploits the barrier to

obtain a bound of the form ‖s‖3L∞ . ‖s‖
2

L2
, and then uses the Donaldson functional on transverse

slices along the cylindrical end to show that ‖s‖L2 . ‖s‖L∞ . Besides the construction of the initial

Hermitian metric H0, this is the point at which µ–stability enters into the proof. To prove a priori

exponential decay bounds we use ideas of Haskins, Hein and Nordström [HHN15].

Once Theorem 1.1 is established for holomorphic vector bundles, we prove the general case

for a re�exive sheaf E following a geometric regularization scheme, introduced by Bando and Siu

[BS94], based on approximating E and V by a holomorphic vector bundle and a family of ACyl

Kähler metrics on a blow-up of V . The main di�culty is controlling the barrier f as the metrics

degenerate. Once f is controlled, the C0
bound on compact subsets away from the singular set of

E follows, and the arguments from the holomorphic vector bundle case can be applied directly.

Conventions We denote by c > 0 a generic constant, which depends only on V , E, and the

reference metric H0 constructed in Section 3. Its value might change from one occurrence to the

next. Should c depend on further data we indicate this by a subscript. We write x . y for x 6 cy
and x � y for c−1y 6 x 6 cy. O(x) denotes a quantity y with |y | . x .
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2 ACyl Kähler manifolds

In this section we brie�y introduce some notation, recall the necessary linear analysis, and provide

the details promised in Remark 1.3.

De�nition 2.1. Let (D,дD, ID ) be a compact Kähler manifold. A Kähler manifold (V ,д, I ) is called

asymptotically cylindrical (ACyl) with asymptotic cross-section (D,дD, ID ) if there exists a con-

stant δV > 0, a compact subset K ⊂ V and a di�eomorphism π : V \K → (1,∞) × S1 × D such

that

|∇k (π∗д − д∞)| + |∇
k (π∗I − I∞)| = O(e

−δV `),

for all k ∈ N0, with

д∞ B d`2 ⊕ dθ 2 ⊕ дD and I∞ =

(
0 −1

1 0

)
⊕ ID .

Here (`, θ ) are the canonical coordinates on (0,∞) × S1
. The connection ∇ and norms |·| are both

taken to be the ones induced by д∞. Moreover, we assume that the map V \K → (1,∞) × S1
is

holomorphic.

In what follows, we suppose that an ACyl Kähler manifold V with asymptotic cross-section D
has been �xed. By slight abuse of notation we denote by ` : V → [0,∞) a smooth extension of

` ◦ π : V \K → (1,∞) such that ` 6 1 on K . Given L > 1, we de�ne the truncated manifold

VL B `
−1([0, L]).

Given z = (L, θ ) ∈ (1,∞) × S1
, we set

(2.2) Dz B π−1({(L, θ )} × D).

2.1 Re�exive sheaves and Hermitian metrics

De�nition 2.3. Let ED = (ED, ¯∂D ) be a holomorphic vector bundle over D. Let E be a re�exive

sheaf over V with singular set S B sing(E) and underlying smooth vector bundle E → V \S . We

say that E is asymptotic to ED if the following hold:

• There exists a constant L0 > 2 such that S ⊂ VL0−1. In particular, E |V \VL
0

has a
¯∂–operator.

• Denote by E∞ = (E∞, ¯∂∞) the pullback of ED = (ED, ¯∂D ) to (L0,∞) × S
1 × D. Choose an

auxiliary Hermitian metric on ED and pull it back to E∞.2 There exists a bundle isomorphism

π̄ : E |V \VL
0

→ E∞ covering π and a constant δE > 0 such that

|∇k (π̄∗ ¯∂ − ¯∂∞)| = O(e
−δE`),

for all k ∈ N0 and ` > L0.

2The de�nition is insensitive to the precise choice, since D is compact.
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We say that (E, ¯∂) is asymptotically translation-invariant if it is asymptotic to some holomorphic

vector bundle over D.

De�nition 2.4. Let E be a re�exive sheaf over V asymptotic to ED . Let HD be a Hermitian metric

on ED . Denote by H∞ the pullback of HD to E∞. A Hermitian metric on E is a Hermitian metric

H on E |V \S . We say that it is asymptotic to HD if there exist a constant δH > 0 such that

|∇k (π̄∗H − H∞)| = O(e
−δH `)

for all k ∈ N0 and ` > L0. (We take the background metric, used in the comparison, to be H∞.) We

say that H is asymptotically translation-invariant if it is asymptotic to some Hermitian metric

HD .

Given a Hermitian metric H on a holomorphic vector bundle (E, ¯∂), there exists a unique

connection AH , called the Chern connection, which preserves the Hermitian metric and satis�es

∇
0,1
AH
= ¯∂; see, e.g., [Bal06, Theorem 3.18]. We denote the curvature of this connection by FH .

De�nition 2.5. A Hermitian metric H on a re�exive sheaf E is called projectively Hermitian
Yang–Mills (PHYM) if KH ∈ C

∞(V \S, isu(E,H )) de�ned by

KH B iΛFH −
tr(iΛFH )

rkE
· idE

vanishes.

2.2 Linear analysis

In the subsequent sections we need a few results about linear analysis on ACyl Kähler manifolds.

We will simply state the required results and sketch their proofs. For a nice review of linear analysis

on ACyl manifolds we refer the reader to [HHN15, Section 2.1]; see also Maz’ya and Plamenevskiı̆

[MP78] and Lockhart and McOwen [LM85].

Fix a holomorphic vector bundle E asymptotic to ED and a Hermitian metric H asymptotic to

HD .

De�nition 2.6. For k ∈ N, α ∈ (0, 1) and δ ∈ R, de�ne

Ck ,α
δ (V ) B

{
f ∈ Ck ,α (V ) : ‖ f ‖Ck ,α

δ
< ∞

}
,

with

‖·‖Ck ,α
δ

B ‖eδ ` ·‖Ck ,α ,

and set

C∞δ (V ) B
⋂
k ∈N

Ck ,α
δ (V ).

Similarly, we de�ne Ck ,α
δ (V , isu(E,H )) and C∞δ (V , isu(E,H )).
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Proposition 2.7. For 0 < δ �D 1, the linear map Ck+2,α
δ (V ) ⊕ R→ Ck ,α

δ (V ) de�ned by

(f ,A) 7→ ∆f −A∆`

is an isomorphism.

Proof. This is [HHN15, Proposition 2.7] together with the observation that

ˆ
V
∆` = −vol(S1 × D). �

De�nition 2.8. A holomorphic vector bundle (ED, ¯∂) over D issimple if every holomorphic endo-

morphisms of ED is a homothety, that is: H 0(End(ED )) = C · idED .

Proposition 2.9. If HD is HYM,ED is simple and |δ | �HD 1, then the linear operator

∇∗H0

∇H0
: Ck+2,α

δ (V , isu(E,H )) → Ck ,α
δ (V , isu(E,H ))

is Fredholm of index zero.

Proof. We use the theory explained in [HHN15, Section 2.1]. The linear operator ∇∗H0

∇H0
is

asymptotic to the translation-invariant linear operator

−∂2

` − ∂
2

θ + ∇
∗
HD
∇HD

acting on sections of isu(E∞,H∞). Since HD is PHYM,

1

2

∇∗HD
∇HD = ∂

∗
HD
∂HD =

¯∂∗ED
¯∂ED .

The latter is invertible because ED is simple. Consequently, the spectrum of −∂2

θ + ∇
∗
HD
∇HD is

contained in [λD,∞), for some λD > 0. This implies the Fredholm property for |δ | <
√
λD by

[HHN15, Proposition 2.4]. Since ∇∗HD
∇HD is formally self-adjoint and 0 is not a critical weight, the

index is zero; cf. [LM85, Theorem 7.4]. �

2.3 Hermitian Yang–Mills metrics on line bundles

Proposition 2.10. LetL be a line bundle asymptotic toLD and denote by hD a Hermitian metric on
LD with

iΛFhD = λ B
2π · deg(LD )

(n − 2)! · vol(D)
.3

Then there exists a unique Hermitian metric h0 asymptotic to hD and A ∈ R such that h B h0e
−A`

satis�es
iΛFh = λ.

3Such a Hermitian metric exists and is unique up to multiplication by a positive constant; see, e.g., [LT95, Corollary

2.1.6].
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Proof. Let h−1 be any Hermitian metric asymptotic to hD . We have

λ − iΛFh−1
∈ C∞δ (V ).

By Proposition 2.7 there is a unique pair f ∈ C∞δ (V ) and A ∈ R such that

∆(f −A`) = λ − iΛFh−1
.

The proposition follows with h0 B h−1e
f
. �

The number A(L) de�ned by Proposition 2.10 is an invariant of the asymptotically translation-

invariant line bundle L. It can be computed as

A(L) B
1

vol(S1 × D)

ˆ
V
λ − iΛFh

with h denoting any Hermitian metric asymptotic to some hD as in Proposition 2.10. It is closely

related to the �rst Chern class: if L1 and L2 are both asymptotic to LD , then c1(L1) − c1(L2) ∈

H 2

c (V ) and

A(L1) −A(L2) =
2π · 〈(c1(L1) − c1(L2)) ∪ [ω]

n−1, [V ]〉

(n − 1)! · vol(S1 × D)
.

It follows from the above thatE as in Theorem 1.1 admits an asymptotically translation invariant

HYM metric if and only if A(detE) = 0.

3 The Uhlenbeck–Yau continuity method

In this section we begin the proof of Theorem 1.1 in the case when E is a holomorphic vector

bundle. We use the continuity method introduced by Uhlenbeck and Yau [UY86]; see also Lübke

and Teleman’s beautiful books [LT95; LT06].

We �x some

0 < δ < min

{
δV , δE,

√
λD

}
and will shortly construct a background Hermitian metric H0 on E which is asymptotically

translation-invariant and satis�es

(3.1) KH0
∈ C∞δ (V , isu(E,H0)).

Given such an H0, we de�ne a map

L : C∞δ (V , isu(E,H0)) × [0, 1] → C∞δ (V , isu(E,H0))

by

L(s, t) B Ad(es/2)KH0es + t · s .4

4The prefactor Ad(es/2) is needed because KH0es need not be H0–self-adjoint.
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Set

I B
{
t ∈ [0, 1] : L(s, t) = 0 for some s ∈ C∞δ (V , isu(E,H0))

}
.

We will show that 1 ∈ I , I ∩ (0, 1] is open and I is closed; hence, I = [0, 1]. Since L(s, 0) = 0

precisely means that H = H0e
s

satis�es (1.2), this will prove Theorem 1.1 when E is a holomorphic

vector bundle.

Proposition 3.2. There exists an asymptotically translation-invariant Hermitian metric H0 on E

satisfying (3.1) and an s ∈ C∞δ (V , isu(E,H0)) such that L(s, 1) = 0.

Proof. We use a trick discovered by Lübke and Teleman [LT95, Lemma 3.2.1]. By the Donaldson–

Uhlenbeck–Yau theorem [Don85; UY86; Don87] there exists a PHYM metric HD on ED . One can

easily construct a Hermitian metric H−1 asymptotic to HD (at rate δH−1
= δ ) which satis�es

κ B KH−1
∈ C∞δ (V , isu(E,H−1)).

The Hermitian metric

H0 B H−1e
κ

is asymptotic to HD (at rate δH0
= δ ). We have (3.1), and κ ∈ C∞δ (V , isu(E,H0)) satis�es

L(−κ, 1) = Ad(e−κ/2)(KH−1
) − κ = 0. �

4 Linearising L = 0

Having just proved that 1 ∈ I , the next step is to show that I ∩(0, 1] is open. This will be established

in this section by linearising the equation L = 0.

Since

L(s, t) = Ad(es/2)
(
KH0
+ iΛ ¯∂(e−s∂H0

es )
)
+ t · s,

it extends to a smooth map

L : C2,α
δ (V , isu(E,H0)) × [0, 1] → C0,α

δ (V , isu(E,H0)).

The fact that I ∩ (0, 1] is open is an immediate consequence of the following two propositions and

the implicit function theorem for Banach spaces; see, e.g., [MS12, Theorem A.3.3].

Proposition 4.1. If (s, t) ∈ C2,α
δ (V , isu(E,H0))×(0, 1] is a solution ofL(s, t) = 0, then the linearisation

Ls ,t B
dL

ds
(s, t) : C2,α

δ (V , isu(E,H0)) → C0,α
δ (V , isu(E,H0))

is invertible.

Proposition 4.2. If (s, t) ∈ C2,α
δ (V , isu(E,H0)) × [0, 1] is a solution of L(s, t) = 0, then

s ∈ C∞δ (V , isu(E,H0)).
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The proofs of both of these results are essentially identical to those of the analogous results in

the compact setting; see [LT06, Lemma 4.6 and Lemma 4.8]. The proofs make use of the explicit

formulae for Ad(es/2)KH0es and its derivative in the direction of s . The derivation of these, while

rather straight-forward, is somewhat tedious and therefore relegated to Appendix A.

Proof of Proposition 4.2. By Proposition A.1 and since Θ(s) as de�ned in (A.3) is invertible, the

equation L(s, t) = 0 is equivalent to(
1

2

∇∗H0

∇H0
+ t

)
s + B(∇H0

s ⊗ ∇H0
s) = C(KH0

).

where B and C are linear with coe�cients depending on s , but not on its derivatives. The result

now follows from a standard elliptic bootstrapping procedure. �

Proof of Proposition 4.1. By Proposition A.8 and using

L(s, t) = Ad(es/2)KH0es − t · s = 0,

the linear operator Ls ,t is given by

Ls ,t ŝ =
1

4

∇∗
Ãs
∇Ãs (id + Ad(e−s/2))ϒ(s/2)ŝ +

t

4

[
s, (id − Ad(e−s/2))ϒ(s/2)ŝ

]
+ tŝ

with ϒ as de�ned in (A.2). Since s ∈ C2,α
δ (V , isu(E,H0)), the linear operator Ls ,t can be connected to

1

2
∇∗H0

∇H0
+t by a path of bounded linear operators which are asymptotic to

1

2
(∂2

`
−∂2

θ +∇
∗
HD
∇HD )+t .

The argument in the proof of Proposition 2.9 shows that this is a path of Fredholm operators.

Therefore, the index of Ls ,t agrees with that of
1

2
∇∗H0

∇H0
+ t and thus vanishes. To see that Ls ,t

has trivial kernel and thus is invertible, observe thatˆ
V
〈Ls ,t ŝ, (id + Ad(e−s/2))ϒ(s/2)ŝ〉

> t

ˆ
V
〈(ads/4(id − Ad(e−s/2)ϒ(s/2) + id)ŝ, (id + Ad(e−s/2))ϒ(s/2)ŝ〉

= t

ˆ
V
〈Ξ(s)ŝ, ŝ〉

with

Ξ(s) B ϒ(s/2)(id + Ad(e−s/2))(ads/4(id − Ad(e−s/2)ϒ(s/2) + id).

Since Ad(es ) = eads
and spec(ads ) ⊂ R, it follows from

(ex/2 − 1)

x/2
(1 + e−x/2)

(
x

4

(1 − e−x/2)
ex/2 − 1

x/2
+ 1

)
=

2 sinh(x)

x
> 2,

for all x ∈ R, that ˆ
V
〈Ls ,t ŝ,Ad(e−s/2)ϒ(s/2)ŝ〉 > 2t

ˆ
V
|ŝ |2.

Therefore, Ls ,t has trivial kernel. �
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5 A priori estimate

Given the following a priori estimate, it is an immediate consequence of Arzelà–Ascoli theorem

that I is closed.

Proposition 5.1. If (s, t) ∈ C∞δ (V , isu(E,H0)) × [0, 1] satis�es L(s, t) = 0, then

‖s‖Ck ,α
δ
6 ck ,α .

The proof of this proposition, to which this section is devoted, has two steps: First we prove

that ‖s‖C0 is bounded by a constant depending only on H0 using ideas from [Sá 15]. This implies

that ‖s‖Ck is bounded by a constant depending only on k and H0 by an argument of Bando and Siu

[BS94, Proposition 1]. (For the reader’s convenience we give a detailed proof of this in Appendix C.)

The second step is a decay estimate which is similar to [HHN15, Steps 3 and 4 in the proof of

Theorem 4.1].

5.1 A priori Ck estimate

Proposition 5.2. If (s, t) ∈ C∞δ (V , isu(E,H0)) × [0, 1] satis�es L(s, t) = 0, then

‖s‖Ck 6 ck .

Proof. By Theorem C.1 it su�ces to prove the proposition for k = 0. Fix L0 � 1, but independent

of s , and set

N B ‖s‖L∞(V ) and M B ‖s‖L∞(V \VL
0
).

Step 1. We have
N 6 M + c(L0 + 1).

We can assume that |s | achieves its maximum at x0 ∈ VL0
because otherwise the estimate holds

trivially. From Proposition A.9 and L(s, t) = 0 it follows that

(5.3) ∆|s |2 + 4t |s |2 6 −4〈KH0
, s〉;

hence,

∆|s |2 6 4N |KH0
|.

Denote by f ∈ C2,α
δ (V ) and A > 0 the unique solution to

∆(f −A`) = 4|KH0
|.

Applying the maximum principle to the subharmonic function |s |2 − N (f −A`) on VL0
we have

N 2 6 M2 + N (AL0 + 2‖ f ‖L∞) 6 N (M +AL0 + 2‖ f ‖L∞).

This implies the assertion.
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Step 2. We have √
M . ‖KH0es |Dz ‖L2(V \VL

0
) + 1.

Here Dz is as in (2.2) for z = (L, θ ) ∈ (L0,∞) × S
1.

Step 2.1. If x0 ∈ V \VL0
is such that

|s |(x0) = M,

then for all L > `(x0) we have

‖s ‖L∞(∂VL ) −
1

4

M & `(x0) − L.

By the maximum principle applied to |s |2 − N (f −A`) on VL we have

M2 − N f (x0) + NA`(x0) 6 ‖s‖
2

L∞(∂VL ) + N ‖ f ‖L∞(∂VL ) + NAL.

We can assume that M > 8‖ f ‖L∞(V \VL
0
) and N 6 2M , because otherwise N can already be bounded

independent of s using Step 1. With these assumptions it follows that

NA(`(x0) − L) 6 ‖s‖
2

L∞(∂VL ) −M
2 + 2N ‖ f ‖L∞(V \VL

0
)

6 N

(
‖s‖L∞(∂VL ) −

1

4

M

)
.

Step 2.2. There are L0 6 L1 < L2 with L2 − L1 � M such that

M3/2 . ‖s‖L2(VL
2
\VL

1
).

By Step 2.1 we have

M . ‖s‖L∞(∂VL )

for 0 6 L − `(x0) � M ; hence, using the mean value inequality [GT01, Theorem 9.20], ∆|s |2 6
4|KH0

| |s |, and |KH0
| = e−δ ` it follows that

M2 .

ˆ
VL+1\VL−1

|s |2 + e−δL0M .

Since L0 � 1, the second term on the right-hand side can be rearranged. Summing over L− `(x0) =

1, . . . ,k (with k � M) yields the asserted inequality.

Step 2.3. We have
‖s ‖L2(Dz ) − 1/2 . M ‖KH0es |Dz ‖L2(Dz ).

11



At this stage the µ–stability of ED comes into play via the Donaldson functional M; see

Appendix B. Since L0 � 1 and ED is µ–stable, E |Dz is µ–stable as well. Denote by HDz the PHYM

metric on EDz inducing the same metric on det(E |Dz ) as H0 |Dz . Set σz B log(H−1

Dz
H0 |Dz ). By the

construction of H0 in Proposition 3.2 we have σz ∈ C
∞
δ (V , isu(E,H0)).

Using Theorem B.3, Proposition B.1, and Proposition B.2 we have

‖s |Dz ‖L2(Dz ) − 1 . ‖log(eσes |Dz )‖L2(Dz ) − 1

.M(HDz ,HDze
σes |Dz )

.M(H0 |Dz ,HDz ) +M(H0 |Dz ,H0e
s |Dz )

.

ˆ
Dz

|s | |KH0es |Dz | + e
−δL0 .

This implies the asserted inequality.

Comparing the lower bounds from Step 2.2 with the upper bounds obtained by integrating

Step 2.3 completes the proof of Step 2.

Step 3. We have
‖KH0es |Dz ‖

2

L2(V \VL
0
)
. e−δL0 + ‖F ◦H0

‖2L2(VL
0
)
.

Here F ◦H0

denotes the curvature of the PU(r )–connection induced by H0.

Once this is proved, the desired control on M follows and the proof of Proposition 5.2 will be

complete.

Step 3.1. We have

‖KH0es |Dz ‖
2

L2(V \VL
0
)
.

ˆ
V
|F ◦H0es |

2 − |F ◦H0

|2 + ce−δL0 + ‖F ◦H0

‖2L2(VL
0
)
.

If H is a Hermitian metric on a holomorphic bundleE over an n–dimensional Kähler manifold

X with Kähler form ω, then

(5.4) q4(H ) ∧ ω
n−2 = c

(
|F ◦H |

2 − |KH |
2
)

vol

with

q4(H ) B 2c2(H ) −
r − 1

r
c1(H )

2

and ck denoting the k–th Chern form associated with H .

If X is compact, then the integral of the left-hand side of (5.4) depends only E; hence,

ˆ
Dz

|KH0es |Dz |
2 =

ˆ
Dz

|KH0 |Dz
|2 +

ˆ
Dz

|F ◦H0es |Dz
|2 − |F ◦H0 |Dz

|2.

Since

|FH0
− FH0 |Dz

| . e−δL and |KH0 |Dz
| . e−δL,

12



it follows that ˆ
Dz

|KH0es |Dz |
2 .

ˆ
Dz

|F ◦H0es |Dz
|2 − |F ◦H0 |Dz

|2 + e−δL

.

ˆ
Dz

|F ◦H0es |
2 − |F ◦H0

|2 + e−δL .

Step 3.2. We have ˆ
V
|F ◦H0es |

2 − |F ◦H0

|2 6 0.

Since s ∈ C∞δ (V , isu(E,H0)), we have

ˆ
V
(q4(H0e

s ) − q4(H0)) ∧ ω
n−2 = 0.

Using (5.4), we obtain ˆ
V
|F ◦H0es |

2 − |F ◦H0

|2 =

ˆ
V
|KH0es |

2 − |KH0
|2.

To see that the right-hand side is non-positive, we use (5.3) and L(s, t) = 0 to derive

ˆ
V
|KH0es |

2 =

ˆ
V
t2 |s |2 6

ˆ
V
t |KH0

| |s |

6

ˆ
V

1

2

|KH0
|2 +

1

2

t2 |s |2 =

ˆ
V

1

2

|KH0
|2 +

1

2

|KH0es |
2. �

5.2 Decay estimate

Proof of Proposition 5.1. To complete the proof we need to establish quantitative exponential decay

bounds for s using the a priori estimate in Proposition 5.2 and the qualitative information that

s ∈ C∞δ (V , isu(E,H0)).

Fix L0 � 1 as in the proof of Proposition 5.2.

Step 1. We have ˆ
V \VL

0

|∇H0
s |2 6 c .

From Proposition A.9 and L(s, t) = 0 it follows that

∆|s |2 + 2|υ(−s)∇H0
s |2 6 −4〈KH0

, s〉

with υ(−s) as de�ned in (A.11). Since

υ(−s) =

√
1 − e− ads

ads
and

√
1 − e−x

x
&

1√
1 + |x |

,
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it follows that

(5.5) |∇H0
s |2 . (1 + ‖s‖L∞)

(
|KH0
| |s | − ∆|s |2

)
.

Integrating this over V and using (3.1) as well as Proposition 5.2 yields the asserted estimate.

Step 2. For some ε > 0 and all L > L0, we have
ˆ
V \VL
|s |2 . e−2εL and

ˆ
V \VL
|∇H0

s |2 . e−2εL .

Since ED is simple, for all s̃ ∈ Γ(D,End0(ED )) we have

ˆ
D
|s̃ |2 .

ˆ
D
| ¯∂D s̃ |

2 .

ˆ
D
|∇HD s̃ |

2.

Because L0 � 1, this implies that

(5.6)

ˆ
∂VL
|s |2 .

ˆ
∂VL
|∇H0

s |2

for L > L0. Therefore, it su�ces to prove the second inequality.

Integrating (5.5) over V \VL and using (5.6) yields

ˆ
V \VL
|∇H0

s |2 . e−δL +

ˆ
∂VL
|∇H0

s | |s |

. e−δL +

ˆ
∂VL
|∇H0

s |2.

The assertion now follows from Proposition 5.8, which will be proved at the end of this section.

Step 3. With ε > 0 as above
‖s‖Ck ,α

ε
6 ck ,α .

As in the proof of Proposition 4.2, we can write L(s, t) = 0 in the form

(5.7)

(
1

2

∇∗H0

∇H0
+ t

)
s + B(∇H0

s ⊗ ∇H0
s) = e,

where B is linear with coe�cients depending on s , and by (3.1)

‖e‖Ck ,α
δ
6 ck ,α .

Using standard interior estimates the assertion follows from Proposition 5.2 and Step 2.
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Step 4. We prove the proposition.

Since

‖∇H0
s ⊗ ∇H0

s‖Ck ,α
2ε
. ‖∇H0

s‖2
Ck ,α
ε
,

we note that 



1

2

∇∗H0

∇H0
s + ts






Ck ,α
ε′

6 ck ,α

with ε ′ B min{2ε, δ }. From Proposition 2.9 it follows that

‖s‖Ck ,α
ε′
6 ck ,α .

Repeating this argument a �nite number of times we �nally arrive at ε ′ = δ . �

Proposition 5.8. If f : [0,∞) → [0,∞) satis�es

f (L) 6 Ae−δL − Bf ′(L)

with A,B > 0, then
f (L) 6 (2A + f (0))e−εL

with ε B min{δ , 1/2B}.

Proof. The function д : [0,∞) → R de�ned by

д(L) B f (L) − (2A + f (0))e−εL

satis�es д(0) = −2A 6 0 and д′(L) 6 −д(L)/B. It follows that д 6 0, which proves the proposition.

�

6 The Bando–Siu continuity method

To prove Theorem 1.1 for re�exive sheavesE we use a regularization scheme based on ideas of Bando

and Siu [BS94]. We construct a one-parameter family of ACyl Kähler manifolds {Ṽε : ε ∈ (0, 1]}
whose underlying complex manifold Ṽ is obtained by blowing up S B sing(E). As ε tends to zero,

the exceptional divisor shrinks and Ṽε resemblesV more and more closely. Ṽ carries a holomorphic

vector bundle
˜E, which agrees with E outside S , and to which Theorem 1.1 can be applied to

construct a PHYM metric H̃ε . The desired PHYM metric on E will be constructed by taking the

limit as ε tends to zero.

Proposition 6.1. There is a complex manifold Ṽ , a holomorphic map π̂ : Ṽ → V which induces a
biholomorphic map to V \S , and a holomorphic vector bundle ˜E over Ṽ such that

˜E |Ṽ \π̂−1(S ) � π̂ ∗(E |V \S ).

Moreover, there exists a one-parameter family of Kähler metrics {дε : ε ∈ (0, 1]} on Ṽ such that:

15



• on π̂−1(V \B√ε (S)) we have дε = π̂
∗д, and

• for L > L0, the Neumann–Poincaré constant of (π̂−1(VL),дε ) is bounded above by a constant
independent of ε . Here L0 is as in De�nition 2.3.

Proof. The proof has three steps.

Step 1. Construction of Ṽ and ˜E.

We follow the method of Bando and Siu [BS94, p. 46], see also [Sib15, Section 4.1].

Since E∗ is coherent, there exists a locally free sheaf F and a surjective morphism F∗ →

E∗ → 0. Since E is re�exive, by dualising, we get 0→ E → F. This de�nes a rational section

ϕE : V d Grr (F), with locus of indeterminacy S . By a result of Hironaka [Hir64, Part I, Chapter

0, Section 5], there exists a holomorphic map π̂ : Ṽ → V , which is biholomorphic outside S and

equivalent to a sequence of blow-ups along smooth submanifolds (of codimension at least three),

such that ϕE ◦ π̂ extends to a section Ṽ → Grr (π̂
∗F). This section de�nes the desired holomorphic

vector bundle
˜E over Ṽ .

Step 2. The model metric.

Denote by ωFS the Fubini–Study form on Pn−1
. The Kähler form

ω̃ε = i∂ ¯∂

(
1

2

|z |2 +
ε2

2π
log|z |2

)
on Cn\{0} uniquely extends to a Kähler form on Bl0 Cn

which induces ε2ωFS on the exceptional

divisor Pn−1
. More precisely, if we denote by r the radial coordinate, by θ the 1–form arising from

the S1
–action and by ϖ : Cn\{0} → Pn−1

the projection, then

(6.2) ω̃ε = (ε
2 + r 2)ϖ∗ωFS + rdr ∧ θ .

Fix a smooth function χ : [0,∞) → [0, 1] which is equal to one on [0, 1] and vanishes outside

[0, 2]. For 0 < ε � 1, set χε B χ (·/2
√
ε) and de�ne a Kähler form on Bl0 Cn

by

ωε B i∂ ¯∂

(
1

2

|z |2 + χε (|z |) ·
ε2

2π
log|z |2

)
.

This agrees with ω̃ε on B√ε/2, it agrees with the �at Kähler form ω0 on Cn\B√ε (0), and it satis�es

|ωε − ω0 | . ε |log ε |

on B√ε (0)\B
√
ε/2(0). Moreover, we have

ωn
ε

ωn � 1 + (ε/r )2n−2.
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Step 3. Construction of дε .

Ṽ is constructed by a �nite sequence of blow-ups along smooth submanifolds. In fact, by

induction we can assume that there is just one blow-up, say, alongC ⊂ V . Denote by ρ : V → [0,∞)
the distance to C . For 0 < ε 6 ε0,

ωε B π̂ ∗ω + i∂ ¯∂

(
(χε ◦ ρ) ·

ε2

2π
log ρ2

)
de�nes a Kähler form on Ṽ whose restriction to π̂−1(V \Bε (S)) agrees with π̂ ∗ω. We extend the

resulting family of Kähler metrics to be constant for ε ∈ [ε0, 1].

Step 4. Estimate of the Neumann–Poincaré constant.

Fix L > L0. We use the discretization method of Grigor’yan and Salo�-Coste [GS05, Section

3.1] to estimate the Neumann–Poincaré constant of (π̂−1(VL),дε ). Fix 0 < σ � 1. Pick a maximal

set of points {x j : j ∈ J } ⊂ VL−1/2 of distance at least σ from each other. Set

A0 B VL\VL−1/2, A∗
0
= A#

0
B VL\VL−1,

Aj B π̂−1(Bσ (x j )), A∗j = π̂
−1(B4σ (x j )) and A#

j B π̂−1(B8σ (x j )).

Set I B J t{0}. A B
{
(Ai ,A

∗
i ,A

#

i ) : i ∈ I
}

is a good covering ofVL inVL in the sense of Grigor’yan

and Salo�-Coste [GS05, De�nition 3.1]. This means that, for all i ∈ I , Ai ⊂ A∗i ⊂ A#

i and for some

constants Q1,Q2 the following hold:

• We have VL ⊂
⋃

i ∈I Ai and

⋃
i ∈I A

#

i ⊂ VL .

• For each i ∈ I , |{j ∈ I : A#

i ∩A
#

j , �}| 6 Q1.

• If d(Ai ,Aj ) = 0, then there is a k = k(i, j) ∈ I such that Ai ∪Aj ⊂ A∗k . Moreover, vol(A∗k ) 6
Q2 min{vol(Ai ), vol(Aj )}.

According to [GS05, Theorem 3.7] the Neumann–Poincaré constant of VL can be estimated

by Q1Λc (2 + Q2

1
Q2Λd ). Here the continuous Poincaré constant Λc and the discrete Poincaré

constant Λd [GS05, De�nition 3.4 and De�nition 3.6] are the smallest constants such that,

(6.3)

ˆ
Ai
| f − ¯fAi |

2 6 Λc

ˆ
A∗i

|∇f |2 and

ˆ
A∗i

| f − ¯fA∗i |
2 6 Λc

ˆ
A#

i

|∇f |2

and ∑
i ∈I

| f (i) − ¯f |2m(i) 6 ΛdE(f , f ).

Here

m(i) = vol(Ai ), ¯f B

∑
i ∈I f (i)m(i)∑

i ∈I m(i)
and

E(f , f ) B
1

2

∑
(i , j)∈I×I

| f (i) − f (j)|2m(i, j).
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with

m(i, j) B

{
max{m(i),m(j)} if d(Ai ,Aj ) = 0

0 otherwise.

While the measures of Ai , A
∗
i , and A#

i are dependent of ε , they are uniformly comparable.

Consequently, the constants Q1 and Q2 and discrete Poincaré constant Λd can be bounded inde-

pendently of ε . Thus it remains to show that Λc can be bounded independently of ε ; that is, we

can �nd a constant such that (6.3) holds for all i ∈ I and ε ∈ (0, 1]. For i = 0, (6.3) is obvious. For

i ∈ J , such estimates follow from scaling considerations and uniform weak Poincaré inequalities

ˆ
Br (x )
| f − ¯fBr (x ) |

2 6 cr 2

ˆ
B2r (x )

|∇f |2

(with c > 0 independent of x and r ) for certain model spaces, for example, Bl0 Ck ×Cn−k
equipped

with the Kähler metric induced by i∂ ¯∂
(

1

2
|z |2 + 1

2π log|z |2 + 1

2
|w |2

)
. The existence of these uniform

Poincaré constants in turn can also be established using the discretization method as follows. We

can assume that r � 1. Denote by π̂ : Bl0 Ck × Cn−k → Cn
the projection. For i ∈ Z2n ⊂ Cn

, set

Ai B π̂−1(B1(i)), A∗i B π̂−1(B4(i)) and A#

i B π̂−1(B8(i)).

If we set Ix ,r B {i ∈ Z2n ∩ π̂ (Br (x))}, then Ax ,r B {(Ai ,A
∗
i ,A

#

i ) : i ∈ Ix ,r } is a good covering of

Br (x) in B2r (x); moreover, the constants Q1 and Q2 as well as the continuous Poincaré constant Λc
of Ax ,r can be bounded independently of x and r . The discrete Poincaré constant of Ax ,r can be

bounded by a constant times r 2
; see, e.g., [Ber14, Section 3.4]. [GS05, Theorem 3.7] thus establishes

the desired uniform weak Poincaré inequalities. �

We denote Ṽ equipped with the metric дε by Ṽε . Given a subset U ⊂ V , we set Ũ B π̂−1(U ).
Using Theorem 1.1 for holomorphic vector bundles, for each ε ∈ (0, 1], we construct a PHYM

metric H̃ε on
˜E over Ṽε . We can assume that the metric on det

˜E induced by H̃ε agrees with

a �xed asymptotically translation-invariant metric
˜h which does not depend on ε . De�ne s̃ε ∈

C∞δ (Ṽε , isu(E, H̃1)) by

s̃ε B log H̃−1

1
H̃ε .

The PHYM metric H on E, whose existence was asserted in Theorem 1.1, can be constructed using

the following proposition and the Arzelà–Ascoli theorem by taking the limit of the metrics H̃ε
over V \U = Ṽε\Ũ as ε tends to zero. Here U is an arbitrary neighbourhood of S ⊂ V .

Proposition 6.4. For all ε ∈ (0, 1], we have

‖s̃ε ‖Ck
δ (Ṽε \Ũ )

6 ck ,U .

Proof. Set

Kε B iΛεFH̃1

−
tr(iΛεFH̃1

)

rk
˜E
· id ˜E,
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and let fε ∈ C
0

δ (Ṽε ) and Aε > 0 be the unique solution to

∆ε (fε −Aε`) = 4|Kε |.

Here Λε and ∆ε denote the dual Lefschetz operator and the Laplace operator on Ṽε respectively.

If we can prove that

‖ fε ‖L∞(Ṽε \Ũ ) 6 cU , Aε 6 c and ‖FH̃1

‖L2(Ṽε ,L
0
) 6 c,

then the argument in Section 5 will yield the asserted bounds on s̃ε .
The proof of the above bounds on fε , Aε and FH̃1

proceeds in four steps.

Step 1. We have
‖FH̃1

‖L2(Ṽε ,L
0
) 6 c and ‖Kε ‖Ck

δ (V \VL0
) 6 ck ;

in particular, Aε 6 c .

Recall that ρ denotes the distance to S . By (6.2), we have

volдε

volдε
.

(
ρ2 + ε2

ρ2 + 1

)
codim(S )−1

and

|β |дε
|β |д1

.

(
ρ2 + ε2

ρ2 + 1

)−1

for any 2–form β . Consequently,

|FH̃1

|2дε volдε .

(
ρ2 + ε2

ρ2 + 1

)
codim(S )−3

|FH̃1

|2volд1
.

Since codim S > 3, this implies the asserted L2
–bound. The second inequality is a consequence

of the fact that дε , and thus Kε , does not depend on ε on V \VL0
. Both estimates together yield

Aε . ‖Kε ‖L1(Ṽε ) 6 c .

Step 2. There is a constant ¯fε such that on V \VL0
we have

‖e−
δ `
2 (fε − ¯fε )‖L2(Ṽε ) 6 c and ‖∇ε fε ‖

2

L2(Ṽε )
6 c .

From Proposition 6.1 it follows that the weighted Neumann–Poincaré inequality [HHN15,

Theorem 4.18] holds for σ = 1 and µ = δ
2

with a constant c > 0 independent of ε ; hence, for some

constant
¯fε

‖e−
δ `
2 (fε − ¯fε )‖

2

L2(Ṽε )
. ‖∇ε fε ‖

2

L2(Ṽε )
.

Using the previous step, we have

‖∇ε fε ‖
2

L2(Ṽε )
=

ˆ
Ṽε
〈∆ε (fε − ¯fε ), fε − ¯fε 〉

6 ‖e
δ `
2 (Kε +Aε∆ε`)‖L2(Ṽε ) · ‖e

− δ `
2 (fε − ¯fε )‖L2(Ṽε )

. ‖e−
δ `
2 (fε − ¯fε )‖L2(Ṽε ).
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Combined with the above this yields

‖e−
δ `
2 (fε − ¯fε )‖L2(Ṽε ) 6 c .

This in turn implies the second of the asserted inequalities.

Step 3. We have
‖ fε ‖L∞(Ṽε \U ) 6 cU .

De�ne F : [L0,∞) → [0,∞) by

F (L) B

ˆ
V \VL

0

|∇ε fε |
2.

By the previous step, we have

F (L) 6 c .

Setting
¯fε ,L B

ffl
∂VL

fε , we have

ˆ
∂VL
| fε − ¯fε ,L | 6

ˆ
∂VL
| fε − ¯fε |.

Using integration by parts, the Neumann–Poincaré inequality on ∂VL , and the previous step, we

have

F (L) 6

ˆ
V \VL
|Kε +Aε∆` | | fε − ¯fε ,L | +

ˆ
∂VL
|∇ε f | | fε − ¯fε ,L |

.

ˆ
V \VL

e−δ ` | fε − ¯fε | +

ˆ
∂VL
|∇ε f | | fε − ¯fε ,L |

. e−
δL
2 − F ′(L).

It follows from Proposition 5.8 that F (L) . e−2γ L
for some γ > 0. From interior estimates it follows

that

|∇ε fε | . e−γ `

on V \VL0
and

‖∇ε fε ‖L∞(Ṽε \U ) 6 cU .

By the exponential decay of fε , the above bound implies the assertion by integrating the gradient

of fε along a path down the the tubular end of V . �

The L2
curvature bound asserted in Theorem 1.1 is a consequence of the following proposition.

Proposition 6.5. For each ε ∈ (0, 1], we have


FH̃ε 


L2(Ṽε ,L )
. L + 1.
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Proof. Since
˜h is �xed, it su�ces to estimate F ◦

H̃ε
, the curvature of the PU(r )–connection induced

by H̃ε .

For each �xed ε ∈ (0, 1], we have a bound of the desired form; however, it might a priori

depend on ε . To see that it does not, we use a topological argument. With q4 as de�ned in (5.4) we

have

q4(H̃ε ) − q4(H̃1) = dτ (s̃ε )

where τ is the transgression form associated with q4 and can be bounded in terms of |s̃ε | and

|∇H̃ s̃ε |. Using (5.4) and KH̃ε = 0, we derive

ˆ
ṼL

���F ◦H̃ε ���2volε .

ˆ
ṼL

q4(H̃ε ) ∧ ω
n−2

ε

=

ˆ
ṼL
(q4(H̃1) + dτ ) ∧ ωn−2

ε

.

ˆ
ṼL

���F ◦H̃1

���2
дε

volε + 1

.

ˆ
ṼL

���F ◦H̃1

���2
д1

vol1 + 1

. L + 1.

Here the second term in the third step arises from Stokes’ theorem and the fourth step uses the

argument from Step 1 in the proof of Proposition 6.4. �

This �nishes the proof of Theorem 1.1.

7 Uniqueness of PHYM metrics

We have the following basic uniqueness result for asymptotically translation-invariant PHYM

metrics.

Proposition 7.1. LetE be a re�exive sheaf over V asymptotic toED and let h be an asymptotically
translation-invariant Hermitian metric on detE. If ED is simple, then there exists at most one
asymptotically translation-invariant PHYM metric onE inducing h.

Proof. If H0 and H were two asymptotically translation-invariant PHYM metrics inducing h, then

they must be asymptotic to the same PHYM metric HD onED (by uniqueness in the compact case).

Then, for some δ > 0,

s B log(H−1

0
H ) ∈ C∞δ (V \S, isu(E,H0)).

Moreover, by [Siu87, p. 13],

∆ log tr es 6 0
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on V \S . The argument in the proof of [BS94, Theorem 2(a)] shows that log tr es ∈W 1,2
loc
(V ); hence,

log tr es is weakly subharmonic and thus log tr es 6 log rkE because s tends to zero at in�nity.

However, because of the inequality of arithmetic and geometric means, log tr es > log rkE with

equality if and only if s = 0. �

A Useful formulae for Chern connections

Let E = (E, ¯∂) be a rank r holomorphic vector bundle. Given a Hermitian metric H on E, there

exists a unique Hermitian covariant derivative ∇ = ∇H on E such that ∇
0,1
H =

¯∂. The connection

AH associated with ∇H is called the Chern connection induced by H .

Fix a Hermitian metric H0 and s ∈ Γ(iu(E,H0)). Set

H B H0e
s

and Ãs B es/2∗ AH = es/2∗ AH0es .

Since es/2 : (E,H ) → (E,H0) is an isometry, both Ã0 = AH0
and Ãs are connections on the principal

U(r )–bundle U(E,H0). Set

K(s) B Ad(es/2)KH0es = iΛFÃs .

All of the following results can be found in [LT06, Section 6], in the setting of holomorphic

principal bundles. We summarise them here for the reader’s convenience.

Proposition A.1. We have

K(s) = (2 − 2 cosh(ads/2))KH0

+
1

2

Θ(s)∇∗H0

∇H0
s

+
i

2

Λ
(

¯∂ϒ(−s/2) ∧ ∂H0
s
)
−

i

2

Λ
(
∂H0

ϒ(s/2) ∧ ¯∂s
)

−
i

4

Λ
(
ϒ(−s/2)∂H0

s ∧ ϒ(s/2) ¯∂s + ϒ(s/2) ¯∂s ∧ ϒ(−s/2)∂H0
s
)

with ϒ(s) ∈ End(gl(E)) de�ned by

(A.2) ϒ(s) B
eads − id

ads

and Θ(s) ∈ End(gl(E)) de�ned by

(A.3) Θ(s) B
ϒ(s/2) + ϒ(−s/2)

2

.

Remark A.4. Since ads B [s, ·] ∈ Γ(End(gl(E))) is self-adjoint with respect to H0, so is ϒ(s). Both

cosh(ads/2) and Θ(s) preserve u(E,H0) because their power series expansions involve only even

powers of ads and ad
2

s preserves u(E,H0). Also note that Θ(s) is self-adjoint with respect to H0

and its �rst eigenvalue is at least one.
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Proof of Proposition A.1. Since ∂H0es = ∂H0
+ e−s∂H0

es , we have

∂Ãs = es/2(∂H0
+ e−s (∂H0

es ))e−s/2

= ∂H0
+ es/2(∂H0

e−s/2) + e−s/2(∂H0
es )e−s/2

= ∂H0
+ e−s/2(∂H0

es/2)

(A.5)

using ∂es/2 = ∂(ese−s/2) = es∂e−s/2 + (∂es )e−s/2, and

(A.6)
¯∂Ãs = es/2 ¯∂e−s/2 = ¯∂ + es/2( ¯∂e−s/2) = ¯∂ − ( ¯∂es/2)e−s/2.

Using

(A.7) dx exp(y) = (ϒ(x)y)ex = ex (ϒ(−x)y)

we obtain

Ãs = Ã0 +
1

2

ϒ(−s/2)∂H0
s −

1

2

ϒ(s/2) ¯∂s .

From this it follows that

FÃs = FH0
+

1

2

ϒ(−s/2) ¯∂∂H0
s −

1

2

ϒ(s/2)∂H0

¯∂s

+
1

2

¯∂ϒ(−s/2) ∧ ∂H0
s −

1

2

∂H0
ϒ(s/2) ∧ ¯∂s

−
1

4

(
ϒ(−s/2)∂H0

s ∧ ϒ(s/2) ¯∂s + ϒ(s/2) ¯∂s ∧ ϒ(−s/2)∂H0
s
)
.

Applying iΛ and using the Kähler identities

i[Λ, ¯∂] = ∂∗H0

and i[Λ, ∂H0
] = − ¯∂∗

as well as

∂∗H0

∂H0
=

1

2

∇∗H0

∇H0
+

1

2

[KH0
, ·] and

¯∂∗ ¯∂ =
1

2

∇∗H0

∇H0
−

1

2

[KH0
, ·],

we obtain

es/2KH0es = KH0
+

1

4

(ϒ(−s/2) − ϒ(s/2)) ads KH0

+
1

4

(ϒ(s/2) + ϒ(−s/2))∇∗H0

∇H0
s

+
i

2

Λ
(

¯∂ϒ(−s/2) ∧ ∂H0
s
)
−

i

2

Λ
(
∂H0

ϒ(s/2) ∧ ¯∂s
)

−
i

4

Λ
(
ϒ(−s/2)∂H0

s ∧ ϒ(s/2) ¯∂s + ϒ(s/2) ¯∂s ∧ ϒ(−s/2)∂H0
s
)
.

This implies the asserted identity because

1 −
x

4

(
e−x/2 − 1

x/2
+
ex/2 − 1

x/2

)
= 2 − 2 cosh(x/2). �
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Proposition A.8. We have

dsK(ŝ) =
1

4

∇∗
Ãs
∇Ãs (id + Ad(e−s/2))ϒ(s/2)ŝ −

1

4

[
K(s), (id − Ad(e−s/2)ϒ(s/2)ŝ

]
.

Proof. We have

d

dt

����
t=0

FÃs+t ŝ = dÃs

(
d

dt

����
t=0

Ãs+t̂ s

)
.

Using (A.5) and (A.7), we compute

d

dt

����
t=0

e−(s+t ŝ)/2(∂H0
e(s+t ŝ)/2)

=
1

2

(
e−s/2∂H0

(
es/2 Ad(e−s/2)ϒ(s/2)ŝ)

)
− (Ad(e−s/2)ϒ(s/2)ŝ)e−s/2∂H0

es/2
)

=
1

2

(
∂H0

(
Ad(e−s/2)ϒ(s/2)ŝ)

)
+

[
e−s/2∂H0

es/2,Ad(e−s/2)ϒ(s/2)ŝ
] )

=
1

2

∂Ãs Ad(e−s/2)ϒ(s/2)ŝ;

and, using (A.6) and (A.7), we compute

d

dt

����
t=0

¯∂Ãs+t ŝ = −
d

dt

����
t=0

( ¯∂e(s+t ŝ)/2)e−(s+t ŝ)/2

= −
1

2

(
¯∂
(
(ϒ(s/2)ŝ)es/2

)
e−s/2 − ( ¯∂es/2)e−s/2(ϒ(s/2)ŝ)

)
= −

1

2

(
¯∂(ϒ(s/2)ŝ) −

[
( ¯∂es/2)e−s/2, ϒ(s/2)ŝ

] )
= −

1

2

¯∂Ãsϒ(s/2)ŝ .

It follows that

d

dt

����
t=0

K(s + tŝ) =
d

dt

����
t=0

iΛFÃs+t ŝ

=
i

2

Λ
(

¯∂Ãs ∂Ãs Ad(e−s/2)ϒ(s/2)ŝ − ¯∂Ãs
¯∂Ãsϒ(s/2)ŝ

)
=

1

4

iΛ( ¯∂Ãs ∂Ãs − ∂Ãs
¯∂Ãs )(id + Ad(e−s/2))ϒ(s/2)ŝ

−
1

4

iΛ( ¯∂Ãs ∂Ãs + ∂Ãs
¯∂Ãs )(id − Ad(e−s/2))ϒ(s/2)ŝ

=
1

4

∇∗
Ãs
∇Ãs (id + Ad(e−s/2))ϒ(s/2)ŝ

−
1

4

[
K(s), (id − Ad(e−s/2)ϒ(s/2)ŝ

]
. �
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Proposition A.9. We have

(A.10) 〈K(s) − KH0
, s〉 = 〈iΛ ¯∂(e−s∂H0

es ), s〉 =
1

4

∆|s |2 +
1

2

|υ(−s)∇H0
s |2

where υ(s) ∈ End(gl(E)) is de�ned by

(A.11) υ(s) B
√
ϒ(s).

Proof. We compute

〈iΛ ¯∂(e−s∂H0
es ), s〉 = 〈iΛ ¯∂(ϒ(−s)∂H0

s), s〉

= iΛ ¯∂〈ϒ(−s)∂H0
s, s〉 + iΛ〈ϒ(−s)∂H0

s ∧ ∂H0
s〉

= ∂∗〈∂H0
s, ϒ(s)s〉 + 〈ϒ(−s)∂H0

s, ∂H0
s〉

= ∂∗〈∂H0
s, s〉 +

��υ(−s)∂H0
s
��2

=
1

2

∂∗∂ |s |2 + |υ(−s)∂H0
s |2. �

B The Donaldson functional

Let (X ,д, I ) be a compact Kähler manifold and letE be a holomorphic vector bundle over X . Given

a metric H0 and s ∈ C∞(X , isu(E,H0)), the value of the Donaldson functional at (H0,H0e
s ) is

M(H0,H0e
s ) B

ˆ
1

0

ˆ
X
〈s,Ad(eus/2)KH0eus 〉 du .

This functional was introduced in [Don85, Section 1.2] and [Don87, §II]. We refrain from a lengthy

discussion and only marshal the following three facts, which are used in Section 5.

Proposition B.1 ([Sim88, Proposition 5.1]). We have

M(H0,H2) =M(H0,H1) +M(H1,H2).

Proposition B.2. We have M(H0,H0e
s ) .

´
X |s | |KH0es |.

Proof. This holds becausem(u) BM(H0,H0e
us ) is convex [Don87, Proof of Lemma 24],m(0) = 0

andm′(1) .
´
X |s | |KH0es |. �

Theorem B.3 (Donaldson [Don87, Lemma 24]; see also [Sim88, Proposition 5.3]). If H0 is PHYM,
then

‖s‖L2 − 1 .M(H0,H0e
s ).
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C Bando–Siu interior estimate

Theorem C.1 (Bando and Siu [BS94, Proposition 1]). Let (X ,д, I ) be a Kähler manifold of dimension
n with bounded geometry and letE be a holomorphic vector bundle overX . IfH0 andH are Hermitian
metrics onE and s B log(H−1

0
H ) ∈ C∞(X , isu(E,H0)), then

rk+2− 2n
p ‖∇k+2

H0

s‖Lp (Br (x ))

6 εk ,p
(
‖s‖L∞(B2r (x )) + ‖KH ‖L∞(B2r (x )) + r

k− 2n
p ‖∇kKH ‖Lp (B2r (x ))

+

k∑
j=0

r 2+i ‖∇iH0

FH0
‖L∞(B2r (x ))

)
where εk ,p is a smooth function which vanishes at the origin and depends only on k ∈ N, p ∈ (1,∞),
and the geometry of X .

It su�ces to prove this in the case where H0 is a �at metric on a trivial holomorphic bundle

over B̄2 ⊂ Cn
. The theorem is not a straight-forward consequence of standard bootstrapping

techniques because we only have

∆s = A(KH ) +C(∇s ⊗ ∇s)

where A and C are linear with coe�cients depending on s ; see Proposition A.1. The usual Sobolev

estimates will not su�ce to prove Theorem C.1 without any control of ∇s . However, if we assume

C0,β
bounds on ∇s of the above form, then the usual method does give the desired estimates. It

is well known to analysts that for an equation of this form C0,β
bounds on ∇s can be obtained

from a bound on the Morrey norm ‖∇s‖L2,2n−2+2α ; see De�nition E.1. We give full details of this

fact, which is completely general and has nothing to do with Hermitian Yang–Mills metrics, in

Appendix D. All of this being said, it thus su�ces to prove the following proposition.

Proposition C.2. Denote by H0 a �at Hermitian metric on the trivial holomorphic bundle of rank r
over B̄2 ⊂ Cn . If H = H0e

s with s ∈ C∞(B̄2, isu(r )), then

[s]C0,α (B̄1)
. ‖∇s‖L2,2n−2+2α (B1)

6 ε(‖s‖L∞(B2) + ‖KH ‖L∞(B2))

where α ∈ (0, 1) depends on ‖s‖L∞(B2) in a monotonely decreasing way, and ε is a smooth function
which vanishes at the origin.

Proof. For x ∈ B1 de�ne fx : (0, 1] → [0,∞) by

fx (r ) B

ˆ
Br (x )

Gx |∇s |
2
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with Gx (·) B |· − x |
2−2n

. We will show that

fx (r ) 6 εr
2α

with ε and α as in the proposition. This implies the asserted Morrey bound.

In the following we �x x ∈ B1 and r ∈ (0, 1/2] and omit writing the subscript x to simplify

notation.

Step 1. We have f (r ) 6 ε .

Fix a smooth function χ : [0,∞) → [0, 1] which is equal to one on [0, 1] and vanishes outside

[0, 2]. Set χr (·) B χ (|· − x |/r ). Using

|∇s |2 . ε · (1 − ∆|s |2),

which follows from Proposition A.9 and the observation before (5.5), we compute

f (r ) 6

ˆ
B2r (x )

χrG · |∇s |
2

. ε

ˆ
B2r (x )

χrG · (−∆|s |
2) + χrG

. εr−2n
ˆ
B2r (x )\Br (x )

|s |2 + εr 2

6 ε .

Step 2. We have f (r ) 6 γ f (2r ) + εr 2 for some constant γ ∈ (0, 1) depending on ‖s‖L∞(B2).

Set

s̄ B

 
B2r (x )\Br (x )

s ∈ isu(r ) and σ B log(e−s̄es ).

Observe that

|∇s |2 . M |∇σ |2 and |σ |2 . M |s − s̄ |2

with M > 0 some constant depending on ‖s‖L∞(B2) and ‖KH ‖L∞(B2) in a monotonely increasing

way. Arguing as in the previous step we have

|∇σ |2 6 M(1 − ∆|σ |2).
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Using the above and Poincaré’s inequality we have

ˆ
Br (x )

G |∇s |2 . M

ˆ
B2r (x )

χrG · (−∆|σ |
2) + ε χrG

. M · r−2n
ˆ
B2r (x )\Br (x )

|σ |2 + εr 2

. M2 · r−2n
ˆ
B2r (x )\Br (x )

|s − s̄ |2 + εr 2

. M2 · r 2−2n
ˆ
B2r (x )\Br (x )

|∇s |2 + εr 2

. M2

ˆ
B2r (x )\Br (x )

G |∇s |2 + εr 2.

This gives the asserted inequality with γ = M2/(1 +M2).

Step 3. We have f (r ) 6 εr 2α .

We can assume that γ > 1/2. Set д(r ) B f (r ) + εr 2

4γ−1
. By the second step

д(r ) 6 γ kд(2kr ).

Setting k B log
2
d1/2re, we have γ k . r 2α

for some α ∈ (0, 1) depending only on γ ; hence, by the

�rst step

f (r ) 6 εr 2α . �

D Hildebrandt’s C1,β estimate

The following result is well-known to analysts. It can be traced back to Hildebrandt’s work on

harmonic maps [Hil85, Section 6].

Proposition D.1. Suppose α ∈ (0, 1). Let U be an open subset of Rn with smooth boundary, and let
f : Ū → Rk be a solution of a partial di�erential equation of the form

(D.2) ∆f = A + B(∇f ) +C(∇f ⊗ ∇f )

where A ∈ C0(Ū ,Rk ), B ∈ C0(Ū , End(Rk )), and C ∈ C0(Ū ,Hom(Rk ⊗ Rk ,Rk )). For each V ⊂⊂ U ,
we have

‖∇f ‖C0,β (V ) 6 ε
(
‖∇f ‖Ln−2+2α ,2(U )

)
where ε is a smooth increasing function vanishing at the origin (depending on A, B, C , U and V ), and
β ∈ (0, 1) depends only on α .

We will make heavy use of Morrey and Campanato spaces. For the reader’s convenience all

necessary de�nitions and results are summarised in Appendix E.
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Proof. Set R B d(V , ∂U ). De�ne ϕ : [0,R] → [0,∞) by

ϕ(r ) B sup

{ˆ
Br (x )
|∇f − ∇f x ,r |

2
: x ∈ V

}
.

By de�nition

[∇f ]L2,λ (V ) 6 sup

{
r−λϕ(r ) : r > 0

}
6 [∇f ]L2,λ (U ).

We will show that

ϕ(r ) 6 εrn+2β

with ε as in the proposition. The assertion then follows from Morrey’s Embedding Theorem in the

form of Theorem E.5.

Trivially, we have

ϕ(r ) 6 εrn−2+2α .

The following proposition strengthens this estimate using (D.2).

Proposition D.3. For 0 < s 6 r 6 R and α 6 1, we have

ϕ(s) 6 c
( s
r

)n+2

ϕ(r ) + εrn−2+3α .

We will postpone the proof of Proposition D.3 while we explain how the proof of Proposition D.1

is completed. To improve the exponent we use the following lemma, whose proof is very simple

and deferred to the end of this section.

Lemma D.4. If ϕ : [0,R] → [0,∞) is a non-decreasing function and c, ε > 0, α > β > 0 are constants
such that for all 0 < s 6 r 6 R

ϕ(s) 6 c
( s
r

)α
ϕ(r ) + εr β ,

then we have

ϕ(r ) .c ,α ,β

(
ϕ(R)

Rβ
+ ε

)
r β .

We derive that

‖∇f ‖L2,n−2+2α ′ (V ) 6 ε

with α ′ = 3

2
α . If α ′ < 1, then by Proposition E.3 we have

‖∇f ‖L2,n−2+2α ′ (V ) 6 ε

and we can restart the argument with α ′ instead of α and V instead of U . Iterating this a �nite

number of times we will eventually end up in the case α ′ > 1. In this case

ϕ(r ) 6 εrn+2β

with β = α ′−1

2
. This completes the proof of Proposition D.1. �
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Proof of Proposition D.3. Fix a ball Br (x) ⊂ U with center x ∈ V . We may assume that f (x) = 0,

because in all that follows we can work with f − f (x) instead.

Step 1. We can write f = д + h with д,h : B̄r (x) → Rk satisfying

(D.5) ∆д = A + B(∇f ) +C(∇f ⊗ ∇f ) and д |∂Br (x ) = 0

and
∆h = 0 and h |∂Br (x ) = f |∂Br (x ).

Step 2. We have
‖д‖L∞(Br (x )) 6 εr

α and ‖h‖L∞(Br (x )) 6 εr
α .

By Theorem E.4 and Theorem E.5 we have [f ]C0,α (U ) 6 ε . From f (x) = 0 it follows that

‖ f ‖L∞(Br (x )) 6 εr
α

. The maximum principle implies the asserted bound on h; the bound on д then

follows.

Step 3. We have ˆ
Br (x )
|∇д |2 6 εrn−2+3α .

Since д vanishes on ∂Br (x) and using (D.5),ˆ
Br (x )
|∇д |2 =

ˆ
Br (x )
〈∆д,д〉

.

ˆ
Br (x )
|д |(1 + |∇f |2)

6 εrn−2+3α .

Step 4. For s 6 r , we haveˆ
Bs (x )
|∇h − ∇hx ,s |

2 .
( s
r

) (n+2)
ˆ
Br
|∇h − ∇hx ,r |

2.

This is Theorem E.6 for ∇h.

Step 5. We complete the proof of the proposition.

Using the preceding steps, we computeˆ
Bs (x )
|∇f − ∇f x ,s |

2 6

ˆ
Bs (x )
|∇h − ∇hx ,s + ∇д − ∇дx ,s |

2

.

ˆ
Bs (x )
|∇h − ∇hx ,s |

2 +

ˆ
Bs (x )
|∇д |2

.
( s
r

)n+2

ˆ
Br (x )
|∇h − ∇hx ,r |

2 +

ˆ
Br (x )
|∇д |2

.
( s
r

)n+2

ˆ
Br (x )
|∇f − ∇f x ,r |

2 + εrn−2+3α .
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Taking the supremum over x ∈ V yields the asserted statement. �

Proof of Lemma D.4. This is similar to but somewhat simpler than [HL11, Lemma 3.4]. If we choose

τ < 1 such that γ B cτ α−β < 1, then

ϕ(τ kR) 6 γϕ(τ k−1R)τ β +
ε

τ β
(τ kR)β

6

(
γ k
ϕ(R)

Rβ
+

ε

(1 − γ )τ β

)
(τ kR)β .

From this the assertion follows immediately. �

E Morrey and Campanato spaces

An excellent exposition of Morrey and Campanato spaces can be found in Struwe’s lecture notes

[Str14, Kapitel 8 and 10]. We only state the de�nitions and the results we make use of.

Assume that U ⊂ Rn is open with smooth boundary. Let 1 6 p < ∞ and λ > 0.

De�nition E.1. The Morrey space (Lp,λ(U ), ‖·‖Lp ,λ (U )) is the normed vector space de�ned by

Lp,λ(U ) B
{
f ∈ Lp (U ) : ‖ f ‖Lp ,λ (U ) < ∞

}
with

‖ f ‖Lp ,λ (U ) B sup

x ∈U ,r>0

(
r−λ

ˆ
Br (x )∩U

| f |p
)

1/p

.

De�nition E.2. The Campanato space (Lp,λ(U ), ‖·‖Lp ,λ (U )) is the normed vector space de�ned by

Lp,λ(U ) B
{
f ∈ Lp (U ) : [f ]Lp ,λ (U ) < ∞

}
and

‖ f ‖Lp ,λ (U ) B ‖ f ‖Lp (U ) + [f ]Lp ,n (U ).

Here the Campanato semi-norm is de�ned by

[f ]Lp ,λ (U ) B sup

x ∈U ,r>0

(
r−λ

ˆ
Br (x )∩U

| f − ¯fx ,r |
p
)

1/p

with

¯fx ,r B

 
Br (x )∩U

f .

Both Morrey and Campanato spaces are Banach spaces. The following shed some more light

on the relation between Morrey, Campanato, and Hölder spaces, and the Campanato regularity

properties of harmonic functions.

31



Proposition E.3 ([Str14, Lemma 10.3.1]). If λ 6 n, then for all f ∈ Lp,λ(U ) we have

‖ f ‖Lp ,λ (U ) . ‖ f ‖Lp ,λ (U ).

Theorem E.4 (Poincaré inequality). For all f ∈ Lp,λ(U ), we have

[f ]Lp ,λ+p (U ) . ‖∇f ‖Lp ,λ (U ).

Theorem E.5 (Morrey embedding [Str14, Satz 8.6.5]). For all f ∈ Lp,n+pα (U ), we have

[f ]C0,α (Ū ) . [f ]Lp ,n+pα (U )

Theorem E.6 ([Str14, Lemma 10.2.1] and [HL11, Lemma 3.10]). If f ∈W 1,2(Br (x)) satis�es

∆f = 0

and 0 < s < r , then ˆ
Bs (x )
| f − ¯fx ,s |

2 .
( s
r

) (n+2)
ˆ
Br (x )
| f − ¯fx ,r |

2.
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