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Abstract

We prove an abstract compactness theorem for a family of generalized Seiberg–Witten

equations in dimension three. This result recovers Taubes’ compactness theorem for stable

�at PSL2 (C)–connections [Tau13a] as well as the compactness theorem for Seiberg–Witten

equations with multiple spinors [HW15]. Furthermore, this result implies a compactness

theorem for the ADHM1,2 Seiberg–Witten equation, which partially veri�es a conjecture

by Doan and Walpuski [DW19, Conjecture 5.26].

1 Introduction

The study of the compactness problem for generalized Seiberg–Witten equations was pioneered

by Taubes [Tau13a] with his compactness theorem for stable �at PSL2(C)–connections in
dimension three. Building on the ideas developed in [Tau13a], Haydys and Walpuski [HW15]

proved a compactness theorem for the Seiberg–Witten equation with multiple spinors in

dimension three, and Taubes proved compactness theorems for the Kapustin–Witten equation

[Tau13b], the Vafa–Witten equation [Tau17], and the Seiberg–Witten equation with multiple

spinors in dimension four [Tau16]. Although the statements of these compactness theorems are

very similar, many details of their proofs seem to rely heavily on the particular structure of the

equation under consideration. The purpose of this article is to prove an abstract compactness

theorem for generalized Seiberg–Witten equations in dimension three for which a simple

analytical hypothesis holds. Our result recovers Taubes’ compactness theorem for stable

�at PSL2(C)–connections [Tau13a] as well as the compactness theorem for Seiberg–Witten

equations with multiple spinors [HW15]. Furthermore, it also implies a compactness theorem

for the ADHM1,2 Seiberg–Witten equation, which partially veri�es a conjecture by Doan and

Walpuski [DW19, Conjecture 5.26].

1.1 Generalized Seiberg–Witten equations

Let us review the relation between quaternionic representations and generalized Seiberg–Witten

equations on an oriented Riemannian 3–manifold. For more detailed discussions we refer the

reader to [Tau99; Hay14; DW20; DW19, Appendix B].
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De�nition 1.1. Denote by H = R〈1, 𝑖, 𝑗, 𝑘〉 the normed division algebra of the quaternions. A

quaternionic Hermitian vector space is a left H–module 𝑆 together with an Euclidean inner

product 〈·, ·〉 such that 𝑖, 𝑗, 𝑘 act by isometries. The unitary symplectic group Sp(𝑆) is the
subgroup of GLH(𝑆) preserving 〈·, ·〉. •

De�nition 1.2. A quaternionic representation of a Lie group 𝐻 is a Lie group homomorphism

𝜌 : 𝐻 → Sp(𝑆) for some quaternionic Hermitian vector space 𝑆 . •

Let 𝐻 be a compact Lie group. Denote its Lie algebra by 𝔥. Let 𝜌 : 𝐻 → Sp(𝑆) be a

quaternionic representation. Abusing notation, we denote the induced Lie algebra representation

by 𝜌 : 𝔥 → 𝔰𝔭(𝑆). De�ne𝛾 : ImH → End(𝑆),𝜸 : ImH⊗𝔥 → End(𝑆), and 𝜇 : 𝑆 → (ImH⊗𝔥)∗
by

(1.3) 𝛾 (𝑣)𝜙 ≔ 𝑣𝜙, 𝜸 (𝑣 ⊗ 𝜉) ≔ 𝛾 (𝑣)𝜌 (𝜉), and 𝜇 (𝜙) ≔ 1

2

𝜸∗(𝜙𝜙∗),

respectively. The map 𝜇 is an equivariant hyperkähler moment map for the action of 𝐻 on 𝑆 .

Data 1.4. A set of algebraic data consists of:

(1) a compact Lie group 𝐻 with a distinguished element −1 ∈ 𝑍 (𝐻 ) satisfying (−1)2 = 1𝐻 ,

(2) a closed, connected, normal subgroup 𝐺 ⊳ 𝐻 , and

(3) a quaternionic representation 𝜌 : 𝐻 → Sp(𝑆).

Remark 1.5. It is 𝐺 which plays role of the structure group of the gauge theory. If𝐺 is a proper

subgroup of 𝐻 , then the gauge theory can be twisted by the �avor symmetry group

𝐾 ≔ 𝐻/〈𝐺,−1〉. ♣

De�nition 1.6. Set Spin𝐻 (3) ≔ (Sp(1) ×𝐻 )/Z2. Spin
𝐻 (3) projects onto Sp(1)/Z2 = SO(3). A

spin𝐻 structure on (𝑀,𝑔) is a principal Spin𝐻 (3)–bundle 𝔰 together with an isomorphism

𝔰 ×
Spin

𝐻 (3) SO(3) � SO(𝑇𝑀). •

A spin
𝐻
structure 𝔰 together with 𝐺 ⊳ 𝐻 and 𝜌 induces:

(1) the �avor bundle
𝔣 ≔ 𝔰 ×

Spin
𝐻 (3) 𝐾,

(2) the adjoint bundle
Ad(𝔰) ≔ 𝔰 ×

Spin
𝐻 (3) Lie(𝐺),

(3) the spinor bundle
S ≔ 𝔰 ×

Spin
𝐻 (3) 𝑆,

as well as

2



(4) maps

𝛾 : 𝑇𝑀 → End(𝑆), 𝜸 : 𝑇𝑀 ⊗ Ad(𝔰) → End(𝑆), and 𝜇 : S → Λ2𝑇 ∗𝑀 ⊗ Ad(𝔰),

where 𝛾 and 𝜸 are induced directly by (1.3), and 𝜇 is induced by (1.3) and the isomorphism

Λ2𝑇 ∗𝑀 ⊗ Ad(𝔰) � 𝑇 ∗𝑀 ⊗ Ad(𝔰)∗.

De�nition 1.7. A spin connection on 𝔰 is a connection which induces the Levi–Civita connection

on 𝑇𝑀 . The space of all spin connections on 𝔰 inducing a �xed connection 𝐵 on the �avor

bundle 𝔣 is denoted by

A(𝔰, 𝐵) .

Given a spin connection 𝐴, denote by

Ad(𝐴) ∈ A(Ad(𝔰))

the induced connection on Ad(𝔰) and de�ne the Dirac operator /𝐷𝐴 : Γ(S) → Γ(S) by

/𝐷𝐴Φ ≔

3∑︁
𝑖=1

𝛾 (𝑒𝑖)∇𝐴,𝑒𝑖Φ

for 𝑒1, 𝑒2, 𝑒3 a local orthonormal frame. •

Data 1.8. A set of geometric data compatible with a given set of algebraic data (𝐺,𝐻, 𝜌) consists
of:

(1) an oriented Riemannian 3–manifold (𝑀,𝑔) together with a spin
𝐻
structure 𝔰, and

(2) a connection 𝐵 on the �avor bundle induced by 𝔰.

De�nition 1.9. The generalized Seiberg–Witten equation associated with the data (𝐺,𝐻, 𝜌)
and (𝑀,𝑔, 𝔰, 𝐵) is the following partial di�erential equation for 𝐴 ∈ A(𝔰, 𝐵) and Φ ∈ Γ(S):

•(1.10) /𝐷𝐴Φ = 0 and 𝐹Ad(𝐴) = 𝜇 (Φ).

To illustrate the above construction, let us consider a few examples.

Example 1.11. De�ne the quaternionic representation 𝜌 : U(1) → Sp(H) by

𝜌 (𝑒𝑖𝛼 )𝑞 ≔ 𝑞𝑒𝑖𝛼 .

Identifying (𝑖R ⊗ ImH)∗ = 𝑖R ⊗ ImH, the hyperkähler moment map 𝜇 : H → (𝑖R ⊗ ImH)∗ is

𝜇 (𝑞) = − 𝑖
2

⊗ 𝑞𝑖𝑞∗.

Splitting H = C ⊕ 𝑗C, we see that 𝜸 (𝜇 (𝑞)) ∈ End(C⊕2) for 𝑞 = 𝑧 + 𝑗𝑤 is

(1.12)

1

2

(
|𝑧 |2 − |𝑤 |2 2𝑧𝑤̄

2𝑧𝑤 |𝑤 |2 − |𝑧 |2
)
= 𝑞〈𝑞, ·〉C − 1

2

|𝑞 |2C idC⊕2 .
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Let (𝑀,𝑔) be an oriented Riemannian 3–manifold and let 𝔰 be a spinU(1) structure on 𝑀 ;

that is: a spin
𝑐
structure. The adjoint bundle Ad(𝔰) is 𝑖R. Denote the spinor bundles of 𝔰 by S. If

𝐴 ∈ A(𝔰), then it induces a connection det(𝐴) on det(S) with

𝐹det(𝐴) = 2𝐹Ad(𝐴) .

Therefore, the generalized Seiberg–Witten equation (1.10) associated with the above data agrees

with the classical Seiberg–Witten equation

/𝐷𝐴Φ = 0 and

1

2

𝜸 (𝐹det(𝐴) ) = Φ〈Φ, ·〉C − |Φ|2CidS

appearing, for example, in [Wit94, Section 2; KM07, Section 1.3]. ♠

Example 1.13. Let 𝐺 be a compact Lie group and set 𝔤 ≔ Lie(𝐺). Choosing a 𝐺–invariant

inner product on 𝔤 turns 𝑆 ≔ 𝔤 ⊗R H into a quaternionic Hermitian vector space. The adjoint

representation induces a quaternionic representation 𝜌 : 𝐺 → Sp(𝑆). The moment map 𝜇 : 𝑆 →
ImH ⊗ 𝔤 is given by

𝜇 (𝝃 ) = 1

2

[𝝃 , 𝝃 ]

= ( [𝜉2, 𝜉3] + [𝜉0, 𝜉1]) ⊗ 𝑖 + ([𝜉3, 𝜉1] + [𝜉0, 𝜉2]) ⊗ 𝑗 + ([𝜉1, 𝜉2] + [𝜉0, 𝜉3]) ⊗ 𝑘

for 𝝃 = 𝜉0 ⊗ 1 + 𝜉1 ⊗ 𝑖 + 𝜉2 ⊗ 𝑗 + 𝜉3 ⊗ 𝑘 ∈ H ⊗ 𝔤. Extend 𝜌 to a quaternionic representation

of 𝐻 ≔ Sp(1) × 𝐺 by declaring that 𝑞 ∈ Sp(1) acts by right-multiplication with 𝑞∗. Set

−1 ≔ (−1, 1𝐺 ) ∈ 𝐻 .
Since

Spin
𝐻 (3) = (Sp(1) × Sp(1))/Z2 ×𝐺 = SO(4) ×𝐺,

a spin
𝐻
structure is nothing but an oriented Euclidean vector bundle 𝑁 of rank 4 together

with an orientation-preserving isometry Λ+𝑁 � 𝑇𝑀 and a principal 𝐺–bundle 𝑃 . Choosing

𝑁 = R ⊕ 𝑇 ∗𝑀 and 𝐵 induced by the Levi-Civita connection, the generalized Seiberg–Witten

equation (1.10) associated with the above data becomes the following partial di�erential equation

for 𝐴 ∈ A(𝑃), 𝑎 ∈ Ω1(𝑀,Ad(𝑃)), and 𝜉 ∈ Γ(Ad(𝑃)):

d
∗
𝐴𝑎 = 0,

∗d𝐴𝑎 + d𝐴𝜉 = 0, and

𝐹𝐴 = 1

2
[𝑎 ∧ 𝑎] + ∗[𝜉, 𝑎] .

(1.14)

If 𝜉 = 0, then (1.14) is precisely the condition for 𝐴 + 𝑖𝑎 to be a stable �at 𝐺C–connection;
see [Don87; Cor88, Theorem 3.3]. In fact, if𝑀 is closed, then (1.14) implies d𝐴𝜉 = 0 and [𝜉, 𝑎] = 0

and, therefore, that 𝐴 + 𝑖𝑎 is a stable �at 𝐺C
–connection.

The compactness problem for (1.14) with𝐺 = SO(3) has been considered in Taubes’ pioneer-

ing work [Tau13a], to which many of the techniques in this article can be traced back. ♠
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Example 1.15. For 𝑟, 𝑘 ∈ N, consider the quaternionic Hermitian vector space

𝑆𝑟,𝑘 ≔ HomC(C𝑟 ,H ⊗C C𝑘 ) ⊕ H∗ ⊗R 𝔲(𝑘)

and

𝐺 = U(𝑘) ⊳ 𝐻 = SU(𝑟 ) × Sp(1) × U(𝑘) and − 1 ≔ (1,−1,−1) .

If 𝑟 > 2, then 𝑆𝑟,𝑘///𝐺 ≔ 𝜇−1(0)/𝐺 is the Uhlenbeck compacti�cation of the moduli space of

framed SU(𝑟 ) ASD instantons of charge 𝑘 on R4
[ADHM78]. If 𝑟 = 1, then

𝑆1,𝑘///𝐺 = Sym
𝑘 H ≔ H𝑘/𝑆𝑘 ;

see [Nak99, Proposition 2.9; DW19, Theorem D.2].

The generalized Seiberg–Witten equation associated with the above data is called the

ADHM𝑟,𝑘 Seiberg–Witten equation. It was introduced in [DW20, Example A.3; DW19, Section

5.1] and is expected to play an important role in gauge theory on 𝐺2–manifolds [DS11; Wal17;

Hay17]. For 𝑘 = 1, this is essentially the Seiberg–Witten equation with 𝑟 spinors, whose

compactness problem has been considered by Haydys and Walpuski [HW15]. ♠

1.2 An abstract compactness theorem

Throughout this subsection, �x a set of algebraic data (𝐺,𝐻, 𝜌) and a compatible set of geometric

data (𝑀,𝑔, 𝔰, 𝐵) with𝑀 closed. The following result is well-known and follows from standard

elliptic theory.

Proposition 1.16. If (𝐴𝑛,Φ𝑛) is a sequence of solutions of (1.10) satisfying

lim inf

𝑛→∞
‖Φ𝑛 ‖𝐿2 < ∞,

then, after passing to a subsequence and up to gauge transformations, (𝐴𝑛,Φ𝑛) converges to a
solution (𝐴,Φ) of (1.10) in the 𝐶∞ topology.

Therefore, a degenerating sequence (𝐴𝑛,Φ𝑛) of solutions of (1.10) must involve ‖Φ𝑛 ‖𝐿2
becoming unbounded. In light of this, it is convenient to pass to the following equivalent

equation.

De�nition 1.17. The blown-up generalized Seiberg–Witten equation associated with the data

(𝐺,𝐻, 𝜌) and (𝑀,𝑔, 𝔰, 𝐵) is the following partial di�erential equation for 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S),
and 𝜀 ∈ (0,∞):

/𝐷𝐴Φ = 0, 𝜀2𝐹Ad(𝐴) = 𝜇 (Φ), and(1.18)

‖Φ‖𝐿2 = 1. •(1.19)

The main result of this article is the following abstract compactness theorem.

De�nition 1.20. Given Φ ∈ S, de�ne ΓΦ : Λ2𝑇 ∗𝑀 → S by

ΓΦ ≔ 𝜸 (·)Φ. •
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Remark 1.21. ΓΦ is one-half times the adjoint of dΦ𝜇. ♣

Hypothesis 1.22. There are constants 𝑟0, 𝛿𝜇, 𝑐 > 0 and Λ > 0 such that the following holds for
every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0]. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 ∈ (0,∞) satisfy (1.18),

1

2

6 |Φ| 6 2, and |𝜇 (Φ) | 6 𝛿𝜇,

on 𝐵𝑟 (𝑥), then

(1.23) 𝑟

ˆ
𝐵𝑟/2 (𝑥)

|𝐹Ad(𝐴) |2 6 Λ + 𝑐𝑟
ˆ
𝐵𝑟 (𝑥)

|ΓΦ𝐹Ad(𝐴) |2.

Remark 1.24. Hypothesis 1.22 (with Λ = 0) is implied by the following condition: there are

constants 𝛿, 𝑐 > 0 such that, for every Φ ∈ S with |Φ| = 1 and |𝜇 (Φ) | 6 𝛿 ,

♣(1.25) |𝜇 (Φ) | 6 𝑐 |ΓΦ𝜇 (Φ) |.

Remark 1.26. The condition in Remark 1.24 holds if 𝜇−1(0) is cut-out transversely away from the

origin; that is: for every non-zero Φ ∈ 𝜇−1(0), dΦ𝜇 is surjective and, therefore, ΓΦ is injective.

This is the case for the quaternionic representation U(1) → Sp(H𝑛) which induces the Seiberg–

Witten equation with multiple spinors. Therefore, Theorem 1.28 recovers [HW15, Theorem

1.5]. ♣
Remark 1.27. For the of the adjoint representation 𝐺 → Sp(𝔤 ⊗ H), 𝜇−1(0) is never cut-out
transversely away from the origin. Nevertheless, Lemma 5.1 shows that the algebraic criterion

in Remark 1.24 is satis�ed for 𝐺 = SO(3) and 𝐺 = SU(2). Therefore, Theorem 1.28 applies to

stable �at PSL2(C)–connections over 3–manifolds; cf. Remark 1.37. ♣

Theorem 1.28. Suppose Hypothesis 1.22 holds. If (𝐴𝑛,Φ𝑛, 𝜀𝑛)𝑛∈N is a sequence of solutions of (1.18)
and (1.19) with 𝜀𝑛 tending to zero, then the following hold:

(1) There is a closed, nowhere-dense subset 𝑍 ⊂ 𝑀 , a connection 𝐴 ∈ A(𝔰 |𝑀\𝑍 , 𝐵), and a spinor
Φ ∈ Γ(𝑀\𝑍, S) such that the following hold:

(a) 𝐴 and Φ satisfy

/𝐷𝐴Φ = 0,

𝜇 (Φ) = 0, and

‖Φ‖𝐿2 = 1.

(1.29)

(b) The function |Φ| extends to a Hölder continuous function on all of𝑀 and

𝑍 = |Φ|−1(0) .

(2) After passing to a subsequence and up to gauge transformations, for every compact subset
𝐾 ⊂ 𝑀\𝑍 , (𝐴𝑛 |𝐾 )𝑛∈N converges to 𝐴 in the weak𝑊 1,2 topology, (Φ𝑛 |𝐾 )𝑛∈N converges to Φ
in the weak𝑊 2,2 topology, and there exists an 𝛼 ∈ (0, 1) such that ( |Φ𝑛 |)𝑛∈N converges to
|Φ| in the 𝐶0,𝛼 topology.
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Remark 1.30. For many generalized Seiberg–Witten equations, including the Seiberg–Witten

equation with multiple spinors and stable �at PSL2(C)–connections, a solution of (1.29) gives rise
to a harmonic Z2 spinor whose zero locus is precisely 𝑍 ; cf. [Tau14] and Section 5.4. In this case,

Zhang [Zha17, Theorem 1.4] proved that 𝑍 isH1
–recti�able and and has �nite 1–dimensional

Minkowski content.1 ♣

1.3 A compactness theorem for the ADHM1,2 Seiberg–Witten equation

Let us discuss Example 1.15 for 𝑟 = 1 and 𝑘 = 2 in more detail. Decomposing 𝔲(2) = 𝔰𝔲(2) ⊕𝔲(1),
𝑆 = 𝑆1,2 can be written as

𝑆 = 𝑆◦ ⊕ H ⊗R 𝔲(1) with 𝑆◦ ≔ H ⊗C C2 ⊕ H ⊗R 𝔰𝔲(2) .

U(2) acts trivially on H ⊗R 𝔲(1); hence, the moment map 𝜇 : 𝑆 → 𝔲(2) ⊗ ImH factors through

the projection of 𝑆 onto 𝑆◦.
Let (𝑀,𝑔) be a closed Riemannian 3–manifold. A spin

Sp(1)×U(2)
structure 𝔰 on (𝑀,𝑔) is

nothing but a spin
U(2)

structure 𝔴 and a Euclidean vector bundle 𝑁 of rank 4 together with an

orientation-preserving isometry

Λ+𝑁 � 𝑇𝑀.

Set

𝑊 ≔ 𝔴 ×
Spin

U(2) (3) H ⊗C C2
and Ad(𝔴)◦ ≔ 𝔴 ×

Spin
U(2) (3) 𝔰𝔲(2).

The spinor bundle S and the �avor bundle 𝔣 associated with 𝔰 are

S =𝑊 ⊕ 𝑁 ⊗ Ad(𝔴)◦ ⊕ 𝑁 ⊗ 𝑖R and 𝔣 = SO(Λ−𝑁 ) .

Given a connection 𝐵 on SO(Λ−𝑁 ), every connection on Ad(𝔴) uniquely lifts to a spin connec-

tion on 𝔰.

The above discussion shows that, having �xed 𝐵, the ADHM1,2 Seiberg–Witten equation

is the following partial di�erential equation for 𝐴 ∈ A(Ad(𝔴)), Ψ ∈ Γ(𝑊 ), and 𝝃 ∈ Γ(𝑁 ⊗
Ad(𝔴)◦):

/𝐷𝐴Ψ = 0

/𝐷𝐴,𝐵𝝃 = 0, and

𝐹𝐴 = 𝜇 (Ψ, 𝝃 ),
(1.31)

as well as the Dirac equation for 𝜂 ∈ Γ(𝑁 ⊗ 𝑖R):

(1.32) /𝐷𝐵𝜂 = 0.

The equations (1.31) and (1.32) are completely decoupled. The compactness problem for (1.32)

is trivial: after renormalization every sequence has a subsequence which converges in the 𝐶∞

topology. Of course, Proposition 1.16 applies to the ADHM1,2 Seiberg–Witten equation (1.31). The

following result concerns the case in which the hypothesis of Proposition 1.16 is not satis�ed.

1See [Mat95, Chapter 15; De 08, Chapter 4] for discussions of recti�ability. A subset 𝑍 ⊂ 𝑀 is said to have �nite

1–dimensional Minkowski content if there is a constant 𝑐 > 0 such that vol({𝑥 ∈ 𝑀 : 𝑑 (𝑥, 𝑍 ) < 𝑟 }) 6 𝑐𝑟 .
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Theorem 1.33. If (𝐴𝑛,Ψ𝑛, 𝝃𝑛)𝑛∈N is a sequence of solutions of (1.31) with

lim inf

𝑛→∞
‖(Ψ𝑛, 𝝃𝑛)‖𝐿2 = ∞,

then the following hold:

(1) There is a closedH1–recti�able subset 𝑍 ⊂ 𝑀 with �nite 1–dimensional Minkowski content,
a connection𝐴 ∈ A(𝔴|𝑀\𝑍 ), a spinor Ψ ∈ Γ(𝑀\𝑍,𝑊 ), a section 𝝃 ∈ Γ(𝑀\𝑍, 𝑁 ⊗Ad(𝔴)◦),
a �at Euclidean line bundle 𝔩 over𝑀\𝑍 , and a non-zero 𝜏 ∈ Γ(𝑀\𝑍,Hom(𝔩,Ad(𝔴)◦)) such
that the following hold:

(a) 𝐴 and 𝝃 satisfy

/𝐷𝐴,𝐵𝝃 = 0,

𝜇 (𝝃 ) = 0, and

‖𝝃 ‖𝐿2 = 1.

(1.34)

(b) The function |𝝃 | extends to a Hölder continuous function on all of𝑀 and

𝑍 = |𝝃 |−1(0).

(c) The section 𝜏 is parallel with respect to 𝐴.
(d) Set 𝔱 ≔ im𝜏 ⊕ 𝑖R ⊂ Ad(𝔴) |𝑀\𝑍 and denote by 𝜋𝔱 : Ad(𝔴) |𝑀\𝑍 → 𝔱 the orthogonal

projection onto 𝔱. 𝐴 and Ψ satisfy

/𝐷𝐴Ψ = 0 and

𝐹𝐴 = 𝜋𝔱𝜇 (Ψ) .
(1.35)

(2) Set

𝜀𝑛 ≔
1

‖(Ψ𝑛, 𝝃𝑛)‖𝐿2
, Ψ̃𝑛 ≔ 𝜀𝑛Ψ𝑛, and ˜𝝃𝑛 ≔ 𝜀𝑛𝝃𝑛 .

After passing to a subsequence and up to gauge transformations, for every compact subset
𝐾 ⊂ 𝑀\𝑍 , (𝐴𝑛 |𝐾 )𝑛∈N converges to 𝐴 in the weak𝑊 1,2 topology, (Ψ𝑛 |𝐾 )𝑛∈N converges to Ψ
in the weak𝑊 2,2 topology, ( ˜𝝃𝑛 |𝐾 )𝑛∈N converges to 𝝃 in the𝑊 2,2

loc
topology, and there exists

an 𝛼 ∈ (0, 1) such that ( | (Ψ̃𝑚, ˜𝝃𝑛) |)𝑛∈N converges to |𝝃 | in the 𝐶0,𝛼 topology.

Remark 1.36. We emphasize that (Ψ𝑛)𝑛∈N converges without rescaling. ♣
Remark 1.37. Theorem 1.33 with Ψ𝑛 = 0 recovers Taubes’ compactness theorem for stable

�at PSL2(C)–connections over 3–manifolds [Tau13a]. In fact, it also shows that the limiting

connection 𝐴 is �at. ♣
Remark 1.38. Theorem 1.33 partially veri�es [DW19, Conjecture 5.26]. It is explained in [DW19,

Section 5] that: the joint spectrum of the section 𝝃 provides a double cover 𝜋 : ˜𝑀\ ˜𝑍 → 𝑀\𝑍 ,
which extends to a branched cover of𝑀 ; the spin

U(2)
structure on𝑀\𝑍 is the push-forward of

a spin
𝑐
structure on ˜𝑀\ ˜𝑍 ; and is (𝐴,Ψ) the push-forward of a solution of the Seiberg–Witten

equation on
˜𝑀\ ˜𝑍 . The interested reader is referred to [DW19, Sections 4, 5, 6, and 7] for a

discussion of how the ADHM1,𝑘 Seiberg–Witten equation is expected help in dealing with

multiple cover phenomena for associatives in 𝐺2–manifolds and pseudo-holomorphic curves in

symplectic Calabi–Yau 3–folds. ♣
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Conventions Throughout, �x a set of algebraic data (𝐺,𝐻, 𝜌) and a compatible set of geometric

data (𝑀,𝑔, 𝔰, 𝐵) with 𝑀 closed. As is customary, 𝑐 > 0 denotes a universal constant whose

value might change from on appearance to the next and which depends only on the chosen

algebraic and geometric data. Moreover, 𝑟0 > 0 denotes a constant which is much smaller than

the injectivity radius and at least as small as the constant appearing in Hypothesis 1.22.

Acknowledgements This material is based upon work supported by the National Science

Foundation under Grant No. 1754967 and an Alfred P. Sloan Research Fellowship.

2 The Lichnerowicz–Weitzenböck formula

This section derives a number of consequences of the Lichnerowicz–Weitzenböck formula. Let

us begin by reminding the reader of the latter.

De�nition 2.1. De�ne ℜ ∈ Ω2(𝑀, End(S)) and 𝔎 ∈ Γ(End(S)) by

ℜΦ ≔
1

4

3∑︁
𝑖, 𝑗=1

〈𝑅(·, ·)𝑒𝑖 , 𝑒 𝑗 〉𝛾 (𝑒𝑖)𝛾 (𝑒 𝑗 )Φ + 𝐹𝐵 and 𝔎Φ ≔ 𝛾 (ℜ)Φ.•

Proposition 2.2 (Lichnerowicz–Weitzenböck formula). For every 𝐴 ∈ A(𝔰, 𝐵) and Φ ∈ Γ(S),

(2.3) /𝐷2

𝐴Φ = ∇∗
𝐴∇𝐴Φ +𝜸 (𝐹Ad(𝐴) )Φ + 𝔎Φ.

If (1.18) holds, then Proposition 2.2 implies

(2.4)

1

2

Δ|Φ|2 + |∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2 + 〈𝔎Φ,Φ〉 = 0.

The following is an immediate consequence of (2.4) and integration by parts.

Corollary 2.5. Let 𝑈 be an open subset of 𝑀 with smooth boundary and let 𝑓 ∈ 𝐶∞( ¯𝑈 ). If
𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18) on𝑈 , then
ˆ
𝑈

1

2

Δ𝑓 · |Φ|2 + 𝑓 ·
(
|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2

)
= −

ˆ
𝑈

𝑓 · 〈𝔎Φ,Φ〉 + 1

2

ˆ
𝜕𝑈

𝑓 · 𝜕𝜈 |Φ2 | − 𝜕𝜈 𝑓 · |Φ|2. �

2.1 The frequency function

The statements of the results derived in this section require the following de�nitions.

De�nition 2.6. Given𝐴 ∈ A(𝔰),Φ ∈ Γ(S), 𝑥 ∈ 𝑀 , and 𝜀 > 0, de�ne𝑚Φ
𝑥 , 𝐷

𝐴,Φ,𝜀
𝑥 : (0, 𝑟0] → [0,∞)

by

𝑚Φ
𝑥 (𝑟 ) ≔

1

4𝜋𝑟 2

ˆ
𝜕𝐵𝑟 (𝑥)

|Φ|2 and

𝐷𝐴,Φ,𝜀𝑥 (𝑟 ) ≔ 1

4𝜋𝑟

ˆ
𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2;

9

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1754967&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1754967&HistoricalAwards=false
https://sloan.org/grant-detail/8651


and, furthermore, set 𝑟Φ−1,𝑥 ≔ sup

{
𝑟 ∈ (0,∞) :𝑚Φ

𝑥 (𝑟 ) = 0

}
and de�ne the frequency function

n
𝐴,Φ,𝜀
𝑥 : (𝑟Φ−1,𝑥 , 𝑟0] → [0,∞) by

n
𝐴,Φ,𝜀
𝑥 (𝑟 ) ≔ 𝐷

𝐴,Φ,𝜀
𝑥 (𝑟 )
𝑚Φ
𝑥 (𝑟 )

.

•

Remark 2.7. A priori, the restriction of the domain of n
𝐴,Φ,𝜀
𝑥 is necessary; however: it be will

shown in Proposition 3.14 that 𝑟Φ−1,𝑥 = 0 unless Φ = 0. ♣
Remark 2.8. The frequency function was introduced by Almgren [Alm79] and is now an

ubiquitous tools in the study of elliptic partial di�erential equations. The adaption to generalized

Seiberg–Witten equations is due to Taubes [Tau13a]. ♣
For the purposes of this section we shall be content with just the above de�nitions. However,

in Section 3, the frequency function plays a pivotal role and its properties will be studied in

detail.

2.2 𝐿2 bounds on Φ

Proposition 2.9. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18), then, for every 𝑥 ∈ 𝑀 and
𝑟 ∈ (0, 𝑟0],

𝜋

2

𝑚Φ
𝑥

( 𝑟
2

)
6 𝑟−3

ˆ
𝐵𝑟 (𝑥)

|Φ|2 6 4𝜋𝑚Φ
𝑥 (𝑟 ) .

Proof. Denote by𝐻𝑥,𝑟 the mean curvature of 𝜕𝐵𝑟 (𝑥). By Corollary 2.5 with 𝑓 = 1 and𝑈 = 𝐵𝑟 (𝑥),

d

d𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

|Φ|2 =
ˆ
𝜕𝐵𝑟 (𝑥)

𝐻𝑥,𝑟 |Φ|2 +
ˆ
𝜕𝐵𝑟 (𝑥)

𝜕𝑟 |Φ|2

=

ˆ
𝜕𝐵𝑟 (𝑥)

𝐻𝑥,𝑟 |Φ|2 + 2

ˆ
𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2 + 〈𝔎Φ,Φ〉.

By Hardy’s inequality,

ˆ
𝐵𝑟 (𝑥)

|Φ|2 6 𝑐𝑟 2
ˆ
𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 𝑐𝑟
ˆ
𝜕𝐵𝑟 (𝑥)

|Φ|2.

Therefore and because 𝐻𝑥,𝑟 >
2

𝑟
− 𝑐𝑟 , for 𝑟 ∈ [0, 𝑟0],

d

d𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

|Φ|2 > 0.

This implies the assertion. �
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2.3 𝐿∞ bounds on Φ

To state the next result, we de�ne the following variant of the Morrey norm

‖ 𝑓 ‖
𝐿
𝑝,𝜆
★ (𝑈 ) ≔ sup

𝑦∈𝑈
‖𝑟−𝜆/𝑝𝑦 𝑓 ‖𝐿𝑝 (𝑈 )

with 𝑟𝑦 ≔ 𝑑 (𝑦, ·).

Proposition 2.10. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18), then

‖Φ‖𝐿∞ (𝑀) + ‖∇𝐴Φ‖𝐿2,1★ (𝑀) + 𝜀
−1‖𝜇 (Φ)‖

𝐿
2,1
★ (𝑀) 6 𝑐 ‖Φ‖𝐿2 ;

moreover, for every 𝑥 ∈ 𝑀 , 𝑟 ∈ (0, 𝑟0],

‖Φ‖𝐿∞(𝐵𝑟/2 (𝑥)) + ‖∇𝐴Φ‖𝐿2,1★ (𝐵𝑟/2 (𝑥)) + 𝜀
−1‖𝜇 (Φ)‖

𝐿
2,1
★ (𝐵𝑟/2 (𝑥)) 6 𝑐𝑚

Φ
𝑥 (𝑟 )1/2.

Proof. Let 𝜒 ∈ 𝐶∞
0
(𝐵𝑟 (𝑥), [0, 1]) be a cut-o� function satisfying 𝜒 |𝐵𝑟/2 (𝑥) = 1 and

𝑟 |∇𝜒 | 6 𝑐 and 𝑟 2 |∇2𝜒 | 6 𝑐.

Denote by𝐺 the Green’s kernel for 𝐵𝑟 (𝑥) and, for 𝑦 ∈ 𝐵𝑟 (𝑥), set𝐺𝑦 ≔ 𝐺 (𝑦, ·). Multiplying (2.4)

with 𝜒2𝐺𝑦 and integrating by parts yields

1

2

𝜒 (𝑦)2 |Φ|2(𝑦) +
ˆ
𝐵𝑟 (𝑥)

𝜒2𝐺𝑦
(
|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2

)
=

ˆ
𝐵𝑟 (𝑥)

𝜒2𝐺𝑦 〈ℜΦ,Φ〉 + Θ𝑦 · |Φ|2

with

Θ𝑦 ≔ 〈∇𝜒2,∇𝐺𝑦〉 −
1

2

Δ𝜒2 ·𝐺𝑦 .

From ˆ
𝐵𝑟 (𝑥)

𝐺𝑦 6 𝑐𝑟
2

and ‖Θ𝑦 ‖𝐿∞ 6 𝑐𝑟−3

it follows that

‖𝜒Φ‖2𝐿∞ + sup

𝑦∈𝐵𝑟/2 (𝑥)

ˆ
𝐵𝑟/2 (𝑥)

𝑟−1𝑦
(
|∇𝐴Φ|2 + 𝜀−2 |𝜇 (Φ) |2

)
6 𝑐𝑟 2‖𝜒Φ‖2𝐿∞ + 𝑐𝑟−3‖Φ‖2

𝐿2 (𝐵𝑟 (𝑥)) .

After rearranging and by Proposition 2.9, the asserted inequalities follow. �

2.4 𝑊 2,2 bounds on Φ

Proposition 2.11. For every 𝑐𝐹 , 𝑐Φ, 𝑐n > 0 and 𝛿 ∈ (0, 1
2
], there is a constant 𝑐 = 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n) > 0

such that the following holds for every 𝑥 ∈ 𝑀 , 𝑟 ∈ (0, 𝑟0]. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0

satisfy (1.18),

𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹Ad(𝐴) |2 6 𝑐𝐹 , 𝑚Φ
𝑥 (𝑟 ) 6 𝑐Φ, and n

𝐴,Φ,𝜀
𝑥 (𝑟 ) 6 𝑐n,

then
𝑟

ˆ
𝐵𝑟/2 (𝑥)

|∇2

𝐴Φ|2 +
( 𝜀
𝑟

)
2

· 𝑟 3
ˆ
𝐵𝑟/2 (𝑥)

|∇Ad(𝐴)𝐹Ad(𝐴) |2 6 𝑐.
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The proof relies on the following consequence of the Lichnerowicz–Weitzenböck formula

(2.3).

Proposition 2.12. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18), then

(2.13)

1

2

Δ|∇𝐴Φ|2 + |∇2

𝐴Φ|2 + 𝜀−2 |d∗Ad(𝐴)𝜇 (Φ) |
2 + 𝜀−2 |∇Ad(𝐴)𝜇 (Φ) |2

= −𝜀−2〈〈𝜇 (∇𝐴Φ,∇𝐴Φ)〉, 𝜇 (Φ)〉 + 2𝜀−2〈𝜇 (Φ), 𝜌∗(∇𝐴Φ ∧ ∇𝐴Φ∗)〉 + 𝔯∇Φ

with
|𝔯∇Φ | 6 𝑐

(
|∇𝐴Φ|2 + |∇𝐴Φ| |Φ|

)
.

The proof makes use of the following observation.

Proposition 2.14. For every 𝐴 ∈ A(𝔰) and Φ ∈ Γ(𝑆),

[∇∗
𝐴∇𝐴,∇𝐴]Φ = 𝜌 (d∗

Ad(𝐴)𝐹Ad(𝐴) )Φ + 2

3∑︁
𝑖, 𝑗=1

𝑒𝑖 ⊗ 𝜌 (𝐹Ad(𝐴) (𝑒𝑖 , 𝑒 𝑗 ))∇𝐴,𝑒 𝑗Φ

+ (d∗𝐴ℜ)Φ + 2

3∑︁
𝑖, 𝑗=1

𝑒𝑖 ⊗ ℜ(𝑒𝑖 , 𝑒 𝑗 )∇𝐴,𝑒 𝑗Φ.

Proof. This is a consequence of the following computation

−
3∑︁
𝑗=1

∇𝐴,𝑒 𝑗∇𝐴,𝑒 𝑗∇𝐴,𝑒𝑖Φ

= −
3∑︁
𝑗=1

∇𝐴,𝑒 𝑗 𝐹𝐴 (𝑒 𝑗 , 𝑒𝑖)Φ −
3∑︁
𝑗=1

∇𝐴,𝑒 𝑗∇𝐴,𝑒𝑖∇𝐴,𝑒 𝑗Φ

= −
3∑︁
𝑗=1

∇𝐴,𝑒 𝑗 𝐹𝐴 (𝑒 𝑗 , 𝑒𝑖)Φ −
3∑︁
𝑗=1

𝐹𝐴 (𝑒 𝑗 , 𝑒𝑖)∇𝐴,𝑒 𝑗Φ −
3∑︁
𝑗=1

∇𝐴,𝑒𝑖∇𝐴,𝑒 𝑗∇𝐴,𝑒 𝑗Φ

= (d∗𝐴𝐹𝐴) (𝑒𝑖)Φ − 2

3∑︁
𝑗=1

𝐹𝐴 (𝑒 𝑗 , 𝑒𝑖)∇𝐴,𝑒 𝑗Φ −
3∑︁
𝑗=1

∇𝐴,𝑒𝑖∇𝐴,𝑒 𝑗∇𝐴,𝑒 𝑗Φ. �

Proof of Proposition 2.12. By Proposition 2.2,

∇∗
𝐴∇𝐴∇𝐴Φ = [∇∗

𝐴∇𝐴,∇𝐴]Φ − 𝜀−2𝜸 (𝜇 (Φ))∇𝐴Φ − 𝜀−2𝜸 (∇𝐴𝜇 (Φ))Φ − 𝔎∇𝐴Φ − 𝛾 (∇ℜ)Φ.

By Proposition 2.14, the �rst term on the right-hand side can be written as

[∇∗
𝐴∇𝐴,∇𝐴]Φ = 𝜀−2𝜌 (d∗

Ad(𝐴)𝜇 (Φ))Φ + 2𝜀−2
3∑︁

𝑖, 𝑗=1

𝑒𝑖 ⊗ 𝜌 (𝜇 (Φ) (𝑒𝑖 , 𝑒 𝑗 ))∇𝐴,𝑒 𝑗Φ(2.15)

+ (d∗𝐴ℜ)Φ + 2

3∑︁
𝑖, 𝑗=1

𝑒𝑖 ⊗ ℜ(𝑒𝑖 , 𝑒 𝑗 )∇𝐴,𝑒 𝑗Φ.
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It was proved in [DW20, Proposition B.4] that if /𝐷𝐴Φ = 0, then

(2.16) d
∗
Ad(𝐴)𝜇 (Φ) = −𝜌∗(∇𝐴ΦΦ∗) .

These identities imply the asserted formula upon taking the inner product of (2.15) with ∇𝐴Φ
because

〈𝜸 (∇𝐴𝜇 (Φ))Φ,∇𝐴Φ〉 = |∇𝐴𝜇 (Φ) |2

and

3∑︁
𝑖=1

〈(d∗
Ad(𝐴)𝜇 (Φ)) (𝑒𝑖)Φ,∇𝐴,𝑒𝑖Φ〉 =

3∑︁
𝑖=1

−〈𝜌𝜌∗
(
∇𝐴,𝑒𝑖ΦΦ∗)Φ,∇𝐴,𝑒𝑖Φ〉

=

3∑︁
𝑖=1

−〈𝜌∗
(
∇𝐴,𝑒𝑖ΦΦ∗), 𝜌∗(∇𝐴,𝑒𝑖ΦΦ∗)〉

= −|d∗
Ad(𝐴)𝜇 (Φ) |

2. �

Proof of Proposition 2.11. Let 𝜒 ∈ 𝐶∞
0
(𝐵𝑟 (𝑥), [0, 1]) be a cut-o� function satisfying 𝜒 |𝐵𝑟/2 (𝑥) = 1

and

𝑟 |∇𝜒 | 6 𝑐 and 𝑟 2 |∇2𝜒 | 6 𝑐.

Multiplying (2.13) by 𝑟 𝜒2, integrating by parts, and using 𝐹Ad(𝐴) = 𝜀
−2𝜇 (Φ), yields

𝑟

ˆ
𝐵𝑟 (𝑥)

𝜒2
(
|∇2

𝐴Φ|2 + 𝜀2 |∇𝐴𝐹𝐴 |2
)
6 𝑐 (𝑐Φ, 𝑐n) + 𝑐𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹𝐴 | · 𝜒2 |∇𝐴Φ|2

6 𝑐 (𝑐Φ, 𝑐n) + 𝑐 (𝑐𝐹 )
(
𝑟

ˆ
𝐵𝑟 (𝑥)

𝜒4 |∇𝐴Φ|4
)
1/2

︸                              ︷︷                              ︸
≕(★)

.

By the Gagliardo–Nirenberg interpolation inequality and the Cauchy–Schwarz inequality, for

every 𝑓 ∈ 𝐶∞
0
(𝐵𝑟 (𝑥)) and 𝜎 > 0,

‖ 𝑓 ‖2
𝐿4
6 𝑐 ‖∇𝑓 ‖3/2

𝐿2
‖ 𝑓 ‖1/2

𝐿2

6 𝜎 ‖∇𝑓 ‖2
𝐿2

+ 𝑐 (𝜎)‖ 𝑓 ‖2
𝐿2
.

Therefore, by Kato’s inequality,

(★) 6 𝑟
2

ˆ
𝐵𝑟 (𝑥)

𝜒2 |∇2

𝐴Φ|2 + 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n) .

Rearranging proves the asserted inequality. �
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2.5 Oscillation bounds on Φ

Proposition 2.17. For every 𝑐𝐹 , 𝑐Φ, 𝑐n > 0, there is a constant 𝑐 = 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n) > 0 such that the
following holds for every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0]. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18),

𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹𝐴 |2 6 𝑐𝐹 , 𝑚Φ
𝑥 (𝑟 ) 6 𝑐Φ, and n

𝐴,Φ,𝜀
𝑥 (𝑟 ) 6 𝑐n,

then, for every 𝑦, 𝑧 ∈ 𝐵𝑟/2(𝑥),

| |Φ| (𝑦) − |Φ| (𝑧) | 6 𝑐
(
n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 )
)
1/8
.

Proof. By Proposition 2.10 and Proposition 2.11,

‖Φ‖2
𝐿∞(𝐵𝑟/2 (𝑥)) 6 𝑐 (𝑐Φ) and 𝑟 1/2‖∇2

𝐴Φ‖𝐿2(𝐵𝑟/2 (𝑥)) 6 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n) .

Therefore, by Morrey’s inequality and the Gagliardo–Nirenberg interpolation inequality,

𝑟 1/4 [|Φ|]𝐶0,1/4(𝐵𝑟/2 (𝑥)) 6 𝑐𝑟
1/4‖|∇𝐴Φ|‖𝐿4(𝐵𝑟/2 (𝑥))

6 𝑐
(
𝑟 1/2‖|∇2

𝐴Φ|‖𝐿2(𝐵𝑟/2 (𝑥))
)
3/4 (

𝑟−1/2‖|∇𝐴Φ|‖𝐿2(𝐵𝑟/2 (𝑥))
)
1/4

+ 𝑐𝑟−1/2‖|∇𝐴Φ|‖𝐿2(𝐵𝑟/2 (𝑥))

6 𝑐 (𝑐𝐹 , 𝑐n, 𝑐Φ)
(
n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 )
)
1/8
.

This implies the assertion. �

2.6 𝐿∞ bounds on 𝜇 (Φ)
Proposition 2.18. For every 𝑐𝐹 , 𝑐Φ, 𝑐n > 0, there is a constant 𝑐 = 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n) > 0 such that the
following holds for every 𝑥 ∈ 𝑀 , 𝑟 ∈ (0, 𝑟0]. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18),

𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹Ad(𝐴) |2 6 𝑐𝐹 , 𝑚Φ
𝑥 (𝑟 ) 6 𝑐Φ, and n

𝐴,Φ,𝜀
𝑥 (𝑟 ) 6 𝑐n,

then

‖𝜇 (Φ)‖𝐿∞(𝐵𝑟/2 (𝑥)) 6 𝑐
(( 𝜀
𝑟

)
2

n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 )
)
1/32

.

Proof. By Morrey’s inequality, the Gagliardo–Nirenberg interpolation inequality, Proposi-

tion 2.10, and Proposition 2.11,

𝑟 1/4 [|𝜇 (Φ) |2]𝐶0,1/4(𝐵𝑟/2 (𝑥)) 6 𝑐𝑟
1/4‖∇|𝜇 (Φ) |2‖𝐿4(𝐵𝑟/2 (𝑥))

6 𝑐
(
𝑟 1/2‖∇2 |𝜇 (Φ) |2‖𝐿2(𝐵𝑟/2 (𝑥))

)
7/8 (

𝑟−3/2‖|𝜇 (Φ) |2‖𝐿2(𝐵𝑟/2 (𝑥))
)
1/8

+ 𝑐𝑟−3‖|𝜇 (Φ) |2‖𝐿1(𝐵𝑟/2 (𝑥))

6 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n)
(
𝑟−3/2‖𝜇 (Φ)‖𝐿2(𝐵𝑟/2 (𝑥))

)
1/8

6 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n)
(( 𝜀
𝑟

)
2

n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 )
)
1/16

.
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Therefore, for all 𝑦, 𝑧 ∈ 𝐵𝑟/2(𝑥),��|𝜇 (Φ) |2(𝑦) − |𝜇 (Φ) |2(𝑧)
�� 6 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n) (( 𝜀

𝑟

)
2

n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 )
)
1/16

.

This implies

|𝜇 (Φ) |2(𝑦) −
 
𝐵𝑟/2 (𝑥)

|𝜇 (Φ) |2 6 𝑐 (𝑐𝐹 , 𝑐Φ, 𝑐n)
(( 𝜀
𝑟

)
2

n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 )
)
1/16

.

Since  
𝐵𝑟/2 (𝑥)

|𝜇 (Φ) |2 6 𝑐
( 𝜀
𝑟

)
2

𝐷𝐴,Φ,𝜀𝑥 (𝑟 ) = 𝑐
( 𝜀
𝑟

)
2

n
𝐴,Φ,𝜀
𝑥 (𝑟 )𝑚Φ

𝑥 (𝑟 ),

the assertion follows. �

2.7 Curvature decay

Proposition 2.19. Suppose that Hypothesis 1.22 holds with Λ > 0. For every 𝑐𝐹 > 0, there are
constants 𝑟−1 > 0 and 𝛿n = 𝛿n(𝑐𝐹 ) > 0 such that the following holds for every 𝑥 ∈ 𝑀 and
𝑟 ∈ (0, 𝑟−1]. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18),

𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹Ad(𝐴) |2 6 𝑐𝐹 , and n
𝐴,Φ,𝜀
𝑥 (𝑟 ) 6 𝛿n,

then
𝑟

4

ˆ
𝐵𝑟/4 (𝑥)

|𝐹Ad(𝐴) |2 6 Λ + 1.

The proof relies on the following proposition regarding the decay of part of the curvature.

Proposition 2.20. For every 𝑐𝐹 , 𝑐n > 0, there is a constant 𝑐 = 𝑐 (𝑐𝐹 , 𝑐n) > 0 such that the following
holds for every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0]. If 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18),

𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹Ad(𝐴) |2 6 𝑐𝐹 , 𝑚Φ
𝑥 (𝑟 ) = 1, and n

𝐴,Φ,𝜀
𝑥 (𝑟 ) 6 𝑐n,

then
𝑟 1/2‖ΓΦ𝐹Ad(𝐴) ‖𝐿2 (𝐵𝑟/2 (𝑥)) 6 𝑐

( 𝜀
𝑟
+ n

𝐴,Φ,𝜀
𝑥 (𝑟 )1/8 + 𝑟 2

)
.

Proof of Proposition 2.19. If 𝐴,Φ, 𝜀 satisfy (1.18), then so do

𝐴, 𝑚Φ
𝑥 (𝑟 )−1/2 · Φ, 𝑚Φ

𝑥 (𝑟 ) · 𝜀.

Moreover, n
𝐴,Φ,𝜀
𝑥 is invariant under this rescaling. Therefore, we can assume that

𝑚Φ
𝑥 (𝑟 ) = 1.
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For 𝛿n � 1, it follows from Proposition 2.17 and Proposition 2.18 that, on 𝐵𝑟/2(𝑥),

1

2

6 |Φ| 6 2 and |𝜇 (Φ) | 6 𝛿𝜇

with 𝛿𝜇 as in Hypothesis 1.22.

If 𝜀/𝑟 � 1, then the desired estimate follows from Proposition 2.20 and Hypothesis 1.22;

otherwise, it follows from

𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹Ad(𝐴) |2 6
(𝑟
𝜀

)
2

𝐷𝐴,Φ,𝜀𝑥 (𝑟 ) =
(𝑟
𝜀

)
2

n
𝐴,Φ,𝜀
𝑥 (𝑟 ). �

The proof of Proposition 2.20 relies on the following proposition, which is a consequence

of the Lichnerowicz–Weitzenböck formula (2.3).

Proposition 2.21. If 𝐴 ∈ A(𝔰), Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18), then

(2.22)

1

2

Δ|𝜇 (Φ) |2 + 𝜀−2 |ΓΦ𝜇 (Φ) |2 + |∇𝐴𝜇 (Φ) |2 = −2〈〈𝜇 (∇𝐴Φ,∇𝐴Φ)〉, 𝜇 (Φ)〉 − 〈ΓΦ𝜇 (Φ),𝔎Φ〉.

The proof makes use of the following identity regarding the symmetric bilinear form

associated with the quadratic map 𝜇.

Proposition 2.23. For every Φ ∈ Γ(S),

𝜇 (𝜸 (𝜇 (Φ))Φ,Φ) = 1

2
Γ∗ΦΓΦ𝜇 (Φ).

Proof. For every 𝜁 ∈ Ω2(𝑀,Ad(𝔰)),

〈𝜇 (𝜸 (𝜇 (Φ))Φ,Φ), 𝜁 〉 = 1

2

〈𝜸∗(𝜸 (𝜇 (Φ))ΦΦ∗), 𝜁 〉

=
1

2

〈𝜸 (𝜇 (Φ))Φ),𝜸 (𝜁 )Φ〉

=
1

2

〈ΓΦ𝜇 (Φ), ΓΦ𝜁 〉

=
1

2

〈Γ∗ΦΓΦ𝜇 (Φ), 𝜁 〉. �

Proof of Proposition 2.21. By Proposition 2.2 and Proposition 2.23,

∇∗
Ad(𝐴)∇Ad(𝐴)𝜇 (Φ) = 2𝜇 (∇∗

𝐴∇𝐴Φ,Φ) − 2〈𝜇 (∇𝐴Φ,∇𝐴Φ)〉
= −2𝜀−2𝜇 (𝜸 (𝜇 (Φ))Φ,Φ) − 2𝜇 (𝔎Φ,Φ) − 2〈𝜇 (∇𝐴Φ,∇𝐴Φ)〉
= −𝜀−2Γ∗ΦΓΦ𝜇 (Φ) − 2𝜇 (𝔎Φ,Φ) − 2〈𝜇 (∇𝐴Φ,∇𝐴Φ)〉.

This implies the asserted formula upon taking the inner product with 𝜇 (Φ) because

2〈𝜇 (𝔎Φ,Φ), 𝜇 (Φ)〉 = 1

2

〈𝜸∗(𝔎ΦΦ∗),𝜸∗(ΦΦ∗)〉

=
1

2

〈𝔎Φ,𝜸 (𝜸∗(ΦΦ∗))Φ〉

= 〈𝔎Φ, ΓΦ𝜇 (Φ)〉. �
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Proof of Proposition 2.20. Let 𝜒 ∈ 𝐶∞
0
(𝐵𝑟 (𝑥), [0, 1]) be a cut-o� function supported in 𝐵𝑟 (𝑥) and

satisfying 𝜒 |𝐵𝑟/2 (𝑥) = 1 and

𝑟 |∇𝜒 | 6 𝑐 and 𝑟 2 |∇2𝜒 | 6 𝑐.

Multiplying (2.22) by 𝑟𝜀−2𝜒2, integrating by parts, and using 𝐹Ad(𝐴) = 𝜀
−2𝜇 (Φ), yields

𝑟

ˆ
𝐵𝑟 (𝑥)

𝜒2 |ΓΦ𝐹Ad(𝐴) |2 +
( 𝜀
𝑟

)
2

· 𝑟 3
ˆ
𝐵𝑟 (𝑥)

𝜒2 |∇Ad(𝐴)𝐹Ad(𝐴) |2

6 𝑐
( 𝜀
𝑟

)
2

· 𝑟
ˆ
𝐵𝑟 (𝑥)

|𝐹Ad(𝐴) |2 + 𝑟𝑐
ˆ
𝐵𝑟 (𝑥)

𝜒2 |∇𝐴Φ|2 |𝐹Ad(𝐴) | + 𝑟𝑐
ˆ
𝐵𝑟 (𝑥)

𝜒2 |ΓΦ𝐹Ad(𝐴) | |Φ|.

By the hypotheses and using rearrangement,

𝑟

ˆ
𝐵𝑟 (𝑥)

𝜒2 |ΓΦ𝐹Ad(𝐴) |2 + 𝑟𝜀2
ˆ
𝐵𝑟 (𝑥)

𝜒2 |∇Ad(𝐴)𝐹Ad(𝐴) |2

6 𝑐 (𝑐𝐹 )
( 𝜀
𝑟

)
2

+ 𝑐 (𝑐𝐹 )
(
𝑟

ˆ
𝐵𝑟 (𝑥)

𝜒2 |∇𝐴Φ|4
)
1/2

+ 𝑐𝑟 4.

As in the proof of Proposition 2.17, the second term on the right-hand side can be bounded by

𝑐 (𝑐𝐹 , 𝑐n) · n𝐴,Φ,𝜀𝑥 (𝑟 )1/4.

Therefore,

𝑟 1/2‖ΓΦ𝐹Ad(𝐴) ‖𝐿2 (𝐵𝑟/2 (𝑥)) 6 𝑐 (𝑐𝐹 , 𝑐n)
( 𝜀
𝑟
+ n

𝐴,Φ,𝜀
𝑥 (𝑟 )1/8 + 𝑟 2

)
. �

3 The regularity scale

Throughout this section, suppose that Hypothesis 1.22 holds with Λ > 0.

De�nition 3.1. For 𝛿 > 0 as in the upcoming Lemma 3.17, set

𝑐𝐹 ≔ 𝛿−1(Λ + 1) .

The regularity scale of 𝐴 ∈ A(𝔰, 𝐵) is the function 𝑟𝐴 : 𝑀 → [0, 𝑟0] de�ned by

𝑟𝐴 (𝑥) ≔ sup

{
𝑟 ∈ [0, 𝑟0] : 𝑟

ˆ
𝐵𝑟 (𝑥)

|𝐹𝐴 |2 6 𝑐𝐹
}
.

•

The following result is the key to the proof of Theorem 1.28.

Proposition 3.2. There are constants 𝛿, 𝑟−1, 𝑐 > 0 such that the following holds. If 𝐴 ∈ A(𝔰, 𝐵),
Φ ∈ Γ(S), and 𝜀 > 0 satisfy (1.18) and (1.19), then

𝑟𝐴 (𝑥) > min

{
𝑐−1 |Φ| (𝑥)1/𝛿 , 𝑟−1

}
.

The four upcoming subsections analyze the frequency function. Throughout, let 𝑥 ∈ 𝑀 and

let 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 be a solution of (1.18). To simplify notation, we drop the

super-scripts in De�nition 2.6 and simply write 𝑟−1,𝑥 ,𝑚𝑥 , 𝐷𝑥 , and n𝑥 .
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3.1 Almost monotonicty of n

The following is the key result regarding the frequency function.

Proposition 3.3. For every 𝑟 ∈ (𝑟−1,𝑥 , 𝑟0],

n
′
𝑥 (𝑟 ) >

1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ − 1

𝑟
n𝑥 (𝑟 )Φ|2 + 𝜀−2 |𝑖 (𝜕𝑟 )𝜇 (Φ) |2

− 𝑐𝑟 (1 + n𝑥 (𝑟 )) .
(3.4)

Before embarking on the proof of Proposition 3.3, let us record the following consequence.

Proposition 3.5. For every 𝑟−1,𝑥 < 𝑠 6 𝑟 6 𝑟0,

n𝑥 (𝑠) 6
(
1 + 𝑐𝑟 2

)
n𝑥 (𝑟 ) + 𝑐𝑟 2.

Proof. By Proposition 3.3,

d

d𝑟
𝑒

1

2
𝑐𝑟 2 (n𝑥 (𝑟 ) + 1) > 0.

This implies

n𝑥 (𝑠) 6 𝑒
1

2
𝑐 (𝑟 2−𝑠2)

n𝑥 (𝑟 ) + 𝑒
1

2
𝑐 (𝑟 2−𝑠2) − 1. �

The proof of of Proposition 3.3 relies on the following three propositions.

Proposition 3.6. For every 𝑟 ∈ (0, 𝑟0],

𝐷 ′
𝑥 (𝑟 ) =

1

2𝜋𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 + 𝜀−2 |𝑖𝜕𝑟 𝜇 (Φ) |2 + 𝔯𝐷′

with
|𝔯𝐷′ | 6 𝑐𝑟 (𝐷𝑥 (𝑟 ) +𝑚𝑥 (𝑟 )).

Proof. Following Taubes [Tau13a, Proof of Lemma 5.2], de�ne the tensor �eld 𝑇 ∈ Γ(𝑆2𝑇 ∗𝑀) by

𝑇 = 𝑇Φ + 𝜀−2𝑇𝜇

with

𝑇Φ(𝑣,𝑤) ≔ 〈∇𝐴,𝑣Φ,∇𝐴,𝑤Φ〉 −
1

2

〈𝑣,𝑤〉|∇𝐴Φ|2 and

𝑇𝜇 (𝑣,𝑤) ≔ 〈𝑖𝑣𝜇 (Φ), 𝑖𝑤𝜇 (Φ)〉 − 〈𝑣,𝑤〉|𝜇 (Φ) |2.

By a straight-forward computation,

(3.7) − 2 tr𝑇 = |∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2.

A further computation, which we postpone for a moment, shows that

(3.8) |∇∗𝑇 | 6 𝑐 |ℜ| |Φ| |∇𝐴Φ|.
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By (3.7), the identity

ˆ
𝐵𝑟 (𝑥)

〈∇∗𝑇, d𝑟 2𝑥 〉 =
ˆ
𝐵𝑟 (𝑥)

〈𝑇,Hess(𝑟 2𝑥 )〉 − 2𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

𝑇 (𝜕𝑟 , 𝜕𝑟 )

can be rewritten asˆ
𝐵𝑟 (𝑥)

2𝑟𝑥∇∗𝑇 (𝜕𝑟 ) = −
ˆ
𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2 +
ˆ
𝐵𝑟 (𝑥)

〈𝑇, 𝔯II〉

− 2𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 + 𝜀−2 |𝑖𝜕𝑟 𝜇 (Φ) |2 + 𝑟
ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2

with

𝔯II ≔ Hess(𝑟 2𝑥 ) − 2𝑔.

Since

𝐷 ′
𝑥 (𝑟 ) = − 1

4𝜋𝑟 2

ˆ
𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2 + 1

4𝜋𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴Φ|2 + 2𝜀−2 |𝜇 (Φ) |2,

the above can be rewritten as

𝐷 ′
𝑥 (𝑟 ) =

1

2𝜋𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 + 𝜀−2 |𝑖𝜕𝑟 𝜇 (Φ) |2 +
1

4𝜋𝑟 2

ˆ
𝐵𝑟 (𝑥)

2𝑟𝑥∇∗𝑇 (𝜕𝑟 ) − 〈𝑇, 𝔯II〉.

The inequality (3.8) thus implies the assertion.

It remains to prove (3.8). Let 𝑦 ∈ 𝑀 be an arbitrary point of 𝑀 and let 𝑒1, 𝑒2, 𝑒3 be a local

orthonormal frame such that (∇𝑒𝑖𝑒 𝑗 ) (𝑦) = 0. All of the following computations take place at

the point 𝑦. By the Lichnerowicz–Weitzenböck formula (2.3),

(∇∗𝑇Φ) (𝑒𝑖) = −
3∑︁
𝑗=1

〈∇𝐴,𝑒 𝑗∇𝐴,𝑒 𝑗Φ,∇𝐴,𝑒𝑖Φ〉 + 〈∇𝐴,𝑒 𝑗∇𝐴,𝑒𝑖Φ,∇𝐴,𝑒 𝑗Φ〉 − 〈∇𝐴,𝑒𝑖∇𝐴,𝑒 𝑗Φ,∇𝐴,𝑒 𝑗Φ〉

= 〈∇∗
𝐴∇𝐴Φ,∇𝐴,𝑒𝑖Φ〉 +

3∑︁
𝑗=1

〈𝐹𝐴 (𝑒𝑖 , 𝑒 𝑗 )Φ,∇𝐴,𝑒 𝑗Φ〉

= −𝜀−2〈𝜸 (𝜇 (Φ))Φ,∇𝐴,𝑒𝑖Φ〉 + 𝜀−2
3∑︁
𝑗=1

〈𝜌 (𝜇 (Φ) (𝑒𝑖 , 𝑒 𝑗 ))Φ,∇𝐴,𝑒 𝑗Φ〉 + 𝔯𝑇 (𝑒𝑖)

with

𝔯𝑇 (𝑣) ≔ −〈𝔎Φ,∇𝐴,𝑣Φ〉 +
3∑︁
𝑖=1

〈ℜ(𝑣, 𝑒𝑖)Φ,∇𝐴,𝑒𝑖Φ〉.

The �rst two terms on the right-hand side of the above identity can be rewritten as follows. By

de�nition of 𝜇 (Φ),

〈𝜸 (𝜇 (Φ))Φ,∇𝐴,𝑒𝑖Φ〉 = 〈𝜇 (Φ),∇Ad(𝐴),𝑒𝑖 𝜇 (Φ)〉

=
1

2

∇𝑒𝑖 |𝜇 (Φ) |2.
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Furthermore, the identity (2.16) implies that

〈𝜌 (𝜇 (Φ) (𝑒𝑖 , 𝑒 𝑗 ))Φ,∇𝐴,𝑒 𝑗Φ〉 = 〈𝜇 (Φ) (𝑒𝑖 , 𝑒 𝑗 ), 𝜌∗((∇𝐴,𝑒 𝑗Φ)Φ∗)〉
= −〈𝜇 (Φ) (𝑒𝑖 , 𝑒 𝑗 ), (d∗

Ad(𝐴)𝜇 (Φ)) (𝑒 𝑗 )〉.

Therefore,

(3.9) (∇∗𝑇Φ) (𝑣) = − 1

2
𝜀−2∇𝑣 |𝜇 (Φ) |2 − 𝜀−2〈d∗

Ad(𝐴)𝜇 (Φ), 𝑖 (𝑣)𝜇 (Φ)〉 + 𝔯𝑇 (𝑣).

The term 𝔯𝑇 satis�es the asserted estimate. Thus, it remains to show that the �rst two

term on the right-hand side of (3.9) are equal to −𝜀−2∇∗𝑇𝜇 . A brief computation shows that

d𝐴𝜇 (Φ) = 0 implies

3∑︁
𝑗=1

〈∇Ad(𝐴),𝑒 𝑗 𝑖 (𝑒𝑖)𝜇 (Φ), 𝑖 (𝑒 𝑗 )𝜇 (Φ)〉 =
1

2

∇𝑒𝑖 |𝜇 (Φ) |2.

Therefore,

(∇∗𝑇𝜇) (𝑒𝑖) = ∇𝑒𝑖 |𝜇 (Φ) |2 −
3∑︁
𝑗=1

〈∇Ad(𝐴),𝑒 𝑗 𝑖 (𝑒 𝑗 )𝜇 (Φ), 𝑖 (𝑒𝑖)𝜇 (Φ)〉 + 〈∇Ad(𝐴),𝑒 𝑗 𝑖 (𝑒𝑖)𝜇 (Φ), 𝑖 (𝑒 𝑗 )𝜇 (Φ)〉

=
1

2

∇𝑒𝑖 |𝜇 (Φ) |2 + 〈d∗
Ad(𝐴)𝜇 (Φ), 𝑖 (𝑒𝑖)𝜇 (Φ)〉.

This �nishes the proof. �

Proposition 3.10. For every 𝑟 ∈ (0, 𝑟0],

𝐷𝑥 (𝑟 ) =
1

4𝜋𝑟

ˆ
𝜕𝐵𝑟 (𝑥)

〈∇𝐴,𝜕𝑟Φ,Φ〉 + 𝔯𝐷

with
|𝔯𝐷 | 6 𝑐𝑟 2𝑚𝑥 (𝑟 ) .

Proof. This is a consequence of Corollary 2.5 with 𝑓 = 1 and𝑈 = 𝐵𝑟 (𝑥) and Proposition 2.9. �

Proposition 3.11. For every 𝑟 ∈ (0, 𝑟0],

𝑚′
𝑥 (𝑟 ) =

2𝐷𝑥 (𝑟 )
𝑟

+ 𝔯𝑚′

with
|𝔯𝑚′ | 6 𝑐𝑟𝑚𝑥 (𝑟 ).

Proof. Denote by 𝐻𝑥,𝑟 the mean curvature of 𝜕𝐵𝑟 (𝑥). By Corollary 2.5,

𝑚𝑥 (𝑟 ) ′ =
1

2𝜋𝑟 2

ˆ
𝜕𝐵𝑟 (𝑥)

(
𝐻𝑥,𝑟 − 1

𝑟

)
|Φ|2 + 1

4𝜋𝑟 2

ˆ
𝜕𝐵𝑟 (𝑥)

𝜕𝑟 |Φ|2

=
2𝐷𝑥 (𝑟 )
𝑟

+ 1

2𝜋𝑟 2

ˆ
𝜕𝐵𝑟 (𝑥)

(
𝐻𝑥,𝑟 − 1

𝑟

)
|Φ|2 − 2𝔯𝐷

𝑟
.

The assertion follows since

��𝐻𝑥,𝑟 − 2

𝑟

�� 6 𝑐𝑟 . �
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Corollary 3.12. For every 𝑥 ∈ 𝑀 and 0 < 𝑠 < 𝑟 6 𝑟0,

𝑚𝑥 (𝑠) 6
(
1 + 𝑐𝑟 2

)
𝑚𝑥 (𝑟 ).

�

Proof of Proposition 3.3. By Proposition 3.6 and Proposition 3.11,

n
′
𝑥 (𝑟 ) =

𝐷 ′
𝑥 (𝑟 )

𝑚𝑥 (𝑟 )
− 𝐷𝑥 (𝑟 )𝑚′

𝑥 (𝑟 )
𝑚𝑥 (𝑟 )2

=
1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 + 𝜀−2 |𝑖𝜕𝑟 𝜇 (Φ) |2 −
2𝐷𝑥 (𝑟 )2
𝑟𝑚𝑥 (𝑟 )2

+ 𝔯𝐷′

𝑚𝑥 (𝑟 )
− 𝔯𝑚′

𝑚𝑥 (𝑟 )
n𝑥 (𝑟 ) .

By Proposition 3.10,

1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ − 1

𝑟
n𝑥 (𝑟 )Φ|2

=
1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 −
n𝑥 (𝑟 )

𝜋𝑟 2𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

〈∇𝐴,𝜕𝑟Φ,Φ〉 +
2

𝑟
n𝑥 (𝑟 )2

=
1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 −
2

𝑟
n𝑥 (𝑟 )2 +

4𝔯𝐷

𝑟𝑚𝑥 (𝑟 )
n𝑥 (𝑟 ) .

Therefore,

n
′
𝑥 (𝑟 ) =

1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ|2 + 𝜀−2 |𝑖𝜕𝑟 𝜇 (Φ) |2 −
2

𝑟
n𝑥 (𝑟 )2 +

𝔯𝐷′

𝑚𝑥 (𝑟 )
− 𝔯𝑚′

𝑚𝑥 (𝑟 )
n𝑥 (𝑟 )

=
1

2𝜋𝑟𝑚𝑥 (𝑟 )

ˆ
𝜕𝐵𝑟 (𝑥)

|∇𝐴,𝜕𝑟Φ − 1

𝑟
n𝑥 (𝑟 )Φ|2 + 𝜀−2 |𝑖𝜕𝑟 𝜇 (Φ) |2

+ 𝔯𝐷′

𝑚𝑥 (𝑟 )
−
(

4𝔯𝐷

𝑟𝑚𝑥 (𝑟 )
+ 𝔯𝑚′

𝑚𝑥 (𝑟 )

)
n𝑥 (𝑟 )︸                                       ︷︷                                       ︸

≕★

.

This completes the proof since |★| 6 𝑐𝑟 (1 + n𝑥 (𝑟 )). �

3.2 n controls the growth of𝑚

Proposition 3.13. For every 𝑥 ∈ 𝑀 and 0 < 𝑠 < 𝑟 6 𝑟0,(𝑟
𝑠

) (2−𝑐𝑟 2)n𝑥 (𝑠)−𝑐𝑟 2
𝑚𝑥 (𝑠) 6 𝑚𝑥 (𝑟 ) 6

(𝑟
𝑠

) (2+𝑐𝑟 2)n𝑥 (𝑟 )+𝑐𝑟 2
𝑚𝑥 (𝑠) .

Proof. By Proposition 3.5 and Proposition 3.11, for 𝑡 ∈ [𝑠, 𝑟 ],

d

d𝑡
log𝑚𝑥 (𝑡) 6

2n𝑥 (𝑡)
𝑡

+ 𝑐𝑡

6
2(1 + 𝑐𝑟 2)

𝑡
n𝑥 (𝑟 ) +

𝑐𝑟 2

𝑡
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as well as

d

d𝑡
log𝑚𝑥 (𝑡) >

2(1 − 𝑐𝑟 2)
𝑡

n𝑥 (𝑠) −
𝑐𝑟 2

𝑡
.

These integrate to the asserted inequalities. �

Proposition 3.14. If Φ ≠ 0, then, for every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0],

𝑚𝑥 (𝑟 ) > 0;

in particular, 𝑟−1,𝑥 = 0.

Proof. If 𝑚𝑥 (𝑟 ) = 0, for some 𝑟 ∈ (0, 𝑟0], then it follows from Proposition 3.13 that 𝑚𝑥 = 0.

Therefore, Φ vanishes on 𝐵𝑟0 (𝑥). This in turn implies that𝑚𝑦 (𝑟0/2) vanishes for all 𝑦 ∈ 𝐵𝑟0/2(𝑥).
Hence, Φ vanishes on 𝐵 3

2
𝑟0
(𝑥). Repeating this argument shows that Φ vanishes on all of𝑀 . �

3.3 Frequency bounds

Proposition 3.15. For every 𝑟★ ∈ (0, 𝑟0] and 𝛿 > 0, if

0 < 𝑠 6 𝑟★min

{
1,

(
|Φ|2(𝑥)
2𝑚𝑥 (𝑟★)

)
1/𝛿}

,

then
n𝑥 (𝑠) 6 2𝛿 + 𝑟★.

Proof. By Corollary 3.12 and Proposition 3.13, for every 𝑠 ∈ (0, 𝑟★],(𝑟★
𝑠

)
n𝑥 (𝑠)−𝑟★

|Φ|2(𝑥) 6 2𝑚𝑥 (𝑟★) .

Therefore,

n𝑥 (𝑠) 6
log

(
2𝑚𝑥 (𝑟★)
|Φ |2 (𝑥)

)
log

( 𝑟★
𝑠

) + 𝑟★.

This implies the asserted inequality. �

3.4 Varying the base-point

Proposition 3.16. There is a constant 𝑐 > 0 such that, for every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0/4], if
n𝑥 (4𝑟 ) 6 1, then, for every 𝑦 ∈ 𝐵𝑟 (𝑥) and 𝑠 ∈ (0, 2𝑟 ],

n𝑦 (𝑠) 6 𝑐
(
n𝑥 (4𝑟 ) + 𝑟 2

)
.

Proof. Since n𝑥 (4𝑟 ) 6 1, by Proposition 2.9 and Proposition 3.13,

𝑚𝑥 (4𝑟 ) 6 𝑐𝑚𝑥 (𝑟/2) 6 𝑐𝑟−3
ˆ
𝐵𝑟 (𝑥)

|Φ|2 6 𝑐𝑟−3
ˆ
𝐵2𝑟 (𝑦)

|Φ|2 6 𝑐𝑚𝑦 (2𝑟 ).

Therefore,

n𝑦 (2𝑟 ) 6
𝑚𝑥 (4𝑟 )
𝑚𝑦 (2𝑟 )

n𝑥 (4𝑟 ) 6 𝑐n𝑥 (4𝑟 ) .

The assertion thus follows from Proposition 3.5. �
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3.5 Decay implies interior bound

The following result is essentially contained in [Tau13a, Proof of Lemma 6.2].

Lemma 3.17. There is a constant 𝛿 > 0 such that the following holds for every 𝑥 ∈ 𝑀 and 𝑟 > 0. If
𝑓 : ¯𝐵𝑟 (𝑥) → [0,∞) is an 𝐿1 function such that, for every 𝑦 ∈ 𝑀 and 𝑠 > 0,

(3.18) 𝐵𝑠 (𝑦) ⊂ 𝐵𝑟 (𝑥) and 𝑠

ˆ
𝐵𝑠 (𝑦)

𝑓 6 1 =⇒ 𝑠

4

ˆ
𝐵𝑠/4 (𝑦)

𝑓 6 𝛿,

then
𝑟

2

ˆ
𝐵𝑟/2 (𝑥)

𝑓 6 1.

Proof. The regularity scale associated with 𝑓 is the function 𝑟 𝑓 : 𝐵𝑟 (𝑥) → (0,∞] de�ned by

𝑟 𝑓 (𝑦) ≔ sup

{
𝑠 > 0 : 𝑠

ˆ
𝐵𝑠 (𝑦)∩𝐵𝑟 (𝑥)

𝑓 6 1

}
.

If 𝑟 𝑓 (𝑥) < 𝑟
2
and 𝛿 > 0 is su�ciently small, then the following leads to a contradiction.

Pick a maximal sequence 𝑥0, 𝑥1, . . . , 𝑥𝑁 starting with 𝑥0 ≔ 𝑥 and such that, for every

𝑛 = 0, 1, . . . , 𝑁 − 1,

𝑥𝑛+1 ∈ 𝐵𝑟 𝑓 (𝑥𝑛) (𝑥𝑛) and 𝑟 𝑓 (𝑥𝑛+1) < 1

2
𝑟 𝑓 (𝑥𝑛) .

Such a sequence must terminate, because otherwise (𝑥𝑛)𝑛∈N converges to a point 𝑥∞ ∈ 𝐵𝑟 (𝑥)
with 𝑟 𝑓 (𝑥∞) = 0, which is a contradiction. By maximality, 𝑥★ ≔ 𝑥𝑁 is such that, for every

𝑦 ∈ 𝐵𝑟 𝑓 (𝑥★) (𝑥★),

(3.19)
1

2
𝑟 𝑓 (𝑥★) 6 𝑟 𝑓 (𝑦) .

There is a constant 𝑁𝑐 ∈ N depending only on 𝐵𝑟 (𝑥) and a �nite set {𝑦1, . . . , 𝑦𝑁𝑐
} ⊂

𝐵𝑟 𝑓 (𝑥★) (𝑥★) such that

𝐵𝑟 𝑓 (𝑥★) (𝑥★) ⊂
𝑁𝑐⋃
𝑛=1

𝐵 1

8
𝑟 𝑓 (𝑥★) (𝑦𝑛) .

Since 𝑟 𝑓 (𝑥) < 𝑟
2
, by construction of 𝑥★,

𝑑 (𝑥, 𝑥★) + 𝑟 𝑓 (𝑥★) + 1

2
𝑟 𝑓 (𝑥★) <

𝑁+1∑︁
𝑛=0

1

2
𝑛 𝑟 𝑓 (𝑥𝑎) 6 2𝑟 𝑓 (𝑥) < 𝑟 ;

that is:

𝐵 1

2
𝑟 𝑓 (𝑥★) (𝑦𝑛) ⊂ 𝐵𝑟 (𝑥) .

Therefore, by (3.18) and (3.19),

𝑟 𝑓 (𝑥★)
8

ˆ
𝐵 1

8
𝑟𝑓 (𝑥★) (𝑦𝑛)

𝑓 6 𝛿.
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Hence,

𝑟 𝑓 (𝑥★)
ˆ
𝐵𝑟𝑓 (𝑥★) (𝑥★)

𝑓 6 𝑟 𝑓 (𝑥★)
𝑁𝑐∑︁
𝑛=1

ˆ
𝐵 1

8
𝑟𝑓 (𝑥★) (𝑦𝑛)

𝑓 6 8𝑁𝑐𝛿.

If 𝛿 6 1

16
𝑁𝑐 , then the integral on the left-hand side is at most

1

2
. This, however, contradicts the

de�nition of 𝑟 𝑓 (𝑥★) since ¯𝐵𝑟 𝑓 (𝑥★) (𝑥★) ⊂ 𝐵𝑟 (𝑥). �

3.6 Proof of Proposition 3.2

Without loss of generality assume that |Φ| is not identically zero. Choose 𝑟−1 and 𝛿n as in

Proposition 2.19 with 𝑐𝐹 as in De�nition 3.1.

If 𝑟† ∈ (0, 𝑟−1] is such that, for every 𝐵𝑠 (𝑦) ⊂ 𝐵𝑟† (𝑥),

n𝑦 (𝑠) 6 𝛿n,

then, by Proposition 2.19, Lemma 3.17 applies to

𝑓 ≔
|𝐹𝐴 |2
𝑐𝐹

.

Therefore,

𝑟†
4

ˆ
𝐵𝑟†/4 (𝑥)

|𝐹𝐴 |2 6 𝑐𝐹 ;

that is:

𝑟𝐴 (𝑥) >
𝑟†
4

.

Let 0 < 𝜎 � 1. By Proposition 2.9,

𝑚𝑥 (𝑟 ) 6 𝑐𝑟−30 ‖Φ‖2
𝐿2 (𝑀) = 𝑐𝑟

−3
0
.

By Proposition 3.15, there is a constant 𝑐 > 0 such that

n𝑥 (4𝑟†) 6 𝜎𝛿n + 𝑟† for 𝑟† ≔ 𝑐−1min

{
1, |Φ|8/𝜎𝛿n (𝑥)

}
.

By Proposition 3.16, for every 𝐵𝑠 (𝑦) ⊂ 𝐵𝑟† (𝑥),

n𝑦 (𝑠) 6 𝑐
(
𝜎𝛿n + 𝑟†

)
.

Therefore, after possibly shrinking 𝑟†, for every 𝐵𝑠 (𝑦) ⊂ 𝐵𝑟† (𝑥), n𝑦 (𝑠) 6 𝛿n. This �nishes the
proof. �

24



3.7 Hölder bounds

Proposition 3.20. Suppose that Hypothesis 1.22 holds. There are constants 𝛼 ∈ (0, 1) and 𝑐 > 0

such that, for every 𝐴 ∈ A(𝔰, 𝐵), Φ ∈ Γ(S), and 𝜀 > 0 satisfying (1.18) and (1.19),

[Φ]𝐶0,𝛼 (𝑀) 6 𝑐.

Proof. Let 𝛿, 𝑟−1, 𝑐 > 0 be as in Proposition 3.2. Set 𝛼 ≔ min

{
1

4
, 1
2
𝛿
}
. Let 𝑥,𝑦 ∈ 𝑀 such that

|Φ| (𝑥) > |Φ| (𝑦).
If 𝑑 (𝑥,𝑦) 6 𝑟𝐴 (𝑥)2, then 𝑑 (𝑥,𝑦) 6 𝑟𝐴 (𝑥)/2 because 𝑟𝐴 6 𝑟0, and by Morrey’s inequality,

Kato’s inequality, and Proposition 2.11,

[|Φ|]𝐶0,1/2(𝐵𝑟𝐴 (𝑥 )/2 (𝑥)) 6 𝑐 ‖∇𝐴Φ‖𝐿6(𝐵𝑟𝐴 (𝑥 )/2 (𝑥)) 6 𝑐𝑟𝐴 (𝑥)
−1/2 6 𝑐𝑑 (𝑥,𝑦)−1/4.

Hence,

|Φ| (𝑥) − |Φ| (𝑦) 6 𝑐𝑑 (𝑥,𝑦)1/4 6 𝑐𝑑 (𝑥,𝑦)𝛼 .

If 𝑑 (𝑥,𝑦) > 𝑟𝐴 (𝑥)2, then Proposition 3.2 either 𝑑 (𝑥,𝑦) > 𝑟 2−1 or 𝑑 (𝑥,𝑦) > 𝑐−2 |Φ| (𝑥)2/𝛿 . In
the �rst case, it follows from Proposition 2.10 that

|Φ| (𝑥) − |Φ| (𝑦) 6 𝑐𝑑 (𝑥,𝑦)𝛼 .

In the second case,

|Φ| (𝑥) − |Φ| (𝑦) 6 2|Φ| (𝑥) 6 𝑐𝛿𝑑 (𝑥,𝑦)𝛿/2. �

4 Proof of Theorem 1.28

Let (𝐴𝑛,Φ𝑛, 𝜀𝑛) be a sequence of solutions of (1.18) and (1.19) with 𝜀𝑛 tending to zero. By

Proposition 2.10 and Proposition 3.20, for some 𝛼 ∈ (0, 1),

‖|Φ𝑛 |‖𝐶0,𝛼 6 𝑐.

Therefore, after passing to a subsequence, for every 𝛽 ∈ (0, 𝛼), |Φ𝑛 | converges to a limit in the

𝐶0,𝛽
–topology. Denote this limit by |Φ| and set 𝑍 ≔ |Φ|−1(0). Since ‖Φ‖𝐿2 = 1, 𝑍 is a proper

subset of𝑀 .

By Proposition 3.2, for every 𝑥 ∈ 𝑀\𝑍 ,

𝑟𝐴 (𝑥) ≔ lim inf

𝑛∈N
𝑟𝐴𝑛

(𝑥) > 0.

Therefore, on every compact subset of𝑀\𝑍 , the 𝐿2–norms of 𝐹𝐴𝑛
are uniformly bounded; and, up

to gauge transformations and after passing to a subsequence, (𝐴𝑛) can be assumed to converge

in the weak𝑊 1,2
topology to a limit 𝐴. Moreover, by Proposition 2.11, after passing to a further

subsequence, (Φ𝑛) converges in the weak𝑊 2,2
topology to a limit Φ. A patching argument as

in [DK90, Section 4.2.2] yields asserted convergence statement on𝑀\𝑍 . By construction, the

limit (𝐴,Φ) satis�es (1.29).
It remains to prove that 𝑍 is nowhere-dense. The proof of this fact relies on the following.
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Proposition 4.1. For every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0],

lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥)

|∇𝐴𝑛
Φ𝑛 |2 + 2𝜀−2𝑛 |𝜇 (Φ𝑛) |2 =

ˆ
𝐵𝑟 (𝑥)

|∇𝐴Φ|2 and

lim

𝑛→∞

ˆ
𝜕𝐵𝑟 (𝑥)

|Φ𝑛 |2 =
ˆ
𝜕𝐵𝑟 (𝑥)

|Φ|2.

Proof. The second assertion is a consequence of the Hölder convergence. To prove the �rst

assertion, we proceed as follows. For 𝜀 ∈ (0, 1
2
], set 𝑍𝜀 ≔ |Φ|−1( [0, 𝜀]). Since weak 𝑊 2,2

convergence implies𝑊 1,2
convergence,

lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥)\𝑍𝜀

|∇𝐴𝑛
Φ𝑛 |2 =

ˆ
𝐵𝑟 (𝑥)\𝑍𝜀

|∇𝐴Φ|2.

Moreover,

lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥)\𝑍𝜀

2𝜀−2𝑛 |𝜇 (Φ𝑛) |2 = lim

𝑛→∞

ˆ
𝐵𝑟 (𝑥)\𝑍𝜀

2𝜀2𝑛 |𝐹Ad(𝐴) |2 = 0.

The discussion in the next paragraph shows that there exists a 𝜆 > 0 such that, for every 𝜀 > 0,

ˆ
𝑍𝜀

|∇𝐴𝑛
Φ𝑛 |2 + 2𝜀−2𝑛 |𝜇 (Φ𝑛) |2 6 𝑐𝜀𝜆 .

This together with the above implies the �rst assertion.

Fix a cut-o� function 𝜒 ∈ 𝐶∞
0
( [0, 2), [0, 1]) with 𝜒 | [0,1] = 1. Corollary 2.5 with 𝑓 =

𝜒 (𝜀−1 |Φ𝑛 |) and 𝑈 = 𝑀 , integrating the resulting term with Δ|Φ𝑛 |2 by parts once and using

Kato’s inequality yields

ˆ
𝑍𝜀

|∇𝐴𝑛
Φ𝑛 |2 + 2𝜀−2𝑛 |𝜇 (Φ𝑛) |2 6 𝑐

ˆ
𝑍2𝜀

|Φ𝑛 |2 + 𝑐
ˆ
𝑍2𝜀\𝑍𝜀

𝜀−1 |Φ𝑛 | |∇𝐴 |Φ𝑛 | |2

6 𝑐𝜀2 + 𝑐
ˆ
𝑍2𝜀\𝑍𝜀

|∇𝐴𝑛
Φ𝑛 |2.

Therefore,

𝑓 (𝜀) ≔
ˆ
𝑍𝜀

|∇𝐴𝑛
Φ𝑛 |2 + 2𝜀−2𝑛 |𝜇 (Φ𝑛) |2

satis�es

𝑓 (𝜀) 6 𝜎 (𝜀2 + 𝑓 (2𝜀)) with 𝜎 ≔ 𝑐/(1 + 𝑐) .
Without loss of generality 𝜎 > 1/2. By iterating the above inequality 𝑘 times and using that 𝑓

is bounded,

𝑓 (𝜀) 6 𝜎𝜀2
𝑘−1∑︁
𝑖=0

(4𝜎)𝑖 + 𝜎𝑘 𝑓 (2𝑘𝜀)

6 𝜎𝜀2(4𝜎)𝑘−1
∞∑︁
𝑖=0

(4𝜎)−𝑖 + 𝜎𝑘 𝑓 (2𝑘𝜀)

6 𝑐𝜀2(4𝜎)𝑘 + 𝑐𝜎𝑘 .
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With 𝑘 ≔ b− log 𝜀/log 2c this gives

𝑓 (𝜀) 6 𝑐𝜀2−log(4𝜎)/log 2 + 𝑐𝜀− log𝜎/log 2 6 𝑐𝜀𝜆

for some 𝜆 > 0 depending on 𝜎 only, since log(4𝜎)/log 2 < 2. �

If 𝑍 failed to be nowhere-dense, then we could �nd 𝑥 ∈ 𝑍 and 0 < 𝑟 6 𝑟0 such that

𝐵𝑟 (𝑥) ⊂ 𝑍 . By the above, Proposition 3.13 applies and shows that, in fact, 𝐵𝑟0 (𝑥) ⊂ 𝑍 . This

in turn implies that 𝑚Φ
𝑦 (𝑟0/2) vanishes for all 𝑦 ∈ 𝐵𝑟0/2(𝑥). Hence, |Φ| vanishes on 𝐵 3

2
𝑟0
(𝑥).

Repeating this argument shows 𝑍 to be all of𝑀 , which contradicts ‖Φ‖𝐿2 = 1. �

5 Proof of Theorem 1.33

The proof of Theorem 1.33 relies on Theorem 1.28. Over the course of the next three subsections

we establish that the hypotheses of the latter hold for the ADHM1,2 Seiberg–Witten equation.

The geometric and algebraic observations made in the process also enter crucially in re�ning

the conclusion of Theorem 1.28 to obtain Theorem 1.33.

5.1 The geometry of the adjoint representation of SU(2)
The �rst step towards the proof of Theorem 1.33 is to verify Hypothesis 1.22—or, more precisely:

the condition in Remark 1.24—for stable �at PSL2(C)–connections.

Lemma 5.1. There are constants 𝛿𝜇, 𝑐 > 0 such that, for every 𝝃 ∈ 𝔰𝔲(2) ⊗ H, if

|𝜇 (𝝃 ) | 6 𝛿𝜇 |𝝃 |2,

then
|𝝃 | |𝜇 (𝝃 ) | 6 𝑐 |Γ𝝃 𝜇 (𝝃 ) |.

The proof of Lemma 5.1 relies on the following observation which is proved by a simple

computation; see, e.g., [DW19, Proposition D.5].

Proposition 5.2. Denote by 𝜇 : 𝔤 ⊗ H → 𝔤 ⊗ ImH the hyperkähler moment map associated with
the adjoint representation𝐺 → Sp(𝔤 ⊗ H). For every 𝝃 = 𝜉0 ⊗ 1 + 𝜉1 ⊗ 𝑖 + 𝜉2 ⊗ 𝑗 + 𝜉3 ⊗ 𝑘 ∈ 𝔤 ⊗ H,

|𝜇 (𝝃 ) |2 = 1

2

3∑︁
𝑖, 𝑗=0

��[𝜉𝑖 , 𝜉 𝑗 ]��2.
Proof of Lemma 5.1. Without loss of generality |𝝃 | = 1. The zero locus 𝜇−1(0) is a cone with
smooth link. Therefore, if |𝜇 (𝝃 ) | 6 𝛿𝜇 � 1, then 𝝃 has a unique decomposition as

𝝃 = 𝜻 + ˆ𝝃

with

𝜇 (𝜻 ) = 0, ˆ𝝃 ⊥ 𝑇𝜻 𝜇−1(0), and | ˆ𝝃 | 6 𝑐 |𝜇 (𝝃 ) | 6 𝑐𝛿𝜇 � 1.
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By Proposition 5.2,

𝜻 = 𝜏0 ⊗ 𝑣0
with |𝜏0 | = 1. Extend 𝜏0 to an orthonormal basis 𝜏0, 𝜏1, 𝜏2 of 𝔰𝔲(2) such that

(5.3) [𝜏0, 𝜏1] = 2𝜏2, [𝜏1, 𝜏2] = 2𝜏0, and [𝜏2, 𝜏0] = 2𝜏1.

Since

𝑇𝜻 𝜇
−1(0) = 〈𝜏0〉 ⊗ H + 𝔰𝔲(2) ⊗ 〈𝑣0〉,

it follows that

(5.4) d𝜻 𝜇 ( ˆ𝝃 ) = 2𝜇 (𝜻 , ˆ𝝃 ) ∈ 〈𝜏1, 𝜏2〉 ⊗ ImH and 𝜇 ( ˆ𝝃 ) ∈ 〈𝜏0〉 ⊗ ImH.

A simple computation using (5.3) shows that

Γ𝜻 𝜇 ( ˆ𝝃 ) = 0 and |Γ𝜻 𝜇 (𝜻 , ˆ𝝃 ) | = 2|𝜻 | |𝜇 (𝜻 , ˆ𝝃 ) |.

Therefore,

|𝜇 (𝝃 ) |2 6 4|𝜇 (𝜻 , ˆ𝝃 ) |2 + |𝜇 ( ˆ𝝃 ) |2

6 𝑐 |Γ𝜻 𝜇 (𝝃 ) |2 + 𝑐 |𝜇 (𝝃 ) |4

6 𝑐 |Γ𝝃 𝜇 (𝝃 ) |2 + 𝑐𝛿2𝜇 |𝜇 (𝝃 ) |2.

A rearrangement implies the asserted estimate. �

Remark 5.5. It is crucial that the link of 𝜇−1(0) is smooth. For 𝔰𝔲(𝑟 ) with 𝑟 > 3 this condition

fails and, in fact, the conclusion of Lemma 5.1 does not hold in this case. ♣

5.2 The geometry of the ADHM1,2 representation

This subsection contains a number of geometric facts regarding the quaternionic representation

of U(2) on H ⊗C C2 ⊕ 𝔰𝔲(2) ⊗ H. These will play a crucial role in the proof of Hypothesis 1.22

for ADHM1,2 Seiberg–Witten monopoles in the next subsection.

Proposition 5.6. Let 𝑘 ∈ N. Denote by 𝜇 : H ⊗C C𝑘 → 𝔲(𝑘) ⊗ ImH the hyperähler moment map
associated with the quaternionic representation U(𝑘) → Sp(H ⊗C C𝑘 ). Let 𝔱 ⊂ 𝔲(𝑘) be a maximal
torus. Denote by 𝜋𝔱 : 𝔲(𝑘) → 𝔱 the orthogonal projection to 𝔱. For every Ψ ∈ H ⊗C C𝑘 ,

|𝜋𝔱𝜇 (Ψ) | =
1

2

|Ψ|2.

Proof. For 𝑘 = 1, 𝔱 = 𝔲(1). By (1.12),

|𝜇 (Ψ) |2 = 1

2

〈𝜸 (𝜇 (Ψ))Ψ,Ψ〉

=
1

4

|Ψ|4.
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For 𝑘 ∈ {2, 3, . . .}, without loss of generality 𝔱 = 𝔲(1)⊕𝑘 . The composition 𝜋𝔱 ◦ 𝜇 is the

hyperkähler moment map for the action of U(1)𝑘 ⊂ U(𝑘) on H ⊗C C𝑘 . Thus

𝜋𝔱𝜇 (Ψ1, . . . ,Ψ𝑘 ) = (𝜇 (Ψ1), . . . , 𝜇 (Ψ𝑘 ))

and the assertion follows from the case 𝑘 = 1. �

Proposition 5.7. There is a constant 𝑐 > 0 such that, for every Ψ ∈ H ⊗C C2 and 𝝃 ∈ H ⊗ 𝔰𝔲(2),

|𝜇 (Ψ) | + |𝜇 (𝝃 ) | 6 𝑐 |𝜇 (Ψ, 𝝃 ) |.

This is an immediate consequence of the following.

Proposition 5.8. There is a constant 𝜎 < 1 such that, for every Ψ ∈ H ⊗C C2 and 𝝃 ∈ H ⊗ 𝔰𝔲(2),

−〈𝜇 (Ψ), 𝜇 (𝝃 )〉 6 𝜎 |𝜇 (Ψ) | |𝜇 (𝝃 ) |.

The proof relies on the following fact.

Proposition 5.9 (Nakajima [Nak99, Section 2.2]; see also [DW19, Proposition D.4]). Let 𝑘 ∈ N.
For every Ψ ∈ H ⊗C C𝑘 and 𝝃 ∈ H ⊗ 𝔰𝔲(𝑘), if 𝜇 (Ψ, 𝝃 ) = 0, then Ψ = 0.

Proof Proposition 5.8. Set

𝜎 ≔ sup{〈𝜇 (Ψ), 𝜇 (𝝃 )〉 : |𝜇 (Ψ) | = |𝜇 (𝝃 ) | = 1}.

By Cauchy–Schwarz, 𝜎 6 1; moreover, if 𝜎 = 1, then there are

𝜇Ψ ∈ {𝜇 (Ψ) : |𝜇 (Ψ) | = 1} and 𝜇𝝃 ∈ {𝜇 (𝝃 ) : |𝜇 (𝝃 ) | = 1}

with

〈𝜇Ψ, 𝜇𝝃 〉 = −|𝜇Ψ | |𝜇𝝃 |.

Therefore,

𝜇Ψ = −𝜇𝝃 .

The upcoming discussion proves this to be impossible.

By Proposition 5.6, the set {𝜇 (Ψ) : |𝜇 (Ψ) | = 1} is closed. In particular,

𝜇Ψ = 𝜇 (Ψ)

for some Ψ ∈ H ⊗C C𝑘 . The closure of {𝜇 (𝝃 ) : |𝜇 (𝝃 ) | = 1} is

{𝜇 (𝝃 ) : |𝜇 (𝝃 ) | = 1} ∪
{
d𝜻 𝜇 ( ˆ𝝃 ) : 𝜇 (𝜻 ) = 0, |d𝜻 𝜇 ( ˆ𝝃 ) | = 1

}
.

To see this, let (𝜀−1𝑛 𝝃𝑛) be a sequence with 𝜀𝑛 > 0 and |𝝃𝑛 | = 1 and

lim

𝑛→∞
𝜇 (𝜀−1𝑛 𝝃𝑛) = 𝜇𝝃 .
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After passing to a subsequence, 𝝃𝑛 converges to a limit 𝝃 and (𝜀𝑛) converges to a limit 𝜀. If

𝜀 ≠ 0, then, 𝜇𝝃 = 𝜇 (𝜀−1𝝃 ). Otherwise, 𝜇 (𝝃 ) = 0 and, for 𝑛 � 1, as in the proof of Lemma 5.1,

𝝃𝑛 = 𝜻𝑛 + ˆ𝝃𝑛 with 𝜇 (𝜻𝑛) = 0 and
ˆ𝝃𝑛 ⊥ 𝑇𝜻𝑛

𝜇−1(0) .

Therefore,

𝜇 (𝜀−1𝑛 𝝃𝑛) = d𝜻𝑛
𝜇 (𝜀−2𝑛 ˆ𝝃𝑛) + 𝜀2𝑛𝜇 (𝜀−2𝑛 ˆ𝝃𝑛) .

By (5.4), 𝜀−2𝑛 ˆ𝝃𝑛 is bounded; hence, after passing to a subsequence, it converges to a limit
ˆ𝝃 and

𝜇𝝃 = d𝝃 𝜇 ( ˆ𝝃 ).
By Proposition 5.9 and because Ψ ≠ 0, 𝜇𝝃 cannot be in {𝜇 (𝝃 ) : |𝜇 (𝝃 ) | = 1}. Therefore,

𝜇𝝃 = d𝜻 𝜇 ( ˆ𝝃 ) .

By Proposition 5.2, there exists a maximal torus 𝔱 ⊂ 𝔲(2) such that

𝜻 ∈ 𝔱 ⊗ H.

Therefore,

𝜇 (Ψ) = −d𝜻 𝜇 ( ˆ𝝃 ) ∈ ImH ⊗ 𝔱⊥.

This, however, is impossible, because it would imply that Ψ = 0 by Proposition 5.6. �

Proposition 5.10. There are constants 𝛿𝜇, 𝑐 > 0 such that, for every non-zero pair Ψ ∈ H ⊗C C2

and 𝝃 ∈ H ⊗ 𝔰𝔲(2), if
|𝜇 (Ψ, 𝝃 ) | 6 𝛿𝜇

(
|Ψ|2 + |𝝃 |2

)
,

then

|𝜇 (Ψ, 𝝃 ) |2 6 𝑐
(
〈𝜇 (Ψ, 𝝃 ), 𝜇 (Ψ)〉 +

|Γ𝝃 𝜇 (Ψ, 𝝃 ) |2

|Ψ|2 + |𝝃 |2

)
.

Proof. Without loss of generality |Ψ|2 + |𝝃 |2 = 1. By Proposition 5.6 and Proposition 5.7,

|Ψ|2 6 𝑐 |𝜇 (Ψ, 𝝃 ) | 6 𝑐𝛿𝜇 and |𝜇 (𝝃 ) | 6 𝑐 |𝜇 (Ψ, 𝝃 ) | 6 𝑐𝛿𝜇 .

Therefore, for 𝛿𝜇 � 1,

1

2

6 |𝝃 | 6 1.

If 𝛿𝜇 � 1, then, as in the proof of Lemma 5.1, 𝝃 uniquely decomposes as

𝝃 = 𝜻 + ˆ𝝃

with

𝜇 (𝜻 ) = 0, ˆ𝝃 ⊥ 𝑇𝜻 𝜇−1(0), and | ˆ𝝃 | 6 𝑐 |𝜇 (𝝃 ) | 6 𝑐𝛿𝜇 .

In particular,

|𝜇 ( ˆ𝝃 ) | 6 𝑐 |𝜇 (𝝃 ) |2 6 𝑐𝛿𝜇 |𝜇 (𝝃 ) |.
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Denote by 𝔱 ⊂ 𝔲(2) the maximal torus determined by 𝜻 and by 𝜋𝔱 : 𝔲(2) → 𝔱 the orthogonal

projection onto 𝔱. The discussion in the proof of Lemma 5.1 shows that

𝜋𝔱𝜇 (𝝃 ) = 𝜇 ( ˆ𝝃 ) and (1 − 𝜋𝔱)𝜇 (𝝃 ) = 2𝜇 (𝜻 , ˆ𝝃 ),

and, moreover,

| (1 − 𝜋𝔱)𝜇 (Ψ, 𝝃 ) | 6 |Γ𝜻 𝜇 (Ψ, 𝝃 ) | 6 |Γ𝝃 𝜇 (Ψ, 𝝃 ) | + 𝑐𝛿𝜇 |𝜇 (Ψ, 𝝃 ) |.

By the discussion in the preceding paragraph and Proposition 5.6,

〈𝜇 (Ψ, 𝝃 ), 𝜇 (Ψ)〉 = |𝜋𝔱𝜇 (Ψ) |2 + 〈𝜇 ( ˆ𝝃 ), 𝜇 (Ψ)〉 + 〈(1 − 𝜋𝔱)𝜇 (Ψ, 𝝃 ), 𝜇 (Ψ)〉
> |𝜋𝔱𝜇 (Ψ) |2 − 𝑐𝛿𝜇 |𝜇 (Ψ, 𝝃 ) | |Ψ|2 − 𝑐 |Γ𝝃 𝜇 (Ψ, 𝝃 ) | |Ψ|2

>
1

2

|𝜋𝔱𝜇 (Ψ) |2 − 𝑐𝛿2𝜇 |𝜇 (Ψ, 𝝃 ) |2 − 𝑐 |Γ𝝃 𝜇 (Ψ, 𝝃 ) |2.

Therefore,

|𝜇 (Ψ, 𝝃 ) |2 6 |𝜋𝔱𝜇 (Ψ) |2 + |𝜇 ( ˆ𝝃 ) |2 + |(1 − 𝜋𝔱)𝜇 (Ψ, 𝝃 ) |2

6 𝑐 〈𝜇 (Ψ, 𝝃 ), 𝜇 (Ψ)〉 + 𝑐𝛿2𝜇 |𝜇 (Ψ, 𝝃 ) |2 + 𝑐 |Γ𝝃 𝜇 (Ψ, 𝝃 ) |2.

For 𝛿𝜇 � 1, this implies the asserted inequality by rearrangement. �

5.3 Veri�cation of Hypothesis 1.22

Lemma 5.11. Assume the situation of Section 1.3. There are constants 𝑟0, 𝛿𝜇, 𝑐 > 0 such that
the following holds for every 𝑥 ∈ 𝑀 and 𝑟 ∈ (0, 𝑟0]. If 𝐴 ∈ A(Ad(𝔴)), Ψ ∈ Γ(𝑊 ), and
𝝃 ∈ Γ(𝑁 ⊗ Ad(𝔴)◦) satisfy (1.31),

1

2

6
√︁
|Ψ|2 + |𝝃 |2 6 2, and |𝜇 (Ψ, 𝝃 ) | 6 𝛿𝜇,

then
𝑟

2

ˆ
𝐵𝑟/2 (𝑥)

|𝐹𝐴 |2 +
(𝑟
𝜀

)
2

· 𝑟−1
ˆ
𝐵𝑟/2 (𝑥)

|∇𝐴Ψ|2 6 𝑐 + 𝑐𝑟
ˆ
𝐵𝑟 (𝑥)

|Γ𝝃 𝐹𝐴 |2.

Proof. By the Lichnerowicz–Weitzenböck formula (2.3),

1

2

Δ|Ψ|2 + |∇𝐴Ψ|2 + 𝜀−2〈𝜸 (𝜇 (Ψ, 𝝃 )Ψ,Ψ〉 + 〈𝛾 (ℜ)Ψ,Ψ〉 = 0.

Therefore, by hypothesis and Proposition 5.10,

(5.12) |𝜇 (Ψ, 𝝃 ) |2 + 𝜀2 |∇𝐴Ψ|2 6 𝑐1
(
|Γ𝝃 𝜇 (Ψ, 𝝃 ) |2 + 𝜀2 |Ψ|2

)
− 𝑐2𝜀2Δ|Ψ|2.

Let 𝜒 ∈ 𝐶∞
0
(𝐵𝑟 (𝑥)) be a cut-o� function satisfying 𝜒 |𝐵𝑟/2 (𝑥) = 1,

𝑟 |∇𝜒 | 6 𝑐, and 𝑟 2 |∇2𝜒 | 6 𝑐;
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in particular,

|𝑟 2Δ𝜒4 | 6 𝑐 𝜒2.

Multiplying (5.12) by 𝑟𝜀−4𝜒4, integrating by parts, and using 𝐹𝐴 = 𝜀−2𝜇 (Ψ, 𝝃 ), yields

𝑟

ˆ
𝐵𝑟 (𝑥)

𝜒4 |𝐹𝐴 |2 +
(𝑟
𝜀

)
2

𝑟−1
ˆ
𝐵𝑟 (𝑥)

𝜒4 |∇𝐴Ψ|2 6 𝑐𝑟
ˆ
𝐵𝑟 (𝑥)

𝜒4 |Γ𝝃 𝐹𝐴 |2 + 𝑐𝜀−2𝑟−1
ˆ
𝐵𝑟 (𝑥)

𝜒2 |Ψ|2.

By Proposition 5.6 and Proposition 5.7,

𝑐𝜀−2𝑟−1
ˆ
𝐵𝑟 (𝑥)

𝜒2 |Ψ|2 6 𝑟

𝑐1𝜀
4

ˆ
𝐵𝑟 (𝑥)

𝜒4 |Ψ|4 + 𝑐2

6
𝑟

2

ˆ
𝐵𝑟 (𝑥)

𝜒4𝜀−4 |𝜇 (Ψ, 𝝃 ) |2 + 𝑐2

=
𝑟

2

ˆ
𝐵𝑟 (𝑥)

𝜒4 |𝐹𝐴 |2 + 𝑐2.

Plugging this back in to the previous inequality and rearranging proves the asserted inequality.

�

5.4 Conclusion of the proof of Theorem 1.33

Let (𝐴𝑛,Ψ𝑛, 𝝃𝑛)𝑛∈N be a sequence of solutions of (1.31) with

lim inf

𝑛→∞
‖(Ψ𝑛, 𝝃𝑛)‖𝐿2 = ∞.

Set

𝜀𝑛 ≔
1

‖(Ψ𝑛, 𝝃𝑛)‖𝐿2
, Ψ̃𝑛 ≔ 𝜀𝑛Ψ𝑛, and

˜𝝃𝑛 ≔ 𝜀𝑛𝝃𝑛 .

By Lemma 5.11, Theorem 1.28 applies to the sequence (𝐴𝑛, Ψ̃𝑛, ˜𝝃𝑛, 𝜀𝑛). Therefore and by

Proposition 5.9, the following hold:

(1) There is a closed, nowhere-dense subset 𝑍 ⊂ 𝑀 , a connection𝐴 ∈ A(Ad(𝔴) |𝑀\𝑍 , 𝐵), and
a section 𝝃 ∈ Γ(𝑀\𝑍, 𝑁 ⊗ Ad(𝔴)◦) such that the following hold:

(a) 𝐴 and 𝝃 satisfy

/𝐷𝐴𝝃 = 0,

𝜇 (𝝃 ) = 0, and

‖𝝃 ‖2
𝐿2

= 1.

(b) The function |𝝃 | extends to a Hölder continuous function on all of𝑀 and

𝑍 = |𝝃 |−1(0).
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(2) After passing to a subsequence and up to gauge transformations, for every compact subset

𝐾 ⊂ 𝑀\𝑍 , (𝐴𝑛 |𝐾 )𝑛∈N converges to 𝐴 in the weak𝑊
1,2

loc
topology,

(
Ψ̃𝑛 |𝐾

)
𝑛∈N

converges to

0 in the weak𝑊
2,2

loc
topology,

(
˜𝝃𝑛 |𝐾

)
𝑛∈N

converges to 𝝃 in the weak𝑊
2,2

loc
topology, and

there exists an 𝛼 ∈ (0, 1) such that

(
| (Ψ̃𝑛, ˜𝝃𝑛) |

)
𝑛∈N

converges to |𝝃 | in the 𝐶0,𝛼
topology.

The Euclidean line bundle 𝔩 and the parallel section 𝜏 emerge from the Haydys correspon-

dence [DW19, Appendix C]. In the present case this abstract machinery can be made very

explicit. By Proposition 5.2, away from 𝑍 , 𝝃 can locally be written as

𝝃 = 𝜏 ⊗ 𝜈

where 𝜏 is a local section of Ad(𝔴)◦ which is normalized such that |𝜏 | = 1, and 𝜈 is a local

section of 𝑁 . This decomposition is unique up to multiplying both 𝜏 and 𝜈 by −1. Decomposing

𝝃 in this way, the equation /𝐷𝐴𝝃 = 0 becomes

0 = 𝜏 ⊗ /𝐷𝐵𝜈 +
3∑︁
𝑖=1

(∇𝐴,𝑒𝑖𝜏) ⊗ 𝛾 (𝑒𝑖)𝜈.

Since 𝜏 is normalized, the second term on the right-hand side takes values in 〈𝜏〉⊥⊗𝑁 . Therefore,

both summands on the right-hand side vanish separately. Globally, there is a �at Euclidean

line bundle 𝔩 such that 𝜈 is a section of 𝑁 ⊗ 𝔩 and 𝜏 is a section of Hom(𝔩,Ad(𝔴)◦). The above
shows that (𝑍, 𝔩, 𝜈) is a harmonic Z2 spinor whose zero locus is precisely 𝑍 and 𝜏 is 𝐴–parallel.

By [Zha17, Theorem 1.4], the former implies the asserted regularity of 𝑍 .

On every compact subset 𝐾 ⊂ 𝑀\𝑍 , ‖𝐹𝐴𝑛
‖𝐿2 (𝐾) is uniformly bounded. Therefore, by

Proposition 5.6 and Proposition 5.7, ‖Ψ𝑛 ‖𝐿2 (𝐾) is uniformly bounded. Since /𝐷𝐴𝑛
Ψ𝑛 = 0, it

follows that, possibly after passing to a further subsequence, (Ψ𝑛 |𝐾 ) converges in the weak𝑊 2,2

topology to a limit Ψ satisfying /𝐷𝐴Ψ = 0. For 𝑛 � 1, on 𝐾 , we can decompose
˜𝝃𝑛 = 𝜻𝑛 + ˆ𝝃𝑛 as

in the proof of Lemma 5.1. Denote by 𝔱𝑛 ⊂ Ad(𝔴) |𝐾 the corresponding bundle of maximal tori.

The ADHM1,2 Seiberg–Witten equation (1.31) and (5.4) imply

𝜋𝔱𝑛𝐹𝐴𝑛
= 𝜋𝔱𝑛𝜇 (Ψ𝑛) + 𝜀−2𝑛 𝜋𝔱𝑛𝜇 ( ˆ𝝃𝑛).

By (5.4) and Proposition 5.7,

| ˆ𝝃𝑛 | 6 𝑐𝜀2𝑛 |𝐹𝐴𝑛
|.

Therefore,

|𝜋𝔱𝑛𝐹𝐴𝑛
− 𝜋𝔱𝑛𝜇 (Ψ𝑛) | 6 𝑐𝜀2𝑛 |𝐹𝐴𝑛

|2.

From this it follows that

𝐹𝐴 = 𝜋𝔱𝐹𝐴 = 𝜋𝔱𝜇 (Ψ).

This �nishes the proof of Theorem 1.33. �
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